Consumption Trends of Antifungal and Antiprotozoal Agents for Human Systemic Use in Kazakhstan from 2017 to 2023
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data Sources
4.2. Study Units
4.3. Data Analysis
4.4. Ethics Statement
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, W.; Wu, J.; Cheng, M.; Zhu, X.; Du, M.; Chen, C.; Liao, W.; Zhi, K.; Pan, W. Diagnosis of invasive fungal infections: Challenges and recent developments. J. Biomed. Sci. 2023, 30, 42. [Google Scholar] [CrossRef]
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell 2020, 7, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Scariot, D.B.; Staneviciute, A.; Zhu, J.; Li, X.; Scott, E.A.; Engman, D.M. Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases? Front. Cell. Infect. Microbiol. 2022, 12, 1000972. [Google Scholar] [CrossRef] [PubMed]
- Al-Awadhi, M.; Ahmad, S.; Iqbal, J. Current Status and the Epidemiology of Malaria in the Middle East Region and Beyond. Microorganisms 2021, 9, 338. [Google Scholar] [CrossRef] [PubMed]
- Engels, D.; Zhou, X.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infect. Dis. Poverty 2020, 9, 10. [Google Scholar] [CrossRef]
- da Silva, A.; Nobre, H.; Sampaio, L., Jr.; Nascimento, B.D.; da Silva, C.; de Andrade Neto, J.B.; Manresa, Á.; Pinazo, A.; Cavalcanti, B.; de Moraes, M.O.; et al. Antifungal and antiprotozoal green amino acid-based rhamnolipids: Mode of action, antibiofilm efficiency and selective activity against resistant Candida spp. strains and Acanthamoeba castellanii. Colloids Surf. B Biointerfaces 2020, 193, 111148. [Google Scholar] [CrossRef]
- Khan, S.; Bond, S.E.; Lee-Milner, J.; Conway, B.R.; Lattyak, W.J.; Aldeyab, M.A. Antimicrobial consumption in an acute NHS Trust during the COVID-19 pandemic: Intervention time series analysis. JAC Antimicrob. Resist. 2024, 6, dlae013. [Google Scholar] [CrossRef]
- Semenova, Y.; Lim, L.; Salpynov, Z.; Gaipov, A.; Jakovljevic, M. Historical evolution of healthcare systems of post-soviet Russia, Belarus, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Armenia, and Azerbaijan: A scoping review. Heliyon 2024, 10, e29550. [Google Scholar] [CrossRef]
- Pharmaceutical Review of Kazakhstan. Roadmap for Containing Antibiotic Resistance Was Adopted in Kazakhstan. Available online: https://pharm.reviews/ru/novosti/novosti-kazakhstana/item/4512-v-rk-prinyata-dorozhnaya-karta-po-sderzhivaniyu-rezistentnosti-k-antibiotikam (accessed on 21 July 2023).
