The Current Status of the Alternative Use to Antibiotics in Poultry Production: An African Perspective
Abstract
:1. Introduction
2. Antibiotic-Resistant Pathogens in Africa
3. Consequences of Removing Antibiotics from the Poultry Feed
4. The Environmental Impact of Antibiotics
5. Alternatives to Antibiotics Available in Africa
5.1. Probiotic + Prebiotic
5.2. Enzymes
5.3. Plant Extracts
5.4. Organic Acids
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: Scientific Assessment; World Health Organization: Geneva, Switzerland, 2003; No. WHO/CDS/CPE/ZFK/2004.7. [Google Scholar]
- World Health Organization. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals: Web Annex A: Evidence Base; World Health Organization: Geneva, Switzerland, 2017; No. WHO/NMH/FOS/FZD/17.2. [Google Scholar]
- O’Neill, J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 19 August 2020).
- Shallcross, L.J.; Davies, S.C. The World Health Assembly resolution on antimicrobial resistance. J. Antimicrob. Chemother. 2014, 69, 2883–2885. [Google Scholar] [CrossRef]
- Alkindi, F.F.; Yulia, R.; Herawati, F.; Jaelani, A.K. Influence of historical use of antibiotics toward antibiotic resistance. Farmasains J. Farm. dan Ilmu Kesehat. 2019, 4. [Google Scholar] [CrossRef]
- Varma, J.K.; Oppong-Otoo, J.; Ondoa, P.; Perovic, O.; Park, B.J.; Laxminarayan, R.; Peeling, R.W.; Schultsz, C.; Li, H.; Ihekweazu, C.; et al. Africa Centres for Disease Control and Prevention’s framework for antimicrobial resistance control in Africa. Afr. J. Lab. Med. 2018, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Canon, A. The American Association of Swine Veterinarians Antibiotic Awareness Week and AASV’s Commitment to the AMR Challenge. 2019. Available online: https://www.aasv.org/shap/issues/v27n6/v27n6advocacy.html (accessed on 18 August 2020).
- Carlet, J.; Jarlier, V.; Harbarth, S.; Voss, A.; Goossens, H.; Pittet, D. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob. Resist. Infect. Control. 2012, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Tackling Antibiotic Resistance from a Food Safety Perspective in Europe; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2011. [Google Scholar]
- Bartkowiak-Higgo, A.J.; Veary, C.M.; Venter, E.H.; Bosman, A.M. A pilot study on post-evisceration contamination of broiler carcasses and ready-to-sell livers and intestines (mala) with Campylobacter jejuni and Campylobacter coli in a high-throughput South African poultry abattoir. J. S. Afr. Veter. Assoc. 2006, 77, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Massele, A.; Tiroyakgosi, C.; Matome, M.; Desta, A.; Müller, A.; Paramadhas, B.D.A.; Malone, B.; Kurusa, G.; Didimalang, T.; Moyo, M.; et al. Research activities to improve the utilization of antibiotics in Africa. Expert Rev. Pharmacoecon. Outcomes Res. 2016, 17, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Pantosti, A. Methicillin-Resistant Staphylococcus aureus Associated with Animals and Its Relevance to Human Health. Front. Microbiol. 2012, 3, 127. [Google Scholar] [CrossRef] [Green Version]
- Bester, L.A.; Essack, S.Y. Observational Study of the Prevalence and Antibiotic Resistance of Campylobacter spp. from Different Poultry Production Systems in KwaZulu-Natal, South Africa. J. Food Prot. 2012, 75, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Buhr, B.L. Traceability and information technology in the meat supply chain: Implications for firm organization and market structure. J. Food Distrib. Res. 2003, 34, 13–26. [Google Scholar]
- Oboegbulem, S.; Collier, P.; Sharp, J.; Reilly, W. Epidemiological aspects of outbreak of food-borne salmonellosis in Scotland between 1980 and 1989. Rev. Sci. Tech. 1993, 12, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, C.; Dimitriou, D.; Levidiotou, S.; Gessouli, H.; Panagiou, A.; Golegou, S.; Antoniades, G. Bacterial strains isolated from eggs and their resistance to currently used antibiotics: Is there a health hazard for consumers? Comp. Immunol. Microbiol. Infect. Dis. 1997, 20, 35–40. [Google Scholar] [CrossRef]
