Population Dynamics of the Widespread Alien Decapod Species, Brown Shrimp (Penaeus aztecus), in the Mediterranean Sea
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Data Analysis
3. Results
3.1. Shrimp Species Composition
3.2. Population Structure
3.3. Prevalence of E. ingens ingens
3.4. Reproduction Pattern
3.5. Marine Recruitment
3.6. Length–Weight Relationships, Growth, and Age
3.7. Selectivity and Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Farfante, I. Western Atlantic shrimps of the genus Penaeus. Fish. Bull. 1969, 67, 461–591. [Google Scholar]
- O’Connell, A.M.; Hijuelos, A.C.; Sable, S.E.; Geaghan, J.P. Coastal Master Plan: Attachment C3-13: Brown Shrimp, Farfantepenaeus aztecus, Habitat Suitability Index Model; Coastal Protection and Restoration Authority, Version Final: Baton Rouge, LA, USA, 2017; p. 34. [Google Scholar]
- Scott-Denton, E.; Cryer, P.F.; Duffy, M.R.; Gocke, J.P.; Harrelson, M.R.; Whatley, A.J.; Williams, J.A. Characterization of the U.S. Gulf of Mexico and South Atlantic penaeid and rock shrimp fisheries based on observer data. Mar. Fish. Rev. 2012, 74, 1–2. [Google Scholar]
- Eayrs, S.; Fuentevilla, C. Advances and best practices in bycatch reduction in tropical shrimp-trawl fisheries. FAO Fish. Aquac. Tech. Pap. 2021, 678, 125. [Google Scholar]
- Posadas, B.C. Commercial Brown Shrimp Fishing in the Gulf of Mexico States. Miss. Mark. Newsl. 2017, 7, 8. [Google Scholar]
- Castro, R.G.; Medellfn, M.; Rosas, E.; Orta, R. La Pesquera de Camaron En Las Lagunas Litorales Del Noreste Del Golfo De Mexico; Centro Regionale Investigatione de Pesquare Tampico, Instituto Nacional de Pesca: Tampico, Mexico, 1982; pp. 1–12. [Google Scholar]
- Gallaway, B.J.; Reitsema, L.A. Shrimp spawning site survey. In Shrimp and Redfish Studies: Bryan Mound Brine Disposal Site Off Freeport; Jackson, W.B., Wilkens, E.P., Eds.; Department of Commerce, NOAA Technical Memorandum: Austin, TX, USA, 1981; p. 84. [Google Scholar]
- Copeland, B.J.; Truitt, M.V. Fauna of the Aransas Pass Inlet, Texas. II. Penaeid shrimp postlarvae. Tex. J. Sci. 1966, 18, 65–74. [Google Scholar]
- Copeland, B.J. Fauna of the Aransas Pass Inlet, Texas. I. Emigration as Shown by Tide Trap Collections; Publication of the Institute of Marine Sciences, University of Texas: Austin, TX, USA, 1965; Volume 10, pp. 9–21. [Google Scholar]
- Deval, M.C.; Kaya, Y.; Güven, O.; Gökoğlu, M.; Froglia, C. An unexpected find of the western Atlantic shrimp, Farfantepenaeus aztecus (Ives, 1891) (Decapoda, Penaeidae) in Antalya Bay, eastern Mediterranean Sea. Crustaceana 2010, 83, 1531–1537. [Google Scholar] [CrossRef]
- Deval, M.C.; Koçancı, F.G. Infestation and effect of parasitic isopod Epipenaeon ingens ingens Nobili, 1906 on commercial shrimp species in the eastern Mediterranean: A case study of the population of brown shrimp Penaeus aztecus Ives, 1891. Turk. J. Zool. 2021, 45, 557–569. [Google Scholar] [CrossRef]
- Ugarković, P.; Crocetta, F. The brown shrimp Penaeus aztecus Ives, 1891 (Crustacea: Decapoda: Penaeidae) spreading northern in the Adriatic Sea: A first record from Croatia. BioInvasions Rec. 2021, 10, 636–643. [Google Scholar] [CrossRef]