- Balapasheva, A.A.; Smagulova, G.A.; Mussina, A.Z.; Ziganshina, L.E.; Nurgaliyeva, Z.Z. Pharmacoepidemiological Analysis of Antibacterial Agents Used in a Provisional Hospital in Aktobe, Kazakhstan, in the Context of COVID-19: A Comparison with the Pre-Pandemic Period. Antibiotics 2023, 12, 1596. [Google Scholar] [CrossRef]
- Semenova, Y.; Kassym, L.; Kussainova, A.; Aimurziyeva, A.; Makalkina, L.; Avdeyev, A.; Yessmagambetova, A.; Smagul, M.; Aubakirova, B.; Akhmetova, Z.; et al. Knowledge, Attitudes, and Practices towards Antibiotics and Antimicrobial Resistance, and Antibiotics Consumption in the Population of Kazakhstan. Antibiotics 2024, 13, 718. [Google Scholar] [CrossRef]
- Semenova, Y.; Pivina, L.; Khismetova, Z.; Auyezova, A.; Nurbakyt, A.; Kauysheva, A.; Ospanova, D.; Kuziyeva, G.; Kushkarova, A.; Ivankov, A.; et al. Anticipating the Need for Healthcare Resources Following the Escalation of the COVID-19 Outbreak in the Republic of Kazakhstan. J. Prev. Med. Public Health 2020, 53, 387–396. [Google Scholar] [CrossRef]
- Kaur, H.; Krishnamoorthi, S.; Dhaliwal, N.; Biswal, M.; Singh, S.; Muthu, V.; Rudramurthy, S.M.; Agarwal, R.; Ghoshal, S.; Singh, S.; et al. Antifungal prescription practices and consumption in a tertiary care hospital of a developing country. Mycoses 2022, 65, 935–945. [Google Scholar] [CrossRef]
- Barraza, M.; Barnafi, N.; Ortiz, G.; Torres, J.P.; Coria, P.; Catalán, P.; Palma, J.; Morales, J. Evaluation of the prescription, consumption and costs of antifungal drugs in a pediatric hospital in Chile. Rev. Chil. Infectol. Organo Of. Soc. Chil. Infectol. 2018, 35, 351–357. [Google Scholar] [CrossRef]
- Rahme, D.; Ayoub, M.; Shaito, K.; Saleh, N.; Assaf, S.; Lahoud, N. First trend analysis of antifungals consumption in Lebanon using the World Health Organization collaborating center for drug statistics methodology. BMC Infect. Dis. 2022, 22, 882. [Google Scholar] [CrossRef]
- Hamim, H.; Sangeda, R.Z.; Bundala, M.; Mkumbwa, S.; Bitegeko, A.; Sillo, H.B.; Fimbo, A.M.; Chambuso, M.; Mbugi, E.V. Utilization Trends of Antiviral and Antifungal Agents for Human Systemic Use in Tanzania from 2010 to 2017 Using the World Health Organization Collaborating Centre for Drug Statistics Methodology. Front. Trop. Dis 2021, 2, 723991. [Google Scholar] [CrossRef]
- Pathadka, S.; Yan, V.K.C.; Neoh, C.F.; Al-Badriyeh, D.; Kong, D.C.M.; Slavin, M.A.; Cowling, B.J.; Hung, I.F.N.; Wong, I.C.K.; Chan, E.W. Global Consumption Trend of Antifungal Agents in Humans From 2008 to 2018: Data From 65 Middle- and High-Income Countries. Drugs 2022, 82, 1193–1205. [Google Scholar] [CrossRef]
- Gursoy, S.; Satıcı, D.; Kuzu, B.; Turkmenoglu, B.; Dilek, E.; Algul, O. Exploring New 5-Nitroimidazole Derivatives as Potent Acetylcholinesterase and Butyrylcholinesterase Enzyme Inhibitors. Chem. Biodivers. 2024, 20, e202400918, Advance online publication. [Google Scholar] [CrossRef]
- Nayiga, S.; Kayendeke, M.; Nabirye, C.; Willis, L.D.; Chandler, C.I.R.; Staedke, S.G. Use of antibiotics to treat humans and animals in Uganda: A cross-sectional survey of households and farmers in rural, urban and peri-urban settings. JAC-Antimicrob. Resist. 2020, 2, dlaa082. [Google Scholar] [CrossRef]
- Afari-Asiedu, S.; Hulscher, M.; Abdulai, M.A.; Boamah-Kaali, E.; Asante, K.P.; Wertheim, H.F.L. Every medicine is medicine; exploring inappropriate antibiotic use at the community level in rural Ghana. BMC Public Health 2020, 20, 1103. [Google Scholar] [CrossRef]