- Gelband, H.; Molly Miller, P.; Pant, S.; Gandra, S.; Levinson, J.; Barter, D.; White, A.; Laxminarayan, R. The state of the world’s antibiotics 2015. Wound Health S. Afr. 2015, 8, 30–34. [Google Scholar]
- Alonso, C.A.; Zarazaga, M.; Ben Sallem, R.; Jouini, A.; Ben Slama, K.; Torres, C. Antibiotic resistance in Escherichia coli in husbandry animals: The African perspective. Lett. Appl. Microbiol. 2017, 64, 318–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndihokubwayo, J.B.; Yahaya, A.A.; Desta, A.T.; Ki-Zerbo, G.; Odei, E.A.; Keita, B.; Pana, A.P.; Nkhoma, W. Antimicrobial resistance in the African Region: Issues, challenges and actions proposed. Afr. Health Monit. 2013, 16, 27–30. [Google Scholar]
- Essack, S.Y.; Schellack, N.; Pople, T.; Van Der Merwe, L.; Suleman, F.; Meyer, J.C.; Gous, A.G.S.; Benjamin, D. Part III. Antibiotic supply chain and management in human health. S. Afr. Med. J. 2011, 101, 562–566. [Google Scholar]
- Medina, M.J.; Legido-Quigley, H.; Hsu, L.Y. Antimicrobial Resistance in One Health. In Global Health Security; Springer: Cham, Germany, 2020; pp. 209–229. [Google Scholar]
- Founou, L.L.; Amoako, D.G.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in Food Animals in Africa: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2018, 24, 648–665. [Google Scholar] [CrossRef]
- Govender, V.; Madoroba, E.; Magwedere, K.; Fosgate, G.T.; Kuonza, L. Prevalence and risk factors contributing to antibiotic-resistant Staphylococcus aureus isolates from poultry meat products in South Africa, 2015–2016. J. S. Afr. Veter. Assoc. 2019, 90, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Moyane, J.N.; Jideani, A.I.O.; Aiyegoro, O.A. Antibiotics usage in food-producing animals in South Africa and impact on human: Antibiotic resistance. Afr. J. Microbiol. Res. 2013, 7, 2990–2997. [Google Scholar]
- Theobald, S.; Etter, E.M.; Gerber, D.; Abolnik, C. Antimicrobial Resistance Trends in Escherichia coli in South African Poultry: 2009–2015. Foodborne Pathog. Dis. 2019, 16, 652–660. [Google Scholar] [CrossRef]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.W.; Agbaje, M.; LeRoux-Pullen, L.; Van Dyk, D.; Debusho, L.K.; Shittu, A.; Sirdar, M.; Fasanmi, O.; Adebowale, O.O.; Fasina, F. Implication of the knowledge and perceptions of veterinary students of antimicrobial resistance for future prescription of antimicrobials in animal health, South Africa. J. S. Afr. Veter Assoc. 2019, 90, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bester, L.A.; Essack, S.Y. Prevalence of antibiotic resistance in Campylobacter isolates from commercial poultry suppliers in KwaZulu-Natal, South Africa. J. Antimicrob. Chemother. 2008, 62, 1298–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fielding, B.C.; Mnabisa, A.; Gouws, P.A.; Morris, T. Antimicrobial-resistant Klebsiella species isolated from free-range chicken samples in an informal settlement. Arch. Med. Sci. 2012, 8, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Bok, H.E.; Holzapfel, W.H.; Odendaal, E.S.; Van Der Linde, H.J. Incidence of foodborne pathogens on retail broilers. Int. J. Food Microbiol. 1986, 3, 273–285. [Google Scholar] [CrossRef]
- Eagar, H.; Swan, G.; Van Vuuren, M. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. J. S. Afr. Veter. Assoc. 2012, 83, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcés, L. The Detrimental Impacts of Industrial Animal Agriculture: A Case for Humane and Sustainable Agriculture, Compassion in World Farming Trust. 2002. Available online: http://www.ciwf.org.uk/includes/documents/cm_docs/2008/d/detrimental_impact_industrial_animal_agriculture_2002.pdf (accessed on 26 August 2020).