- Sadek, S.; Abou El-Soud, W.; Galil, B.S. The brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Nile Delta, Egypt: An exploitable resource for fishery and mariculture? BioInvasions Rec. 2018, 7, 51–54. [Google Scholar] [CrossRef]
- Cruscanti, M.; Innocenti, G.; Alvarado Bremer, J.R.; Galil, B.S. First report of the brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Tyrrhenian Sea. Mar. Biodivers. Rec. 2015, 8, e81. [Google Scholar] [CrossRef]
- Galil, B.S.; Innocenti, G.; Douek, J.; Paz, G.; Rinkevich, B. Foul play? On the rapid spread of the brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Mediterranean, with new records from the Gulf of Lion and the southern Levant. Mar. Biodivers. 2016, 47, 979–985. [Google Scholar] [CrossRef]
- Froglia, C.; Scanu, M. Notes on the Spreading of Penaeus aztecus Ives 1891 (Decapoda, Penaeidae) in the Mediterranean Sea and on Its Repeated Misidentifications in the Region. Biology 2023, 12, 793. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, P.F.; Patella, F.J., Jr.; Baxter, N.; Emiliani, D.A. Movements of brown shrimp, Penaeus aztecus, and pink shrimp, P. duorarum, relative to the U.S.-Mexico border in the western Gulf of Mexico. Mar. Fish. Rev. 1987, 49, 14–19. [Google Scholar]
- Mytilineou Ch Akel EHKh Babali, N.; Balistreri, P.; Bariche, M.; Boyaci, Y.Ö.; Cilenti, L.; Constantinou, C.; Crocetta, F.; Çelik, M. New Mediterranean marine biodiversity records. Mediterr. Mar. Sci. 2016, 17, 794–821. [Google Scholar] [CrossRef]
- Zava, B.; Insacco, G.; Galil, B.S. The first record of the brown shrimp Penaeus aztecus Ives, 1891 in the central Adriatic coast of Italy. BioInvasions Rec. 2018, 7, 293–296. [Google Scholar] [CrossRef]
- Mitchell, J.F.; Watson, J.W.; Foster, D.G.; Caylor, R.E. The Turtle Excluder Device (TED): A Guide to Better Performance; NOAA Technical Memorandum; NMFS-SEFSC: Bohemia, NY, USA, 1995; Volume 366, p. 35. [Google Scholar]
- Chokesanguan, B. The Experiment on Turtle Excluder Devices (TEDs) for Shrimp Trawl Nets in Thailand; SEAFDEC Training Department: Samut Prakan, Thailand, 1996; p. 43. [Google Scholar]
- Wileman, D.A. Manual of methods of measuring the selectivity of towed fishing gears. ICES Coop. Res. Rep. 1996, 215, 38–99. [Google Scholar]
- Hesaplamanet. Ay Evresi Hesaplama. Available online: https://ay-evresi.hesaplama.net (accessed on 22 May 2023).
- MEVBIS. Meteorological Data Information Presentation and Sales System (MEVBIS); Ministry of Environment, Urbanization and Climate Change: Ankara, Turkey, 2022. [Google Scholar]
- Renfro, W.C.; Brusher, H.A. Distribution and intensity of shrimp spawning activity. US Fish Wildl. Serv. Circ. 1963, 161, 13–17. [Google Scholar]
- Brown, A., Jr.; Patlan, D. Color changes in the ovaries of penaeid shrimp as a determinant of their maturity. Mar. Fish. Rev. 1974, 36, 23–26. [Google Scholar]
- ConStat. Granspaettevej 10; CC Selectivity: Hjjlarring, Denmark, 1995. [Google Scholar]
- Gramolini, R.; Mannini, P.; Milone, N.; Zeuli, V. AdriaMed Trawl Survey Information System (ATrIS): User manual. FAO-MiPAF Scientific Cooperation to Support Responsible Fisheries in the Adriatic Sea. GCP/RER/010/ITA/TD-17. AdriaMed Tech. Doc. 2005, 17, 141. [Google Scholar]