- Saleem, Z.; Faller, E.M.; Godman, B.; Malik, M.S.A.; Iftikhar, A.; Iqbal, S.; Akbar, A.; Hashim, M.; Amin, A.; Javeed, S.; et al. Antibiotic consumption at community pharmacies: A multicenter repeated prevalence surveillance using WHO methodology. Med. Access Point Care 2021, 5, 23992026211064714. [Google Scholar] [CrossRef]
- Muzny, C.A.; Van Gerwen, O.T.; Legendre, D. Secnidazole: A treatment for trichomoniasis in adolescents and adults. Expert Rev. Anti-Infect. Ther. 2022, 20, 1067–1076. [Google Scholar] [CrossRef]
- Baigenzhin, A.; Doskaliyev, Z.; Tuganbekova, S.; Zharikov, S.; Altynova, S.; Gaipov, A. Organ Transplants in Kazakhstan. Exp. Clin. Transplant. Off. J. Middle East Soc. Organ Transplant. 2015, 13, 4–6. [Google Scholar] [CrossRef]
- Semenova, Y.; Beyembetova, A.; Shaisultanova, S.; Asanova, A.; Sailybayeva, A.; Altynova, S.; Pya, Y. Evaluation of liver transplantation services in Kazakhstan from 2012 to 2023. Sci. Rep. 2024, 14, 9304. [Google Scholar] [CrossRef]
- Semenova, Y.; Shaisultanova, S.; Beyembetova, A.; Asanova, A.; Sailybayeva, A.; Novikova, S.; Myrzakhmetova, G.; Pya, Y. Examining a 12-year experience within Kazakhstan’s national heart transplantation program. Sci. Rep. 2024, 14, 10291. [Google Scholar] [CrossRef]
- Avkan-Oğuz, V.; Irmak, Ç.; Dağdeviren, K.; Eren-Kutsoylu, O.; Nazlı, A.; Çelik, M.; Bayrak, S. The Effect of the Pandemic on Antifungal Use: What Has Changed? Infect. Dis. Clin. Microbiol. 2022, 4, 156–162. [Google Scholar] [CrossRef]
- Bienvenu, A.L.; Bestion, A.; Pradat, P.; Richard, J.C.; Argaud, L.; Guichon, C.; Roux, S.; Piriou, V.; Paillet, C.; Leboucher, G.; et al. Impact of COVID-19 pandemic on antifungal consumption: A multicenter retrospective analysis. Crit. Care 2022, 26, 384. [Google Scholar] [CrossRef]
- Pharmaceutical Review of Kazakhstan. Pharmaceutical Market of the Republic of Kazakhstan: Current State and Development Prospects. Available online: https://pharm.reviews/ru/analitika/item/7111-farmatsevticheskij-rynok-rk-sostoyanie-i-perspektivy-razvitiya (accessed on 31 July 2024).
- Kanj, S.S.; Haddad, S.F.; Meis, J.F.; Verweij, P.E.; Voss, A.; Rautemaa-Richardson, R.; Levy-Hara, G.; Chowdhary, A.; Ghafur, A.; Brüggemann, R.; et al. The battle against fungi: Lessons in antifungal stewardship from COVID 19 times. Int. J. Antimicrob. Agents 2023, 62, 106846. [Google Scholar] [CrossRef]
- Semenova, Y.; Trenina, V.; Pivina, L.; Glushkova, N.; Zhunussov, Y.; Ospanov, E.; Bjorklund, G. The lessons of COVID-19, SARS, and MERS: Implications for preventive strategies. Int. J. Healthc. Manag. 2023, 15, 314–324. [Google Scholar] [CrossRef]
- Vi-ORTIS. Market Research Company. Available online: https://base.viortis.kz/Account/LogOn?ReturnUrl=%2f (accessed on 29 July 2024).
- Norwegian Institute of Public Health. ATC/DDD Index. Available online: https://atcddd.fhi.no/atc_ddd_index/?code=J&showdescription=yes (accessed on 29 July 2024).
- Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. Bureau of National Statistics. Statistical Collections. Available online: https://stat.gov.kz/en/publication/collections/ (accessed on 29 July 2024).
- Hollingworth, S.; Kairuz, T. Measuring Medicine Use: Applying ATC/DDD Methodology to Real-World Data. Pharmacy 2021, 9, 60. [Google Scholar] [CrossRef]
- World Health Organization. The ATC/DDD Methodology. Available online: https://www.who.int/tools/atc-ddd-toolkit/methodology (accessed on 31 July 2024).