- World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016–2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Magnusson, U.; Sternberg, S.; Eklund, G.; Rozstalnyy, A. Prudent and Efficient Use of Antimicrobials in Pigs and Poultry; FAO Animal Production and Health Manual 23: Rome, Italy, 2019. [Google Scholar]
- Schloss, P.D. Microbiology: An integrated view of the skin microbiome. Nature 2014, 514, 44–45. [Google Scholar] [CrossRef]
- Agada, G.O.A.; Abdullahi, I.; Aminu, M.; Odugbo, M.; Chollom, S.C.; Kumbish, P.R.; Okwori, A.E.J. Prevalence and Antibiotic Resistance Profile of Salmonella Isolates from Commercial Poultry and Poultry Farm-handlers in Jos, Plateau State, Nigeria. Br. Microbiol. Res. J. 2014, 4, 462–479. [Google Scholar] [CrossRef] [Green Version]
- Phagoo, L.; Neetoo, H. Antibiotic resistance of Salmonella in poultry farms of Mauritius. J. Worlds Poult. Res. 2015, 5, 42–47. [Google Scholar]
- Muonga, E.M.; Mainda, G.; Mukuma, M.; Kwenda, G.; Hang’ombe, B.; Phiri, N.; Mwansa, M.; Munyeme, M.; Muma, J.B. Antimicrobial Resistance of Escherichia Coli and Salmonella Isolated from Raw Retail Broiler Chickens in Zambia. 2019 PREPRINT (Version 2) available at Research Square. Available online: https://www.researchsquare.com/article/rs-44168/v1 (accessed on 20 August 2020). [CrossRef]
- Kagambèga, A.; Lienemann, T.; Aulu, L.; Traore, A.S.; Barro, N.; Siitonen, A.; Haukka, K. Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiol. 2013, 13, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zishiri, O.T.; Mkhize, N.; Mukaratirwa, S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J. Veter. Res. 2016, 83, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tabo, D.-A.; Diguimbaye, C.D.; Granier, S.A.; Moury, F.; Brisabois, A.; Elgroud, R.; Millemann, Y. Prevalence and antimicrobial resistance of non-typhoidal Salmonella serotypes isolated from laying hens and broiler chicken farms in N’Djamena, Chad. Veter. Microbiol. 2013, 166, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Abunna, F.; Bedasa, M.; Beyene, T.; Ayana, D.; Mamo, B.; Duguma, R. Salmonella: Isolation and antimicrobial susceptibility tests on isolates collected from poultry farms in and around Modjo, Central Oromia, and Ethiopia. JAPSC 2016, 5, 21–35. [Google Scholar]
- Andoh, L.A.; Dalsgaard, A.; Obiri-Danso, K.; Newman, M.J.; Barco, L.; Olsen, J.E. Prevalence and antimicrobial resistance ofSalmonellaserovars isolated from poultry in Ghana. Epidemiology Infect. 2016, 144, 3288–3299. [Google Scholar] [CrossRef] [Green Version]
- Dione, M.M.; Ieven, M.; Garin, B.; Marcotty, T.; Geerts, S. Prevalence and Antimicrobial Resistance of Salmonella Isolated from Broiler Farms, Chicken Carcasses, and Street-Vended Restaurants in Casamance, Senegal. J. Food Prot. 2009, 72, 2423–2427. [Google Scholar] [CrossRef]
- Abdellah, C.; Fouzia, R.F.; Abdelkader, C.; Rachida, S.B.; Mouloud, Z. Prevalence and anti-microbial susceptibility of Salmonella isolates from chicken carcasses and giblets in Mekns, Morocco. Afr. J. Microbiol. Res. 2009, 3, 215–219. [Google Scholar]
- Gaedirelwe, O.G.; Sebunya, T.K. The Prevalence and Antibiotic Susceptibility of Salmonella sp. Poultry and ostrich Samples from Slaughter Houses in Gaborone, Botswana. J. Anim. Vet. Adv. 2008, 7, 1151–1154. [Google Scholar]
- Cowieson, A.J.; Kluenter, A. Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Anim. Feed. Sci. Technol. 2019, 250, 81–92. [Google Scholar] [CrossRef]
- Cardinal, K.; Kipper, M.; Andretta, I.; Ribeiro, A.M.L. Withdrawal of antibiotic growth promoters from broiler diets: Performance indexes and economic impact. Poult. Sci. 2019, 98, 6659–6667. [Google Scholar] [CrossRef]
- Engster, H.M.; Marvil, D.; Stewart-Brown, B. The Effect of Withdrawing Growth Promoting Antibiotics from Broiler Chickens: A Long-Term Commercial Industry Study. J. Appl. Poult. Res. 2002, 11, 431–436. [Google Scholar] [CrossRef]
- Dela Cruz, P.J.D.; Dagaas, C.T.; Mangubat, K.M.M.; Angeles, A.A.; Abanto, O.D. Dietary effects of commercial probiotics on growth performance, digestibility, and intestinal morphometry of broiler chickens. Trop. Anim. Health Prod. 2019, 51, 1105–1115. [Google Scholar] [CrossRef]
- Bougnom, B.P.; Zongo, C.; McNally, A.; Ricci, V.; Etoa, F.X.; Thiele-Bruhn, S.; Piddock, L.J.V. Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. Environ. Res. 2019, 168, 14–24. [Google Scholar] [CrossRef]
- Igwaran, A.; Iweriebor, B.C.; Okoh, A.I. Molecular Characterization and Antimicrobial Resistance Pattern of Escherichia coli Recovered from Wastewater Treatment Plants in Eastern Cape South Africa. Int. J. Environ. Res. Public Health 2018, 15, 1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Biyela, P.; Puckree, T. Antibiotic resistance profiles of environmental isolates from Mhlathuze River, KwaZulu-Natal (RSA). Water SA 2004, 30, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Odjadjare, E.E.; Igbinosa, E.O.; Mordi, R.; Igere, B.E.; Igeleke, C.L.; Okoh, A.I. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa. Int. J. Environ. Res. Public Heal. 2012, 9, 2092–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, B.; Zhang, R.; Wang, Y.; Liu, X.; Li, J.; Zhang, G. Antibiotic contamination in a typical developing city in south China: Occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicol. Environ. Saf. 2013, 92, 229–236. [Google Scholar] [CrossRef]
