Characteristics of Cerebrovascular Response to Intrinsic Vasoactive Substances in Sika Deer (Cervus nippon yesoensis) and the Possible Effects of Gravity on Adrenergic Responses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Preparation of Deer
2.2. Reagents
2.3. Isometric Myography Studies
2.4. Measurement of the Vertical Displacement of the Cardiocranial Axis of Deer, Horses, Mice, Cattle, Dolphin and Pigs
2.5. Statistical Analysis
3. Results
3.1. Responsiveness to NA, ACh, 5-HT, Histamine, Ang II and BK
3.2. Responsiveness to L-NNA and Indomethacin Under Resting Tension
3.3. Effects of Endothelial Denudation and Cimetidine on Histamine-Induced Contraction
3.4. Effects of Diphenhydramine on Histamine-Induced Contraction
3.5. Effect of Endothelial Denudation, L-NNA and Atropine on Ach-Induced Relaxation
3.6. Effect of Pirenzepine, Methoctramine, and pFHHSiD on Ach-Induced Relaxation
3.7. Relationship Between NA-Induced Response and Gravity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brudnicki, W. Morphometric analysis of the brain base arteries in fallow deer (Dama dama). Vet. Med. 2011, 56, 462–468. [Google Scholar] [CrossRef]
- Claassen, J.; Thijssen, D.H.J.; Panerai, R.B.; Faraci, F.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiol. Rev. 2021, 101, 1487–1559. [Google Scholar] [CrossRef] [PubMed]
- Ainslie, P.N.; Ogoh, S. Regulation of cerebral blood flow in mammals during chronic hypoxia: A matter of balance. Exp. Physiol. 2010, 95, 251–262. [Google Scholar] [CrossRef]
- Sriram, K.; Laughlin, J.G.; Rangamani, P.; Tartakovsky, D.M. Shear-induced nitric oxide production by endothelial cells. Biophys. J. 2016, 111, 208–221. [Google Scholar] [CrossRef]
- Ainslie, P.N.; Subudhi, A.W. Cerebral blood flow at high altitude. High Alt. Med. Biol. 2014, 15, 133–140. [Google Scholar] [CrossRef]
- Willie, C.K.; Macleod, D.B.; Shaw, A.D.; Smith, K.J.; Tzeng, Y.C.; Eves, N.D.; Ikeda, K.; Graham, J.; Lewis, N.C.; Day, T.A.; et al. Regional brain blood flow in man during acute changes in arterial blood gases. J. Physiol. 2012, 590, 3261–3275. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Hardebo, J.E.; Owman, C. Differential vasomotor action of noradrenaline, serotonin, and histamine in isolated basilar artery from rat and guinea-pig. Acta Physiol. Scand. 1988, 132, 91–102. [Google Scholar] [CrossRef]
- Shibata, S.; Cheng, J.B.; Murakami, W. Reactivity of isolated human cerebral arteries to biogenic amines. Blood Vessels 1977, 14, 356–365. [Google Scholar] [CrossRef]
- Islam, M.Z.; Watanabe, Y.; Nguyen, H.T.; Yamazaki-Himeno, E.; Obi, T.; Shiraishi, M.; Miyamoto, A. Vasomotor effects of acetylcholine, bradykinin, noradrenaline, 5-hydroxytryptamine, histamine and angiotensin II on the mouse basilar artery. J. Vet. Med. Sci. 2014, 76, 1339–1345. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, J.H. Manipulation of chloride flux affects histamine-induced contraction in rabbit basilar artery. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H1427–H1436. [Google Scholar] [CrossRef]
- Miyamoto, A.; Nishio, A. Vasomotor effects of histamine on bovine and equine basilar arteries in vitro. Vet. Res. Commun. 1994, 18, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Kojima, S.; Sameshima, M.; Obi, T.; Yamazaki-Himeno, E.; Shiraishi, M.; Miyamoto, A. Vasomotor effects of noradrenaline, 5-hydroxytryptamine, angiotensin II, bradykinin, histamine, and acetylcholine on the bat (Rhinolophus ferrumequinum) basilar artery. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 250, 109190. [Google Scholar] [CrossRef] [PubMed]