- Gayanilo, F.C., Jr.; Sparre, P.; Pauly, D. The FAO-ICLARM Stock Assessment Tools (FISAT II) Program Package (FAO, Rome); FAO Computerized Information Series (Fisheries); FAO: Rome, Italy, 2002; Volume 8, p. 168. [Google Scholar]
- Gayanilo, F.C., Jr.; Pauly, D. The FAO-ICLARM Stock Assessment Tools (FiSAT) Reference Manual; FAO Computerized Information Series (Fisheries); FAO: Rome, Italy, 1998; Volume 8, p. 262. [Google Scholar]
- Herrmann, B.; Sistiaga, M.; Larsen, R.B.; Nielsen, K.N.; Grimaldo, E. Understanding sorting grid and codend size selectivity of Greenland halibut (Reinhardtius hippoglossoides). Fish. Res. 2013, 146, 59–73. [Google Scholar] [CrossRef]
- Sala, A.; Lucchetti, A.; Affronte, M. Effects of Turtle Excluder Devices on bycatch and discard reduction in the demersal fisheries of Mediterranean Sea. Aquat. Living Resour. 2011, 24, 183–192. [Google Scholar] [CrossRef]
- Brčić, J.; Herrmann, B.; Sala, A. Selective characteristics of a shark-excluding grid device in a Mediterranean trawl. Fish. Res. 2015, 172, 352–360. [Google Scholar] [CrossRef]
- Ricker, W.E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 1975, 191, 382. [Google Scholar]
- Deval, M.C.; Göktürk, D. Population structure and dynamics of the cut trough shell Spisula subtruncata (da Costa) in the Sea of Marmara, Turkey. Fish. Res. 2008, 89, 241–247. [Google Scholar] [CrossRef]
- Lassuy, D.R. Species Profi1es: 1ife Histories and Environmental Requirements (Gulf of Mexico)—Brown Shrimp; U.S. Fish and Wild life Service, Division of Biological Services, FWSIOBS-82/11.1; U.S. Army Corps of Engineers: Washington, DC, USA, 1983; TR EL-82-4; p. 15. [Google Scholar]
- Anderson, W.W. Contributions to the Life Histories of Several Penaeid Shrimp (Penaeidae) Along the South Atlantic Coast of the United States; Special Scientific Report; United States Fish Wildlife Service: Washington, DC, USA, 1970; Volume 605, p. 24. [Google Scholar]
- Gracia, A. Simulated and Actual Effects of the Brown Shrimp, Penaeus aztecus, closure in Mexico. Mar. Fish. Rev. 1997, 59, 18–25. [Google Scholar]
- Renfro, W.C.; Brusher, H.A. Seasonal Abundance, Size Distribution, and Spawning of Three Shrimps (Penaeus aztecus, P. setiferus and P. duorarum) in the North-Western Gulf of Mexico, 1961–1962; NOAA Technical Memorandum NMFS–SEFC-94; NOAA: Silver Spring, MD, USA, 1982; p. 49. [Google Scholar]
- Cervantes-Hernández, P.; Gracia, A. Reproductive and recruitment seasons for Penaeus aztecus in the Tamaulipas-Veracruz area, Gulf of Mexico. Lat. Am. J. Aquat. Res. 2020, 48, 578–589. [Google Scholar] [CrossRef]
- Williams, A.B. A contribution to the life history of commercial shrimps Penaeidae in North Carolina. Bull. Mar. Sci. Gulf Caribb. 1995, 52, 116–146. [Google Scholar]
- Chávez, E.A. A Study on the growth rate of Brown shrimp (Penaeus aztecus aztecus Ives, 1891) from the Coasts of Veracruz and Tamaulipas, Mexico. Gulf Res. Rep. 1973, 4, 278–299. [Google Scholar] [CrossRef]
- Aquacop. Observations Sur La Maturation Et La Reproduction En Captivité Des Crevettes Pénéides En Milieu Tropical; Publications du Centre National pour l’Exploitation des Océans (CNEXO): Paris, France, 1977; Volume 4, pp. 157–178. [Google Scholar]