- Isichei-Ukah, O.; Enabulele, O. Prevalence and antimicrobial resistance of Pseudomonas aeruginosa recovered from environmental and clinical sources in Benin City, Nigeria. Ife J. Sci. 2018, 20, 547–555. [Google Scholar] [CrossRef]
- Malaho, C.; Wawire, S.A.; Shivoga, W.A. Antimicrobial Resistance Patterns of Enterobacteriaceae Recovered from Wastewater, Sludge and Dumpsite Environments in Kakamega Town, Kenya. Afr. J. Microbiol. Res. 2018, 12, 673–680. [Google Scholar]
- Yang, Y.; Owino, A.A.; Gao, Y.; Yan, X.; Xu, C.; Wang, J. Occurrence, composition and risk assessment of antibiotics in soils from Kenya, Africa. Ecotoxicology 2016, 25, 1194–1201. [Google Scholar] [CrossRef]
- Kermanshahi, H.; Rostami, H. Influence of supplemental dried whey on broiler performance and cecal lora. Int. J. Poult. Sci. 2006, 5, 538–543. [Google Scholar]
- Cummings, J.H.; Macfarlane, G. Gastrointestinal effects of prebiotics. Br. J. Nutr. 2002, 87, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.U.; Naz, S.; Nikousefat, Z.; Tufarelli, V.; Laudadio, V. Thymus vulgaris: Alternative to antibiotics in poultry feed. World’s Poult. Sci. J. 2012, 68, 401–408. [Google Scholar] [CrossRef]
- Doyle, M.E. Alternatives to Antibiotic Use for Growth Promotion in Animal Husbandry; Food Research Institute, University of Wisconsin-Madison: Madison, WI, USA, 2001. [Google Scholar]
- Bird, A.R.; Conlon, M.A.; Christophersen, C.T.; Topping, D.L. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes 2010, 1, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Coppa, G.V.; Zampini, L.; Galeazzi, T.; Gabrielli, O. Prebiotics in human milk: A review. Dig. Liver Dis. 2006, 38, S291–S294. [Google Scholar] [CrossRef]
- Rastall, R.A.; Gibson, G.R. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr. Opin. Biotechnol. 2015, 32, 42–46. [Google Scholar] [CrossRef]
- Gibson, G.R.; Fuller, R. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J. Nutr. 2000, 130, 391S–395S. [Google Scholar] [CrossRef]
- Sinovec, Z.; Markovic, R. Use of pre-biotics in poultry nutrition. Biotehnol. Stoc. 2005, 21, 235–239. [Google Scholar] [CrossRef]
- Shashidhara, R.G.; Devegowda, G. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult. Sci. 2003, 82, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Kumprecht, I.; Zobac, P. The effect of probiotic preparations containing Saccharomyces cerevisae and Enterococcus faecium in diets with different levels of beta-vitamins on chicken broiler performance. Czech J. Anim. Sci. UZPI 1998, 43, 63–70. [Google Scholar]
- Petersen, C.B. Comparative effects of ZooLac, Bio-MOS and Bio-Pro on performance of broilers to 36 days. Poster. In Biotechnology in the Feed Industry. Proc. Alltechs 14th Annual Symposium; Lyons, T.P., Ed.; Archivos de Medicina Veterinaria: Nicholasville, KY, USA, 1998. [Google Scholar]
- Spring, P. Effects of Mannanoligosaccharide on Different Cecal Parameters and on Cecal Concentrations of enteric Pathogens in Poultry. Ph.D. Thesis, Swiss Fed. Inst. Tech., Zurich, Switzerland, 1996. [Google Scholar]
- Indikova, I.; Humphrey, T.J.; Hilbert, F. Survival with a Helping Hand: Campylobacter and Microbiota. Front. Microbiol. 2015, 6, 1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyard-Nicodème, M.; Keita, A.; Quesne, S.; Amelot, M.; Poëzévara, T.; Le Berre, B.; Sánchez, J.; Vesseur, P.; Martin, A.; Medel, P.; et al. Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult. Sci. 2016, 95, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Isolauri, E.; Salminen, S.; Ouwehand, A.C. Probiotics. Best Pr. Res. Clin. Gastroenterol. 2004, 18, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.G.; Raval, A.P.; Bhagwat, S.R.; Sadrasaniya, D.A.; Patel, A.P.; Joshi, S.S. Effects of Probiotics Supplementation on Growth Performance, Feed Conversion Ratio and Economics of Broilers. J. Anim. Res. 2015, 5, 155. [Google Scholar] [CrossRef]
- Mizak, L.; Gryko, R.; Kwiatek, M.; Parasion, S. Probiotics in animal nutrition. Życie Weter. 2012, 87, 736–742. [Google Scholar]
- Anadón, A.; Martínez-Larrañaga, M.R.; Martínez, M. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul. Toxicol. Pharmacol. 2006, 45, 91–95. [Google Scholar] [CrossRef]
- Plavnik, I.; Scott, M.L. Effects of Additional Vitamins, Minerals, or Brewer’s Yeast upon Leg Weaknesses in Broiler Chickens. Poult. Sci. 1980, 59, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.K.; Reddy, M.; Rao, S.R.; Praharaj, N. Production performance, serum/yolk cholesterol and immune competence of white leghorn layers as influenced by dietary supplementation with probiotic. Trop. Anim. Health Prod. 2003, 35, 85–94. [Google Scholar] [CrossRef]
- Sekhon, B.S.; Jairath, S. Prebiotics, probiotics and synbiotics: An overview. J. Pharm. Educ. Res. 2010, 1, 13. [Google Scholar]
- Deon, N. Stellenbosch University Student Develops First Gut Probiotic for Broiler Chickens. Available online: https://www.bizcommunity.com/Article/196/815/185300.html (accessed on 26 June 2020).