- World Health Organization. GLASS Manual on the Management of Antimicrobial Consumption Data; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001019-2. [Google Scholar]
- Clegg, L.X.; Hankey, B.F.; Tiwari, R.; Feuer, E.J.; Edwards, B.K. Estimating average annual per cent change in trend analysis. Stat. Med. 2009, 28, 3670–3682. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, J.; Hu, W.; Li, H.; Lin, G.Z. Interrupted time series analysis using the ARIMA model of the impact of COVID-19 on the incidence rate of notifiable communicable diseases in China. BMC Infect. Dis. 2023, 23, 375. [Google Scholar] [CrossRef] [PubMed]
ATC5 * Code | Substance | Year | AAPC ⁰ (95% CI ∞, p Value) | ||||||
---|---|---|---|---|---|---|---|---|---|
2017 DID ** (%) | 2018 DID (%) | 2019 DID (%) | 2020 DID (%) | 2021 DID (%) | 2022 DID (%) | 2023 DID (%) | |||
Antifungals | |||||||||
J02AA01 | Amphotericin B | 0.00000 (0.00) | 0.00000 (0.00) | 0.00000 (0.00) | 0.00004 (0.01) | 0.00005 (0.01) | 0.00003 (0.01) | 0.00006 (0.01) | 7.67 (−36.46; 82.43, p = 0.305) |
J02AB02 | Ketoconazole | 0.04587 (11.34) | 0.03639 (8.39) | 0.04209 (10.43) | 0.00002 (0.00) | 0.38267 (87.80) | 0.00001 (0.00) | 0.00005 (0.01) | −71.09 (−95.77; 97.56, p = 0.079) |
J02AC01 | Fluconazole | 0.31182 (77.07) | 0.34600 (79.78) | 0.31364 (77.72) | 0.33093 (89.30) | 0.05240 (12.02) | 0.39380 (88.90) | 0.36794 (85.36) | −3.63 (−33.96; 40.65, p = 0.406) |
J02AC02 | Itraconazole | 0.04646 (11.48) | 0.05076 (11.70) | 0.04732 (11.73) | 0.03911 (10.55) | 0.00025 (0.06) | 0.04843 (10.93) | 0.06195 (14.37) | −14.72 (−69.96; 142.06, p = 0.355) |
J02AC03 | Voriconazole | 0.00005 (0.01) | 0.00004 (0.01) | 0.00012 (0.03) | 0.00007 (0.02) | 0.00000 (0.00) | 0.00023 (0.05) | 0.00040 (0.09) | 10.23 (−73.87; 364.95, p = 0.434) |
J02AC04 | Posaconazole | 0.00000 (0.00) | 0.00000 (0.00) | 0.00000 (0.00) | 0.00000 (0.00) | 0.00036 (0.08) | 0.00000 (0.00) | 0.00000 (0.00) | 34.45 (−46.32; 236.74, p = 0.223) |
J02AX04 | Caspofungin | 0.00038 (0.09) | 0.00042 (0.10) | 0.00034 (0.08) | 0.00038 (0.10) | 0.00011 (0.02) | 0.00042 (0.09) | 0.00063 (0.15) | 1.27 (−24.49; 35.83, p = 0.458) |
J02AX05 | Micafungin | 0.00001 (0.00) | 0.00006 (0.01) | 0.00005 (0.01) | 0.00003 (0.01) | 0.00001 (0.00) | 0.00002 (0.00) | 0.00002 (0.01) | −6.68 (−31.52; 27.18, p = 0.295) |
Total | 0.40461 (100.00) | 0.43367 (100.00) | 0.40357 (100.00) | 0.37058 (100.00) | 0.43585 (100.00) | 0.44295 (100.00) | 0.43107 (100.00) | 1.11 (−2.00; 4.32, p = 0.203) | |
Antiprotozoals | |||||||||