- Dall, W.; Hill, B.J.; Rothlisberg, P.C.; Sharple, D.J. The biology of the Penaeidae. In Advances in Marine Biology; Academic Press: London, UK, 1990; Volume 27, p. 489. [Google Scholar]
- St Amant, L.S.; Lindner, M.J.; Allen, G.W.; Ingle, R.M.; Demoran, W.J. The shrimp fishery of the Gulf of Mexico. Gulf States Mar. Fish. Comm. Info Ser. 1966, 3, 9. [Google Scholar]
- Rogers, B.D.; Shaw, R.F.; Herke, W.H.; Blanchet, R.H. Recruitment of postlarval and juvenile brown shrimp (Penaeus aztecus Ives) from offshore to estuarine waters of the north-western Gulf of Mexico. Estuar. Coast. Shelf Sci. 1993, 36, 377–394. [Google Scholar] [CrossRef]
- Hunt, J.H.; Carroll, R.J.; Chinchilli, V.; Frankenberg, D. Relationship Between Environmental Factors and Brown Shrimp Production in Pamlico Sound, North Carolina; Special Scientific Report; North Carolina Division of Marine Fisheries: Morehead City, NC, USA, 1980; Volume 33, p. 29. [Google Scholar]
- Gaidry, W.J.; White, C.J. Investigations of Commercially Important Penaeid Shrimp in Louisiana Estuaries; Louisiana Wild Life and Fisheries Commission Technical Bulletin: Rouge, Las Vegas, NV, USA, 1973; Volume 8, p. 154. [Google Scholar]
- Pérez-Farfante, I. Diagnostic Characters of Juveniles of the Shrimps Penaeus Aztecus Aztecus, P. Duorarum Duorarum, and P. Brasiliensis (Crustacea, Decapoda, Penaeidae); Special Scientific Report; U.S. Fish Wildlife Service: Washington, DC, USA, 1970; Volume 599, p. 26. [Google Scholar]
- Cook, H.L.; Lindner, M.J. Synopsis of biological data on the brown shrimp, Penaeus aztecus aztecus Ives, 1891. FAO Fish. Rep. 1970, 57, 1471–1497. [Google Scholar]
- Minello, T.J.; Zimmerman, R.J.; Martinez, E.X. Mortality of young brown shrimp Penaeus aztecus in estuarine nurseries. Trans. Am. Fish. Soc. 1989, 118, 693–708. [Google Scholar] [CrossRef]
- Pérez-Castañeda, R.; Sánchez-Martínez, J.; Vázquez-Sauceda, M.D.L.; Rábago, J.; Rocha, J.; Benavides-Gonzáes, F.; Blanco-Martínez, Z. Growth of Penaeus aztecus Ives, 1891 and Penaeus duorarum Burkenroad, 1931 in a hypersaline lagoon: Relationships with environmental conditions and body size. Indian J. Fish. 2019, 66, 21–28. [Google Scholar] [CrossRef]
- Clark, R.D.; Christensen, J.D.; Monaco, M.E.; Caldwell, P.A.; Matthews, G.A.; Thomas, M.J. A habitat-use model to determine essential fish habitat for juvenile brown shrimp (Farfantepenaeus aztecus) in Galveston Bay, Texas. Fish. Bull. 2004, 102, 264–277. [Google Scholar]
- Fry, B. Open Bays as Nurseries for Louisiana Brown Shrimp. Estuaries Coasts 2008, 31, 776–789. [Google Scholar] [CrossRef]
- Larson, S.C.; Van Den Avyle, M.J.; Bozeman, E.L. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic)-Brown shrimp. U.S. Fish Wildl. Serv. Biol. Rep. 1989, 82, 14. [Google Scholar]
- Li, J.; Clarke, A.J. Sea surface temperature and the brown shrimp (Farfantepenaeus aztecus) population on the Alabama, Mississippi, Louisiana and Texas continental shelves. Estuar. Coast. Shelf Sci. 2005, 64, 261–266. [Google Scholar] [CrossRef]
- Pérez-Castañeda, R.; Defeo, O. Growth and mortality of transient shrimp populations (Farfantepenaeus spp.) in a coastal lagoon of Mexico: Role of the environment and density-dependence. ICES J. Mar. Sci. 2005, 62, 14–24. [Google Scholar] [CrossRef]