- Hansen, C. Internationally Renowned Chr. Hansen Launched Unique Triple Strain Probiotic for Poultry in South Africa. Available online: www.chr-hansen.com (accessed on 28 June 2020).
- Markowiak, P.; Slizewska, K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Hruby, M.; Pierson, E.E.M. Evolving enzyme technology: Impact on commercial poultry nutrition. Nutr. Res. Rev. 2006, 19, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khattak, F.M.; Pasha, T.N.; Hayat, Z.; Mahmud, A. Enzyme in poultry nutrition. J. Anim. Plant Sci. 2006, 16, 1–2. [Google Scholar]
- Adeola, O.; Cowieson, A.J. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve non-ruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Perić, L.; Milošević, N.; Djukic-Stojcic, M.; Bjedov, S.; Rodic, V. Effect of enzymes on performances of broiler chickens. Biotehnol. Stoc. 2008, 24, 45–51. [Google Scholar]
- Perić, L.; Kovčin, S.; Stanaćev, V.; Milošević, N. Effect of enzymes on broiler chick performance. Bul. USAMV 2002, 57, 245–249. [Google Scholar]
- Khan, S.H.; Atif, M.; Mukhtar, N.; Rehman, A.; Fareed, G. Effects of supplementation of multi-enzyme and multi-species probiotic on production performance, egg quality, cholesterol level and immune system in laying hens. J. Appl. Anim. Res. 2011, 39, 386–398. [Google Scholar] [CrossRef]
- Alal, M.A.; Zakaria, H.A.; Jabarin, A.S. Effect of Exogenous Enzymes on the Growing Performance of Broiler Chickens Fed Regular Corn/Soybean-Based Diets and the Economics of Enzyme Supplementation. Pak. J. Nutr. 2008, 7, 534–539. [Google Scholar]
- Mabelebele, M.; Gous, R.M.; Siwela, M.; O’Neil, H.; Iji, P. Performance of broiler chickens fed South African sorghum-based diets with xylanase. S. Afr. J. Anim. Sci. 2017, 47, 679. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, S.; Denli, M. Application of plant extracts as feed additives in poultry nutrition. Anim. Sci. 2016, 59, 2285–5750. [Google Scholar]
- Karangiya, V.K.; Savsani, H.H.; Patil, S.S.; Garg, D.; Murthy, K.S.; Ribadiya, N.K.; Vekariya, S.J. Effect of dietary supplementation of garlic, ginger and their combination on feed intake, growth performance and economics in commercial broilers. Veter. World 2016, 9, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, G.T.; Zeng, X.F.; Chen, A.G.; Zhou, L.; Zhang, L.; Xiao, Y.P. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and caecal microflora in broiler chickens challenged with Escherichia coli. Poult. Sci. 2013, 92, 2949–2955. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.S.; Kolluri, G.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Exploring alternatives to antibiotics as health promoting agents in poultry- a review. J. Exp. Boil. Agric. Sci. 2016, 4, 368–383. [Google Scholar]
- Elagib, H.A.A.; Elamin, W.I.A.; Elamin, K.M.; Malik, H.E.E. Effect of Dietary Garlic (Allium sativum) Supplementation as Feed Additive on Broiler Performance and Blood Profile. J. Anim. Sci. Adv. 2013, 3, 58–64. [Google Scholar]
- Gopi, M.; Purushothaman, M.R.; Chandrasekaran, D. Effect of dietary coenzyme Q10 supplementation on the growth rate, carcass characters and cost effectiveness of broiler fed with three energy levels. SpringerPlus 2014, 3, 317–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinzl, I.; Borchardt, T. Secondary plant compound to reduce the use of antibiotics? Int. Poult. Prod. 2015, 23, 15–17. [Google Scholar]
- Rahimi, S.; Teymouri, Z.Z.; Karimi, T.M.; Omidbaigi, R.; Rokni, H. Effect of the three herbal extracts on growth performance, immune system, blood factors and intestinal selected bacterial population in broiler chickens. J. Agric. Sci. Technol. 2011, 13, 527–539. [Google Scholar]
- Al-Kassie, G.A.; Mamdooh, A.M.A.; Saba, J.A. The effects of using hot red pepper as a diet supplement on some performance traits in broiler. Pak. J. Nutr. 2011, 10, 842–845. [Google Scholar]
- Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Veter. Res. Commun. 2011, 35, 169–180. [Google Scholar] [CrossRef]