P01AB01 | Metronidazole | 0.17174 (86.26) | 0.12917 (82.40) | 0.33527 (93.74) | 0.12155 (82.03) | 0.29249 (93.24) | 0.27487 (94.23) | 0.20822 (92.08) | 7.22 (−12.10; 30.78, p = 0.204) |
P01AB07 | Secnidazole | 0.02735 (13.74) | 0.02759 (17.60) | 0.02238 (6.26) | 0.02663 (17.97) | 0.02120 (6.76) | 0.01683 (5.77) | 0.01792 (7.92) | −7.93 (−12.58; −3.02, p = 0.005) |
Total | 0.19908 (100.0) | 0.15676 (100.0) | 0.35765 (100.0) | 0.14818 (100.0) | 0.31370 (100.0) | 0.29170 (100.0) | 0.22613 (100.0) | 5.48 (−11.22; 25.32, p = 0.231) |
ATC5 * Code | Substance | Year | AAPC ⁰ (95% CI ∞, p Value) | ||||||
---|---|---|---|---|---|---|---|---|---|
2017 DID ** (%) | 2018 DID (%) | 2019 DID (%) | 2020 DID (%) | 2021 DID (%) | 2022 DID (%) | 2023 DID (%) | |||
Antifungals | |||||||||
J02AB02 | Ketoconazole | 0.03413 (10.14) | 0.03054 (8.58) | 0.02348 (7.42) | 0.00002 (0.01) | 0.28863 (85.25) | 0.00001 (0.00) | 0.00005 (0.02) | −69.46 (−95.23; 95.58, p = 0.081) |
J02AC01 | Fluconazole | 0.26139 (77.67) | 0.27958 (78.55) | 0.24993 (78.98) | 0.24909 (87.20) | 0.04992 (14.75) | 0.31267 (87.14) | 0.30160 (83.35) | −3.36 (−31.48; 36.30, p = 0.404) |
J02AC02 | Itraconazole | 0.04061 (12.07) | 0.04580 (12.87) | 0.04303 (13.60) | 0.03654 (12.79) | 0.00000 (0.00) | 0.04611 (12.85) | 0.06013 (16.62) | −25.98 (−89.07; 401.24, p = 0.351) |
Total | 0.33653 (100.00) | 0.35592 (100.00) | 0.31645 (100.00) | 0.28565 (100.00) | 0.33856 (100.00) | 0.35880 (100.00) | 0.36185 (100.00) | 1.08 (−3.21; 5.56, p = 0.276) | |
Antiprotozoals | |||||||||
P01AB01 | Metronidazole | 0.14781 (84.40) | 0.11166 (80.23) | 0.33231 (93.74) | 0.10550 (79.97) | 0.27961 (92.97) | 0.26378 (94.02) | 0.20726 (92.06) | 9.58 (−12.15; 36.67, p = 0.168) |
P01AB07 | Secnidazole | 0.02731 (15.60) | 0.02752 (19.77) | 0.02218 (6.26) | 0.02642 (20.03) | 0.02113 (7.03) | 0.01678 (5.98) | 0.01787 (7.94) | −7.92 (−12.54; −3.06, p = 0.005) |
Total | 0.17513 (100.00) | 0.13918 (100.00) | 0.35450 (100.00) | 0.13191 (100.00) | 0.30074 (100.00) | 0.28056 (100.00) | 0.22513 (100.00) | 7.37 (−11.20 to 29.82, p = 0.190) |
ATC5 * Code | Substance | Year | AAPC ⁰ (95% CI ∞, p Value) | ||||||
---|---|---|---|---|---|---|---|---|---|
2017 DID ** (%) | 2018 DID (%) | 2019 DID (%) | 2020 DID (%) | 2021 DID (%) | 2022 DID (%) | 2023 DID (%) | |||
Antifungals | |||||||||
J02AA01 | Amphotericin B | 0.00000 (0.00) | 0.00000 (0.00) | 0.00000 (0.00) | 0.00004 (0.05) | 0.00005 (0.05) | 0.00003 (0.04) | 0.00006 (0.09) | 7.67 (−36.46; 82.43, p = 0.305) |