- Sparre, P.; Venema, S.C. Introduction To Tropical Fish Stock Assessment. Part 1: Manual. FAO Tech. Pap. 1988, 306/1, 337. [Google Scholar]
- Fontaine, C.T.; Neal, A. Length-weight relations for three commercially important penaeid shrimp of the Gulf of Mexico. Trans. Am. Fish. Soc. 1971, 100, 584–586. [Google Scholar] [CrossRef]
- McCoy, E.G. Dynamics of North Carolina Commercial Shrimp Populations; Special Scientific Report; North Carolina Department of Natural and Economic Resource, Division Commercial and Sports Fisheries: Raleigh, NC, USA, 1972; Volume 21, p. 53. [Google Scholar]
- Kutkuhn, J.H. Gulf of Mexico Commercial Shrimp Populations—Trends and Characteristics, 1956–1959; Scientific Report; United States Fish Wildlife Service: Washington, DC, USA, 1962; Volume 62, pp. 343–402. [Google Scholar]
- Tunnell, J.W. Geography, Climate, and Hydrography. In The Laguna Madre of Texas and Tamaulipas, Revised Edition; Judd, F.W., Tunnell, J.W., Chapman, B.R., Withers, K., Eds.; College Station, Texas A&M University Press: College Station, TX, USA, 2023; pp. 9–39. [Google Scholar]
- Özcan, Ö.F.; Akın, B. Belek Özel Çevre Koruma Bölgesi Su Kalitesinin Çok Değişkenli İstatistiksel Yöntemler ile Değerlendirilmesi. Karadeniz Fen Bilim. Derg. 2024, 14, 719–741. [Google Scholar] [CrossRef]
- Pérez-Castañeda, R.; Sánchez-Martínez, J.G.; Aguirre-Guzmán, G. Growth and Survival of Brown Shrimp (Farfantepenaeus aztecus) in a Closed Recirculation Seawater System at Different Salinities. Thai J. Vet. Med. 2013, 42, 95–99. [Google Scholar] [CrossRef]
- Sivasubramanian, K.; Ravichandran, S.; Rameshkumar, G.; Veerappan, N. Occurrence, morphology and molecular characterisation of Bopyrid parasite Epipenaeon ingens Nobili,1906 (Isopoda: Bopyridae). J. Parasit. Dis. 2016, 40, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Manokaran, S.; Jun, S.; Trilles, J.P. A review of Epipenaeon ingens Nobili, 1906 (Isopoda: Bopyridae) host species and documentation of a new host, Metapenaeopsis stridulans (Alcock, 1905) (Decapoda: Penaeidae). Chin. J. Oceanol. Limnol. 2011, 29, 136–140. [Google Scholar] [CrossRef]
- Nobili, G. Nuovi Bopiridi. Atti Della R. Accad. Delle Sci. Di Torino 1906, 41, 1098. [Google Scholar]
- An, J.; Boyko, C.B.; Li, X. Review of the parasitic genus Epipenaeon Nobili, 1906 (Crustacea: Isopoda: Bopyridae), with new records and redescription of four species from China. J. Nat. Hist. 2014, 48, 2027–2048. [Google Scholar] [CrossRef]
- Williams, J.D.; Boyko, C.B. The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea). PLoS ONE 2012, 7, e35350. [Google Scholar] [CrossRef]
- Bursey, C.R. Histopathology of the parasitization of Munida iris (Decapoda: Galatheidae) by Munidion irritans (Isopoda: Bopyridae). Bull. Mar. Sci. 1978, 28, 566–570. [Google Scholar]
- Klompmaker, A.A.; Robins, C.M.; Portell, R.W.; De Angeli, A. Crustaceans as hosts of parasites throughout the Phanerozoic. bioRxiv 2018, 505495. [Google Scholar] [CrossRef]
- Bourdon, R. Les Bopyridae des Mers Européennes. Mémoires Du Muséum Natl. D’histoire Naturelle. Nouv. Série Zool. L (2 et Dernier) 1968, 50, 75–424. [Google Scholar]
- Korun, J.; Gökoğlu, M.; Balcı, B.A.; Özvarol, Y. Infestation of Brown shrimp, Farfantepenaeus aztecus, Ives (1891) (Penaeidae) by Epipenaeon ingens, Nobili (1906) (Isopoda, Bopyridae) from the Antalya Bay, Turkey. Rev. de Médecine Vétérinaire 2013, 164, 559–563. [Google Scholar]