- Molla; Rahman, M.; Akter, F.; Mostofa, M. Effects of Nishyinda, black pepper and cinnamon extract as growth promoter in broilers. Bangladesh Veter. 2013, 29, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Saminathan, M.; Rai, R.B.; Dhama, K.; Tiwari, R.; Chakraborty, S.; Amarpal, R.G.J.; Kannan, K. Systematic review on anticancer potential and other health beneficial pharmacological activities of novel medicinal plant Morindacitri folia (Noni). Int. J. Pharmacol. 2013, 9, 462–492. [Google Scholar]
- Dhama, K.; Tiwari, R.; Chakrabort, S.; Saminathan, M.; Kumar, A.; Karthik, K.; Wani, M.Y.; Singh, S.; Rahal, A. Evidence Based Antibacterial Potentials of Medicinal Plants and Herbs Countering Bacterial Pathogens Especially in the Era of Emerging Drug Resistance: An Integrated Update. Int. J. Pharmacol. 2014, 10, 1–43. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Tiwari, R.; Shabbir, M.Z.; Barbuddhe, S.; Malik, S.V.S.; Singh, R.K. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: A comprehensive review. Veter. Q. 2015, 35, 211–235. [Google Scholar] [CrossRef]
- Nakielski, A. Treating respiratory tract infections in poultry with the use of herbs. Int. Poult. Pract. 2015, 23, 7–9. [Google Scholar]
- Al-Kassie, G.A. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak. Vet. J. 2009, 29, 169–173. [Google Scholar]
- Cross, D.E.; McDevitt, R.M.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens’ from7 to 28 days of age. Britian Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef]
- Chisoro, P. Plant Extracts as Alternatives to Antibiotics in Animal Feed; AFMA Symposium: Sydney, Australia, 2016; pp. 60–63. [Google Scholar]
- Barreto, M.; Menten, J.; Racanicci, A.; Pereira, P.; Rizzo, P. Plant extracts used as growth promoters in broilers. Revista Brasileira de Ciência Avícola 2008, 10, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.A.; Yusuf, M. Evaluation of ginger (Zingiber officinale) as a feed additive in broiler diets. Livest. Res. Rural. Dev. 2011, 23, 202. [Google Scholar]
- Yesilbag, D.; Eren, M.; Agel, H.; Kovanlikaya, A.; Balci, F. Effects of dietary rosemary, rosemary volatile oil and vitamin Eon broiler performance meat quality and serum SOD activity. Br. Poult. Sci. 2011, 52, 472–482. [Google Scholar] [CrossRef]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens invitro antimicrobial activities and effects on growth performance. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [CrossRef]
- Pourmahmoud, B.; Aghazadeh, A.; Sis, N.M. The Effect of Thyme Extract on Growth Performance, Digestive Organ Weights and Serum Lipoproteins of Broilers Fed Wheat-Based Diets. Ital. J. Anim. Sci. 2013, 12, e53. [Google Scholar] [CrossRef] [Green Version]
- Hermans, D.; De Laet, M. Reaching genetic potential with medium chain fatty acids (MCFAs). Int. Poult. Prod. 2014, 22, 7–9. [Google Scholar]
- Diether, N.E.; Willing, B.P. Microbial fermentation of dietary protein: An important factor in diet⁻Microbe⁻Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Ikker, P.; Dirkzwager, A.; Fledderus, J.; Trevisi, P.; Le Huërou-Luron, I.; Lallès, J.; Awati, A. Dietary protein and fermentable carbohydrates contents influence growth performance and intestinal characteristics in newly weaned pigs. Livest. Sci. 2007, 108, 194–197. [Google Scholar]
- Adil, S.; Banday, M.T.; Bhat, G.A.; Mir, M.S.; Rehman, M. Effect of Dietary Supplementation of Organic Acids on Performance, Intestinal Histomorphology, and Serum Biochemistry of Broiler Chicken. Veter. Med. Int. 2010, 2010, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.M.A.; Mohamed, M.A.; Youssef, A.W.; Hassan, E.R. Effect of Using Organic Acids to Substitute Antibiotic Growth Promoters on Performance and Intestinal Microflora of Broilers. Asian Australas. J. Anim. Sci. 2010, 23, 1348–1353. [Google Scholar] [CrossRef]
- Qaisrani, S.; Van Krimpen, M.; Kwakkel, R.; Verstegen, M.; Hendriks, W. Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers. Poult. Sci. 2015, 94, 2152–2164. [Google Scholar] [CrossRef]
- Abdurrahman, Z.H.; Pramono, Y.B.; Suthama, N. Meat Characteristic of Crossbred Local Chicken Fed Inulin of Dahlia Tuber and Lactobacillus sp. Media Peternak. 2016, 39, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Mohammadagheri, N.; Najafi, R.; Najafi, R. Effects of dietary supplementation of organic acids and phytase on performance and intestinal histomorphology of broilers. Veter. Res. Forum Int. Q. J. 2016, 7, 189–195. [Google Scholar]