J02AB02 | Ketoconazole | 0.01175 (17.25) | 0.00586 (7.53) | 0.01860 (21.35) | 0.00000 (0.00) | 0.09404 (96.66) | 0.00000 (0.00) | 0.00000 (0.00) | - |
J02AC01 | Fluconazole | 0.05044 (74.09) | 0.06642 (85.43) | 0.06372 (73.13) | 0.08184 (96.37) | 0.00247 (2.54) | 0.08113 (96.41) | 0.06634 (95.85) | −6.98 (−52.18; 80.93, p = 0.395) |
J02AC02 | Itraconazole | 0.00585 (8.60) | 0.00495 (6.37) | 0.00429 (4.93) | 0.00257 (3.03) | 0.00025 (0.26) | 0.00232 (2.76) | 0.00182 (2.62) | −24.49 (−52.66; 20.44, p = 0.091) |
J02AC03 | Voriconazole | 0.00003 (0.04) | 0.00004 (0.05) | 0.00012 (0.14) | 0.00007 (0.08) | 0.00000 (0.00) | 0.00022 (0.26) | 0.00034 (0.49) | 15.08 (−72.17; 375.82, p = 0.405) |
J02AX04 | Caspofungin | 0.00000 (0.00) | 0.00042 (0.53) | 0.00034 (0.39) | 0.00037 (0.44) | 0.00011 (0.11) | 0.00042 (0.50) | 0.00063 (0.91) | 4.36 (−32.95; 62.44, p = 0.401) |
J02AX05 | Micafungin | 0.00001 (0.02) | 0.00006 (0.07) | 0.00005 (0.05) | 0.00003 (0.04) | 0.00001 (0.01) | 0.00002 (0.02) | 0.00002 (0.03) | −6.68 (−31.52; 27.18, p = 0.295) |
Total | 0.06808(100.0) | 0.07775 (100.0) | 0.08712 (100.0) | 0.08492 (100.0) | 0.09729 (100.0) | 0.08415 (100.0) | 0.06921 (100.0) | 1.14 (−5.42; 8.16, p = 0.341) | |
Antiprotozoals | |||||||||
P01AB01 | Metronidazole | 0.02392 (99.87) | 0.01750 (99.57) | 0.00296 (93.78) | 0.01605 (98.69) | 0.01288 (99.42) | 0.01109 (99.60) | 0.00096 (95.88) | −27.75 (−55.90; 18.37, p = 0.076) |
P01AB07 | Secnidazole | 0.00003 (0.13) | 0.00008 (0.43) | 0.00020 (6.22) | 0.00021 (1.31) | 0.00007 (0.58) | 0.00004 (0.40) | 0.00004 (4.12) | −4.30 (−35.62; 42.25, p = 0.394) |
Total | 0.02396 (100.0) | 0.01758 (100.0) | 0.00316 (100.0) | 0.01626 (100.0) | 0.01296 (100.0) | 0.01113 (100.0) | 0.00100 (100.0) | −27.59 (−55.30; 17.30, p = 0.073) |
Consumption | Estimate (DID *) | SE ** | p Value | |
---|---|---|---|---|
Total antifungals | Intervention | 0.038 | 0.035 | 0.296 |
Centering trend | −0.001 | 0.002 | 0.683 | |
Community antifungals | Intervention | 0.016 | 0.034 | 0.646 |
Centering trend | 0.000 | 0.002 | 0.945 | |
Hospital antifungals | Intervention | 0.022 | 0.013 | 0.096 |
Centering trend | −0.001 | 0.001 | 0.197 | |
Total consumption of selected antifungals by ATC5 *** code | ||||
J02AB02 (Ketoconazole) | Intervention | 0.229 | 0.092 | 0.020 |
Centering trend | −0.011 | 0.006 | 0.063 | |
J02AC02 (Itraconazole) | Intervention | −0.035 | 0.013 | 0.016 |
Centering trend | 0.002 | 0.001 | 0.042 | |
J02AC04 (Posaconazole) | Intervention | ≤0.001 | ≤0.001 | 0.006 |
Centering trend | ≤0.001 | ≤0.001 | 0.004 | |