- Owens, L.; Glazebrook, J.S. The Biology of Bopyrid Isopods Parasitic on Commercial Penaeid Prawns in Northern Australia; Rothlisberg, P.C., Hill, B.J., Staples, D.J., Eds.; Second Australian National Prawn Seminar: Kooralbyn, Australia, 1985; pp. 105–113. [Google Scholar]
- Gopalakrishnan, A.; Rajkumar, M.; Ravichandran, S.; Trilles, J.P.; Vasanthan, T.M. Identification of Parapenaeopsis stylifera, a new host for Epipenaeon ingens. J. Environ. Biol. 2009, 30, 1063–1064. [Google Scholar] [PubMed]
- Hataway, D.; Foster, D.; Saxon, L. Evaluations of Turtle Excluder Devices (TEDs) with reduced bar spacing in the inshore penaeid shrimp fishery of the Northeastern Gulf of Mexico. NOAA Tech. Memo. 2017, NMFS-SEFSC-707, 13. [Google Scholar]
- Gillett, R. Global Study of Shrimp Fisheries; FAO Fisheries Technical Paper 475; FAO: Rome, Italy, 2008; p. 331. [Google Scholar]
- Berry, R.J. Population Dynamics; US Fish and Wildlife Service: Washington, DC, USA, 1964; Volume 183, pp. 7–36. [Google Scholar]
- Klima, E.F. Mark recapture experiments with brown and white shrimp in the northern Gulf of Mexico. Proc. Gulf Caribb. Fish. Inst. 1964, 16, 52–64. [Google Scholar]
- Tsikliras, A.C.; Stergiou, K.I. The mean temperature of the catch increases quickly in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 2014, 515, 281–284. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Palau, J.L. Sea surface temperature trends in the Mediterranean Sea from 1982 to 2018. Sci. Total Environ. 2020, 729, 138781. [Google Scholar]
- Gazeau, F.; Parker, L.M.; Comeau, S.; Gattuso, J.P.; O’Connor, W.A.; Martin, S.; Pörtner, H.; Ross, P.M. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 2014, 160, 2207–2245. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L., Jr.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef]
- Lloret, J.; Marín, A.; Marín-Guirao, L. Effects of coastal anthropogenic stressors on fish and shellfish populations. Mar. Pollut. Bull. 2015, 101, 5–11. [Google Scholar]
Date | HD (min) | SA (km−2) | Catch (kg) | BI | DTOT | DF | DFPS | DFMAT | DREC | % Infection | mCL (mm) | mTW (n/g) | SST(°C) | MoL (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Survey 1 | 27 March 2019 | 120 | 0.15 | 2.44 | 16.5 | 311 | 162 | 142 | 14 | 7 | 84.8 | 38.7 | 38.1 | 17.3 | 63.0 |
17 April 2019 | 110 | 0.16 | 1.11 | 7.0 | 215 | 108 | 95 | 32 | 0 | 61.8 | 35.9 | 32.6 | 17.9 | 90.8 | |
5 May 2019 | 105 | 0.15 | 1.01 | 6.7 | 198 | 92 | 86 | 66 | 0 | 46.7 | 36.3 | 32.6 | 21.6 | 90.4 | |
21 June 2019 | 50 | 0.15 | 1.14 | 7.8 | 303 | 110 | 96 | 62 | 62 | 11.4 | 31.3 | 25.9 | 26.3 | 88.0 | |
20 July 2019 | 160 | 0.23 | 16.39 | 70.9 | 5559 | 2321 | 169 | 134 | 3609 | 0.9 | 26.5 | 12.7 | 27.7 | 91.9 | |
28 August 2019 | 180 | 0.23 | 10.09 | 43.6 | 3431 | 1832 | 1171 | 1093 | 774 | 15.2 | 30.9 | 12.7 | 29.0 | 9.6 | |
13 September 2019 | 60 | 0.12 | 5.22 | 44.5 | 2523 | 1210 | 281 | 153 | 1347 | 27.4 | 27.3 | 17.6 | 28.5 | 98.5 | |
8 October 2019 | 60 | 0.09 | 1.59 | 17.4 | 1935 | 1028 | 448 | 164 | 383 | 48.6 | 30.0 | 20.1 | 26.1 | 70.6 | |