- Chaveerach, P.; Keuzenkamp, D.A.; Lipman, L.J.A.; Van Knapen, F. Effect of Organic Acids in Drinking Water for Young Broilers on Campylobacter Infection, Volatile Fatty Acid Production, Gut Microflora and Histological Cell Changes. Poult. Sci. 2004, 83, 330–334. [Google Scholar] [CrossRef]
- Nourmohammadi, R.; Hosseini, S.M.; Farhangfar, H.; Bashtani, M. Effect of citric acid and microbial phytase enzyme on ileal digestibility of some nutrients in broiler chicks fed corn-soybean meal diets. Ital. J. Anim. Sci. 2012, 11, 36–40. [Google Scholar] [CrossRef]
- Denli, M. Replacement of antibiotics in poultry diets. CAB Rev. 2018, 13, 1–9. [Google Scholar] [CrossRef]
- Ziaie, H.; Bashtani, M.; Karimi, T.M.A.; NaeeimiIpour, H.; Farhangfar, H.; Zeinai, A. Effect of antibiotic and its alternatives on morphometric characteristics, mineral content and bone strength of tibia in Ross broiler chickens. Glob. Vet. 2011, 7, 315–322. [Google Scholar]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.L.N.; Sunder, G.S. Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens. Asian Australas. J. Anim. Sci. 2009, 22, 1026–1031. [Google Scholar] [CrossRef]
Country | Antibiotic Resistance | Concentration | Species/Sample | Sources |
---|---|---|---|---|
Nigeria | Oxacillin (100%) Ampicillin (96%), Tylosin (93.9%), Ceftazidime (83.7%) Oxytetracycline (63.3%) | Six Salmonella isolates were identified: S. Gallinarum 57.2% S. Typhimurium 8.2%, S. Typhi 20.4%, S. Pullorum 6.1%, S. Enteritidis 6.1% S. Paratyphi A 2.0%. | Poultry droppings poultry feeds, feces and hand swabs from poultry farm workers. | Agada et al. [38] |
Mauritius | 100% resistance to Tetracycline, Erythromycin (80%), Streptomycin (80%), Chloramphenicol (60%) | 17% were found to be positive for Salmonella, | Seven Samples of poultry intestine, litter of two different farms (7) and eggs (9) | Phagoo and Neetoo [39] |
Zambia | 2 of the 5 Salmonella isolates were resistant to at least 1 antibiotic. | Five Salmonella isolates were identified. | Samples collected from broiler chickens obtained from local markets and shops | Muonga et al. [40] |
Burkino Faso | Resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides and trimethoprim was detected | 55% of the poultry samples tested positive | 350 samples (Poultry feces) | Kagambega et al. [41] |
South Africa | Salmonella isolates showed resistance to nearly all ten antimicrobial agents used. | InvA gene was used to test for Salmonella and 51% of samples tested positive | 200 chicken samples | Zishir et al. [42] |
Chad | S. Limete resistant to 3 antibiotics and S. Minnesota isolates resistant to 5 diverse antimicrobial classes | Salmonella isolates identified were: Salmonella Colindale (19%) S. Minnesota (18%). Below 10% were S. Havana and S. Riggil, S. Kottbus and S. Amager, S. Idikan, Mississipi, and Muenchen | laying hens and broiler chicken | Tabo et al. [43] |
Ethiopia | 30 isolates were resistant to one or more of antibiotics. Of 30, 19 were multidrug resistant while 11 isolates resistant to tetracycline. One isolate was resistant Kanamycin. Other isolates were tetra-, penta-, hexa-, and hepta resistant, correspondingly. 31 isolates susceptible to Gentamycin and Ciprofloxacin | Out of 205 samples collected, 31 (15.12%) isolates were detected. | In total, 205 samples were collected, namely: 100 cloacal swabs, 75 fresh feces, 10 litter samples, 8 chicken feed samples, 8 poultry drinking water and 4 farmworker hand swab samples | Abunna et al. [44] |
Ghana | Resistance: Nalidixic acid (89.5%), tetracycline (80·7%), ciprofloxacin (64.9%), sulfamethazole (42·1%), trimethoprim (29.8%) and ampicillin (26·3%).All strains were susceptible to cefotaxime, ceftazidime and cefoxitin. | Out of 200 samples collected, Salmonella was detected in 94 samples (47%) | egg-laying hens and broilers. Sampling of feces (75), dust (75), feed (10) and drinking water (10) was performed at 75 poultry farms in Ghana and skin neck (30) at a local abattoir | Andoh et al. [45] |