- Ayajiki, K.; Okamura, T.; Toda, N. Involvement of nitric oxide in endothelium-dependent, phasic relaxation caused by histamine in monkey cerebral arteries. Jpn. J. Pharmacol. 1992, 60, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Usui, H.; Kurahashi, K.; Jino, H.; Shirahase, H.; Mekata, F. Endothelium-dependent contraction produced by acetylcholine and relaxation produced by histamine in monkey basilar arteries. J. Cardiovasc. Pharmacol. 1992, 20 (Suppl. 12), S114–S116. [Google Scholar] [CrossRef]
- Islam, M.Z.; Sawatari, Y.; Kojima, S.; Kiyama, Y.; Nakamura, M.; Sasaki, K.; Otsuka, M.; Obi, T.; Shiraishi, M.; Miyamoto, A. Vasomotor effects of 5-hydroxytryptamine, histamine, angiotensin II, acetylcholine, noradrenaline, and bradykinin on the cerebral artery of bottlenose dolphin (Tursiops truncatus). J. Vet. Med. Sci. 2020, 82, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Matsumoto, M.; Nishio, A. Pharmacological detection of an integrity of endothelium in pig, cattle and horse basilar arteries in vitro. Mem. Fac. Agric. Kagoshima Univ. 1995, 31, 63–68. [Google Scholar]
- Miyamoto, A.; Kanda, J.; Nishio, A. Responsiveness of equine basilar artery to transmural nerve stimulation differs from that of porcine and bovine basilar arteries in vitro. J. Vet. Med. Sci. 1995, 57, 365–366. [Google Scholar] [CrossRef]
- Katusic, Z.S.; Shepherd, J.T.; Vanhoutte, P.M. Endothelium-dependent contractions to calcium ionophore A23187, arachidonic acid, and acetylcholine in canine basilar arteries. Stroke 1988, 19, 476–479. [Google Scholar] [CrossRef]
- Toda, N.; Ayajiki, K. Cholinergic prejunctional inhibition of vasodilator nerve function in bovine basilar arteries. Am. J. Physiol. 1990, 258, H983–H986. [Google Scholar] [CrossRef]
- Jabłoski, R. Variation in the pattern of arteries of the encephalon base in roe deer. Folia Biol. 2005, 53 (Suppl. 1), 31–34. [Google Scholar] [CrossRef]
- Silvia, W.J. Ruminant phylogenetics: A reproductive biological perspective. Biosci. Proceed. 2019, 5, 8. [Google Scholar] [CrossRef]
- Miyamoto, A.; Matsumoto, M.; Nishio, A. Endothelial modulation of vascular tone in isolated porcine and bovine basilar arteries. J. Vet. Med. Sci. 1994, 56, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, A.; Wada, R.; Inoue, A.; Ishiguro, S.; Liao, J.K.; Nishio, A. Role of angiotensin II receptor subtypes in porcine basilar artery: Functional, radioligand binding, and cell culture studies. Life Sci. 2006, 78, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, Y.; Fujiwara, M.; Muramatsu, I. Pharmacological characterization of the alpha adrenoceptors of the dog basilar artery. Naunyn-Schmiedebergs Arch. Pharmacol. 1982, 319, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Starling, L.M.; Boullin, D.J.; Grahame-Smith, D.G.; Adams, C.B.; Gye, R.S. Responses of isolated human basilar arteries to 5-hydroxytryptamine, noradrenaline, serum, platelets, and erythrocytes. J. Neurol. Neurosurg. Psychiatry. 1975, 38, 650–656. [Google Scholar] [CrossRef]
- Ayajiki, K.; Toda, N. Regional difference in the response mediated by beta 1-adrenoceptor subtype in bovine cerebral arteries. J. Cereb. Blood Flow. Metab. 1992, 12, 507–513. [Google Scholar] [CrossRef]
- Miyamoto, A.; Ito, K.; Nishio, A. Characterization of beta-adrenoceptors in pig basilar artery from functional and radioligand binding studies. Jpn. J. Pharmacol. 1993, 61, 93–99. [Google Scholar] [CrossRef]
- Hirst, G.D.; Neild, T.O.; Silverberg, G.D. Noradrenaline receptors on the rat basilar artery. J. Physiol. 1982, 328, 351–360. [Google Scholar] [CrossRef]