28 November 2019 | 110 | 0.19 | 4.24 | 22.1 | 814 | 376 | 266 | 120 | 125 | 55.1 | 32.1 | 27.2 | 23.2 | 1.9 | |
20 December 2019 | 90 | 0.14 | 1.33 | 9.4 | 330 | 239 | 190 | 84 | 35 | 34.0 | 33.6 | 28.3 | 19.9 | 42.4 | |
26 January 2020 | 120 | 0.19 | 1.72 | 9.0 | 314 | 157 | 99 | 10 | 26 | 66.7 | 33.1 | 28.7 | 18.3 | 1.0 | |
26 February 2020 | 120 | 0.19 | 1.27 | 6.6 | 188 | 104 | 73 | 16 | 10 | 72.2 | 34.2 | 35.3 | 17.1 | 0.1 | |
14 June 2020 | 150 | 0.21 | 0.56 | 2.6 | 80 | 42 | 14 | 5 | 19 | 35.3 | 34.5 | 32.9 | 23.7 | 44.3 | |
16 July 2020 | 145 | 0.19 | 6.90 | 36.2 | 1911 | 808 | 89 | 79 | 1029 | 2.2 | 27.3 | 19.0 | 27.0 | 23.7 | |
Survey 2 | 24 November 2020 | 138 | 0.19 | 1.42 | 7.6 | 344 | 183 | 21 | 11 | 215 | 23.4 | 25.8 | 22.2 | 23.6 | 66.1 |
24 December 2020 | 170 | 0.27 | 3.72 | 13.8 | 569 | 324 | 134 | 100 | 127 | 28.8 | 30.5 | 24.3 | 20.1 | 67.4 | |
21 January 2021 | 185 | 0.29 | 1.32 | 4.6 | 191 | 94 | 45 | 21 | 21 | 47.3 | 35.4 | 24.0 | 18.9 | 49.9 | |
21 February 2021 | 180 | 0.31 | 1.91 | 6.2 | 201 | 81 | 55 | 39 | 10 | 41.9 | 32.2 | 30.8 | 17.9 | 50.9 | |
20 March 2021 | 145 | 0.21 | 1.27 | 6.0 | 199 | 123 | 95 | 33 | 5 | 47.6 | 33.8 | 30.2 | 17.9 | 33.8 | |
19 April 2021 | 180 | 0.26 | 0.71 | 2.8 | 90 | 39 | 39 | 12 | 0 | 52.2 | 34.2 | 32.3 | 18.4 | 36.3 | |
18 May 2021 | 175 | 0.25 | 0.83 | 3.4 | 90 | 41 | 41 | 24 | 0 | ns | 37.5 | 37.7 | 22.3 | 30.7 | |
16 June 2021 | 200 | 0.28 | 3.27 | 11.6 | 623 | 345 | 75 | 43 | 420 | ns | 26.6 | 18.7 | 24.3 | 26.5 | |
8 July 2021 | 175 | 0.25 | 8.92 | 35.9 | 2647 | 1110 | 0 | 0 | 2144 | ns | 24.7 | 13.6 | 27.2 | 1.3 | |
19 August 2021 | 170 | 0.24 | 10.73 | 44.8 | 2541 | 1325 | 288 | 54 | 1346 | ns | 26.6 | 17.6 | 29.5 | 84.0 | |
25 September 2021 | 150 | 0.18 | 4.55 | 25.8 | 1627 | 958 | 227 | 108 | 1043 | ns | 25.4 | 15.9 | 28.7 | 85.8 | |
21 October 2021 | 160 | 0.24 | 0.97 | 4.0 | 276 | 119 | 25 | 16 | 194 | ns | 25.5 | 14.5 | 25.3 | 99.9 | |
12 November 2021 | 190 | 0.27 | 1.89 | 7.0 | 556 | 256 | 22 | 15 | 419 | ns | 24.6 | 12.6 | 22.3 | 53.7 |
Factors | Dependents | df | F | p | Factors | Dependents | df | F | p |
---|---|---|---|---|---|---|---|---|---|
Season | Log DTOT | 3/25/28 | 8.544 | 0.000 | Survey | Log DTOT | 1/22/23 | 0.677 | 0.419 |
Log BI | 3/25/28 | 4.616 | 0.011 | Log BITOT | 1/22/23 | 2.003 | 0.171 | ||
Log DREC | 3/25/28 | 9.136 | 0.000 | Log DREC | 1/22/23 | 0.009 | 0.927 | ||
Log DMAT | 3/25/28 | 0.540 | 0.659 | Log DMAT | 1/22/23 | 3.972 | 0.059 | ||
SR | 3/25/28 | 0.876 | 0.467 | SR | 1/22/23 | 0.074 | 0.788 | ||
Mean CL | 3/23/26 | 16.184 | 0.000 | Mean CL | 1/22/23 | 2.549 | 0.125 | ||
Mean TW | 3/25/28 | 13.446 | 0.000 | Mean TW | 1/22/23 | 0.805 | 0.379 | ||
IR | 3/18/21 | 7.606 | 0.002 | IR | 1/15/16 | 0.000 | 0.989 | ||
IR-FPS | 3/22/26 | 1.098 | 0.371 | IR-FPS | 1/21/23 | 0.230 | 0.636 | ||
Month | Log DTOT | 11/17/28 | 8.054 | 0.000 | |||||
Log BI | 11/17/28 | 5.969 | 0.001 | ||||||
Log DREC | 11/17/28 | 2.519 | 0.042 | ||||||
Log DMAT | 11/17/28 | 0.942 | 0.527 | ||||||
SR | 11/17/28 | 1.014 | 0.475 | ||||||
Mean CL | 11/15/26 | 4.516 | 0.004 | ||||||
Mean TW | 11/17/28 | 6.313 | 0.000 | ||||||
IR | 11/8/19 | 2.549 | 0.097 | ||||||
IR-FPS | 11/14/25 | 1.201 | 0.367 |
Spearman’ Rho | ||||
---|---|---|---|---|