J02AX04 (Caspofungin) | Intervention | ≤0.001 | ≤0.001 | 0.006 |
Centering trend | ≤0.001 | ≤0.001 | 0.004 | |
J02AX05 (Micafungin) | Intervention | ≤0.001 | ≤0.001 | 0.034 |
Centering trend | ≤0.001 | ≤0.001 | 0.252 |
Consumption | Estimate (DID *) | SE ** | p Value | |
---|---|---|---|---|
Total antiprotozoals | Intervention | −0.016 | 0.061 | 0.795 |
Centering trend | 0.004 | 0.004 | 0.344 | |
Community antiprotozoals | Intervention | −0.027 | 0.061 | 0.669 |
Centering trend | 0.005 | 0.004 | 0.216 | |
Hospital antiprotozoals | Intervention | −0.012 | 0.017 | 0.489 |
Centering trend | 0.002 | 0.001 | 0.098 | |
Total consumption of antiprotozoals by ATC5 *** code | ||||
P01AB01 (Metronidazole) | Intervention | −0.017 | 0/062 | 0.783 |
Centering trend | 0.004 | 0.004 | 0.291 | |
P01AB07 (Secnidazole) | Intervention | 0.001 | 0.003 | 0.686 |
Centering trend | −0.001 | 0.000 | 0.013 |
Year | Antifungals, DID * | Antiprotozoals, DID | ||||
---|---|---|---|---|---|---|
Total | Community | Hospital | Total | Community | Hospital | |
2024 | 0.41747 | 0.33625 | 0.08122 | 0.24189 | 0.22959 | 0.00101 |
2025 | 0.41747 | 0.33625 | 0.08122 | 0.24189 | 0.22959 | −0.00156 |
2026 | 0.41747 | 0.33625 | 0.08122 | 0.24189 | 0.22959 | −0.00413 |
2027 | 0.41747 | 0.33625 | 0.08122 | 0.24189 | 0.22959 | −0.00670 |
2028 | 0.41747 | 0.33625 | 0.08122 | 0.24189 | 0.22959 | −0.00927 |
2029 | 0.41747 | 0.33625 | 0.08122 | 0.24189 | 0.22959 | −0.01184 |
2030 | 0.41747 | 0.33625 | 0.08122 | 0.24189 | 0.22959 | −0.01441 |
Model parameters | ARIMA (0.0.0), p ≤ 0.001 | ARIMA (0.0.0), p ≤ 0.001 | ARIMA (0.0.0), p ≤ 0.001 | ARIMA (0.0.0), p ≤ 0.001 | ARIMA (0.0.0), p ≤ 0.001 | Holt, p = 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, Y.; Kussainova, A.; Kassym, L.; Aimurziyeva, A.; Semenov, D.; Lim, L. Consumption Trends of Antifungal and Antiprotozoal Agents for Human Systemic Use in Kazakhstan from 2017 to 2023. Antibiotics 2024, 13, 857. https://doi.org/10.3390/antibiotics13090857
Semenova Y, Kussainova A, Kassym L, Aimurziyeva A, Semenov D, Lim L. Consumption Trends of Antifungal and Antiprotozoal Agents for Human Systemic Use in Kazakhstan from 2017 to 2023. Antibiotics. 2024; 13(9):857. https://doi.org/10.3390/antibiotics13090857
Chicago/Turabian StyleSemenova, Yuliya, Assiya Kussainova, Laura Kassym, Ainur Aimurziyeva, Daniil Semenov, and Lisa Lim. 2024. "Consumption Trends of Antifungal and Antiprotozoal Agents for Human Systemic Use in Kazakhstan from 2017 to 2023" Antibiotics 13, no. 9: 857. https://doi.org/10.3390/antibiotics13090857