- Arunlakshana, O.; Schild, H.O. Some quantitative uses of drug antagonists. Br. J. Pharmacol. Chemother. 1959, 14, 48–58. [Google Scholar] [CrossRef]
- Kato, Y. Determination of heart position. In Illustrated Comparison of Livestock Anatomy, 2nd ed.; Yokendo: Tokyo, Japan, 1979; p. 432. (In Japanese) [Google Scholar]
- Saito, A.; Handa, J.; Toda, N. Reactivity to vasoactive agents of canine basilar arteries exposed to experimental subarachnoid hemorrhage. Surg. Neurol. 1991, 35, 461–467. [Google Scholar] [CrossRef]
- Ueno, D.; Yabuki, A.; Obi, T.; Shiraishi, M.; Nishio, A.; Miyamoto, A. Characterization of bradykinin-induced endothelium-independent contraction in equine basilar artery. J. Vet. Pharmacol. Ther. 2009, 32, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Young, A.R.; MacKenzie, E.T.; Seylaz, J.; Verrecchia, C. Receptors involved in the 5-hydroxytryptamine-induced contraction of isolated cerebral arteries. Acta. Physiol. Scand. Suppl. 1986, 552, 54–57. [Google Scholar] [PubMed]
- Cheng, J.B.; Shibata, S. Reactivity of isolated bovine cerebral arteries to biogenic amines. Gen. Pharmacol. 1978, 9, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Terrón, J.A.; Falcón-Neri, A. Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br. J. Pharmacol. 1999, 127, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Nakazawa, M.; Nagatomo, T. Effects of sarpogrelate, a novel 5-HT2 antagonist, on 5-HT-induced endothelium-dependent relaxations in porcine coronary artery. Jpn. J. Pharmacol. 2002, 89, 405–412. [Google Scholar] [CrossRef]
- Eglen, R.M.; Michel, A.D.; Montgomery, W.W.; Kunysz, E.A.; Machado, C.A.; Whiting, R.L. The interaction of parafluorohexahydrosiladiphenidol at muscarinic receptors in vitro. Br. J. Pharmacol. 1990, 99, 637–642. [Google Scholar] [CrossRef]
Agonists | pEC50 | Max (%) |
---|---|---|
Histamine | 5.55 ± 0.06 | 101.8 ± 2.3 a |
Noradrenaline | – | 1.9 ± 0.3 a |
5-Hydroxytriptamine | – | 1.2 ± 0.4 a |
Angiotensin II | – | No response |
Bradykinin | – | No response |
Acetylcholine | 7.05 ± 0.01 | −88.9 ± 8.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.Z.; Wu, S.; Ootawa, T.; Smith, H.; Nguyen, H.T.T.; Harada, E.; Miyamoto, A. Characteristics of Cerebrovascular Response to Intrinsic Vasoactive Substances in Sika Deer (Cervus nippon yesoensis) and the Possible Effects of Gravity on Adrenergic Responses. Animals 2024, 14, 3500. https://doi.org/10.3390/ani14233500
Islam MZ, Wu S, Ootawa T, Smith H, Nguyen HTT, Harada E, Miyamoto A. Characteristics of Cerebrovascular Response to Intrinsic Vasoactive Substances in Sika Deer (Cervus nippon yesoensis) and the Possible Effects of Gravity on Adrenergic Responses. Animals. 2024; 14(23):3500. https://doi.org/10.3390/ani14233500
Chicago/Turabian StyleIslam, Md. Zahorul, Siyuan Wu, Tomoki Ootawa, Henry Smith, Ha Thi Thanh Nguyen, Etsumori Harada, and Atsushi Miyamoto. 2024. "Characteristics of Cerebrovascular Response to Intrinsic Vasoactive Substances in Sika Deer (Cervus nippon yesoensis) and the Possible Effects of Gravity on Adrenergic Responses" Animals 14, no. 23: 3500. https://doi.org/10.3390/ani14233500
APA StyleIslam, M. Z., Wu, S., Ootawa, T., Smith, H., Nguyen, H. T. T., Harada, E., & Miyamoto, A. (2024). Characteristics of Cerebrovascular Response to Intrinsic Vasoactive Substances in Sika Deer (Cervus nippon yesoensis) and the Possible Effects of Gravity on Adrenergic Responses. Animals, 14(23), 3500. https://doi.org/10.3390/ani14233500