Independents | Dependents | N | r | p |
SST | Log DTOT | 27 | 0.724 | 0.000 |
Log BI | 27 | 0.631 | 0.000 | |
Log DREC | 27 | 0.763 | 0.000 | |
Log DMAT | 27 | 0.459 | 0.016 | |
SR | 27 | −0.162 | 0.421 | |
Mean CL | 27 | −0.677 | 0.000 | |
Mean TW | 27 | −0.741 | 0.000 | |
IR | 20 | −0.794 | 0.000 | |
Moonlight | Log DTOT | 29 | 0.102 | 0.597 |
Log BI | 29 | 0.105 | 0.586 | |
Log DREC | 29 | 0.072 | 0.711 | |
Log DMAT | 29 | 0.278 | 0.144 | |
SR | 29 | −0.125 | 0.518 | |
Mean CL | 27 | −0.175 | 0.384 | |
Mean TW | 29 | −0.202 | 0.292 | |
IR | 22 | −0.303 | 0.170 |
Variables | St.I (59) | St.II (117) | St.III (77) | St.IV (63) |
---|---|---|---|---|
CL (cm) | 34.5 ± 3.1 * | 38.1 ± 4.3 | 38.4 ± 4.9 | 38.7 ± 3.8 |
TW (g) | 29.4 ± 7.5 * | 37.4 ± 11.4 | 39.1 ± 14.3 | 40.2 ± 10.2 |
GW (g) | 0.0936 ± 0.062 * | 0.3197 ± 0.216 * | 0.7956 ± 0.361 * | 1.7737 ± 0.843 * |
GSI | 0.312 ± 1.59 * | 0.8315 ± 0.396 * | 2.0262 ± 0.559 * | 4.3666 ± 1.499 * |
Range of GSI | 0.072–0.78 | 0.137–2.081 | 1.003–3.964 | 2.254–7.688 |
Parameters | Values |
---|---|
CL50%grid | 28.8 (20.6–42.4) |
SRgrid | 30.3 (14.6–82.8) |
Cgrid(%) | 65.6 (24.4–100.0) |
CL50%codend | 19.9 (19.6–20.3) |
SRcodend | 0.56 (0.11–1.12) |
CL50%system | 31.6 (28.7–35.5) |
SRsystem | 34.5 (15.7–72.0) |
Df | 14 |
Deviance | 12.8 |
p-value | 0.5429 |
TW/CL | Length Range (mm) | Parameters of VBGF | Mortality (per Month) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Data | Sex | a | b | TL | CL | TLinf | CLinf | K | to | MMAG | F | Z | Refer. | Area |
MR | M | 0.00082 | 2.94 | 15–40 | 30 | 0.32 m | −5.98 w | 0.21 | 0.57 | [60] | U.S. | |||
MR | F | 0.00113 | 2.84 | 15–40 | 36 | 0.17 m | −7.2 w | |||||||
FI | M | 11.6 × 10−6 | 2.91 | 10–48 | [59] | |||||||||
FI | F | 9.5 × 10−6 | 2.94 | 12–57 | ||||||||||
FI | B | 25–200 | 6–47 c | 0.16–0.73 w | [57] | Mexico | ||||||||
FD | M | 0.00021 | 2.32 | 93–172 | 22–41 c | 178 | 42 c | 0.26 m | −0.239 m | 15 | [42] | |||
FD | F | 0.00001 | 2.97 | 91–216 | 21–50 c | 236 | 59 c | 0.16 m | −0.759 m | 13 | ||||
FD | B | 40–130 | 9.4–30 c | 204 | 48 c | 0.26 m | −0.292 m | 16 | 0.11–0.65 | [38] | ||||
FD | B | 16 | 0.5 | 0.74 | [40] | |||||||||
FI | M | 0.0038 | 2.522 | 14–44 | 45.4 | 1.31 y | −0.12 y | 15 | 0.33 | This study | Medit. | |||
FI | F | 0.0035 | 2.546 | 14–64 | 56 | 1.11 y | −0.14 y | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deval, M.C.; Deniz, T. Population Dynamics of the Widespread Alien Decapod Species, Brown Shrimp (Penaeus aztecus), in the Mediterranean Sea. Animals 2025, 15, 561. https://doi.org/10.3390/ani15040561
Deval MC, Deniz T. Population Dynamics of the Widespread Alien Decapod Species, Brown Shrimp (Penaeus aztecus), in the Mediterranean Sea. Animals. 2025; 15(4):561. https://doi.org/10.3390/ani15040561
Chicago/Turabian StyleDeval, Mehmet Cengiz, and Tomris Deniz. 2025. "Population Dynamics of the Widespread Alien Decapod Species, Brown Shrimp (Penaeus aztecus), in the Mediterranean Sea" Animals 15, no. 4: 561. https://doi.org/10.3390/ani15040561
APA StyleDeval, M. C., & Deniz, T. (2025). Population Dynamics of the Widespread Alien Decapod Species, Brown Shrimp (Penaeus aztecus), in the Mediterranean Sea. Animals, 15(4), 561. https://doi.org/10.3390/ani15040561