Senegal | Resistance: trimethoprim-sulfamethoxazole, tetracycline, trimethoprim, streptomycin, and sulfonamides. All Salmonella serovars were susceptible to fluoroquinolones and cephalosporins | Salmonella was detected in chicken fa\eces (35.1%), on carcass skin (38.6%), and in muscle (29.8%) of farms, respectively. Salmonella detected in chicken meat servings from 14.3% of the street restaurants and in 40.4% of the chicken carcasses tested | Chicken feces, carcass skin and muscle | Dione et al. [46] |
Morocco | Resistance to tetracycline, sulfamides, trimethoprim and streptomycin was detected. | 57 were positive for Salmonella, 30 out of 57 from local market, 24 out of 57 from artisanal slaughterhouses and 3 out of 57 from poulterers’ shops | 576 samples were collected: local market (144), artisanal slaughterhouses (144), poultry shops (144) and from a supermarket (144) | Abdellah et al. [47] |
Botswana | All samples were resistant to tetracycline, Ampicillin and Sulphatriad but susceptible to Gentamycin | Chicken livers had 50% salmonella, intestine 29%; Ostrich small intestine 16% liver 12.9% | 128 chicken samples; 124 Ostrich. 32 livers, gall bladder, small intestine and large intestine. For Ostrich 31 livers, small intestine, large intestine and cloacae | Gaedirelwe and Sebunya [48] |
Prebiotic Substance | Trade Name |
---|---|
Polysaccharides, Oligosaccharides | Bacto CS 1000 |
MOS, β-Glucans | DOISORB DN (Dolfos) |
MOS, β-Glucans | Metsac MOS (Vitjira) |
β-Glucans | Mycocyd forte (Herbline) |
MOS, β-Glucans | Mycostop (Extra-vit) |
ScFOS (Short chain Fructo-oligosaccharides) | Profeed (Beghnir Meiji) |
Microorganism | Trade Name |
---|---|
Bacillus amyloliquefaciens | Ecobiol (Norel Animal nutrition) |
Bacillus subtilis | Calsporin (ORFFA); Enviva pro (Danisco Animal nutrition); Gallipro (Evonik industries) |
Bifidobacterium Bifidum, Lactobacillus acidophilus; Pediococcus Faecium | Blogen D (Bio-gen) |
Enterococcus faecium | B.I.O. sol (Biochem); Gallvit Probiotyk (Galvit) |
Lactobacillus acidophilus, casei, plantarum | Cerbiogalli |
Lactobacillus: Rhamnosus, Farciminis | Ecobiol (Novel Animal nutrition) |
Lactobacillus Salivarius, Pediococcus parvilus | Floramax-B11 (Pacific vet group) |
Plant Extract | Active Compound | General Function | Effect in Poultry | Sources |
---|---|---|---|---|
Aromatic spices | ||||
Cinnamon | Cinnamaldehyde | Appetite and digestion stimulant, antiseptic | Improved feed efficiency and body weight an increase in carcass energy retention and an increase in carcass protein retention. | Al-Kassie [109]; Akyildiz and Denli [94] Cross et al. [110] |
Cloves | Eugenol | Appetite and digestion stimulant, antiseptic | Akyildiz and Denli [94]; Chisoro [111] | |
Pungent spices | ||||
Pepper | Piperine | Digestion stimulant | No effect on live performance or in organ morphometrics | Barreto et al. [112]; Akyildiz and Denli [94] |
Garlic | Allicin | Digestion stimulant, antiseptic | Higher body weights | Akyildiz and Denli [94]; Chisoro [111] |
Ginger | Zingerone | Gastric stimulant | No effects on performance | Mohammed and Yusuf [113]; Akyildiz and Denli [94] |
Herbs spices | ||||
Rosemary | Cineol | Digestion stimulant, antiseptic, antioxidant | Improved live weight and Feed efficiency | Yesilbag et al. [114]; Mathlouthi et al. [115]; Akyildiz and Denli [94]; Cross et al. [110] |
Thyme | Thymol | Digestion stimulant, antiseptic, antioxidant | No significant effect on BW/FCR Improve BW and FCR; No effect on the intestinal microflora populations | Pourmahmoud et al. [116]; Al-Kassie [99]; Akyildiz and Denli [94]; Cross et al. [110] |
Mint | Menthol | Appetite and digestion stimulant, antiseptic | The best result for production percentage, feed conversion ratio, shell thickness and yolk weight in layers. Reduction in serum total cholesterol, triglycerides and low-density lipoprotein (LDL) concentration | Akyildiz and Denli [94]; Chisoro [111] |
Organic Acids | Findings | Sources |
---|---|---|
Citric acid | Improvement in ileal nutrient digestibility, cell proliferation epithelial and villi height | Nourmohammadi et al. [126] Qaisrani et al. [122]; Mohammadagheri et al., [124] |
Ascorbic acid | Improved cell proliferation epithelial and villi height | Qaisrani et al. [122]; Denli and Demirel [127] |
Propionic acid and sodium bentonite | Increase in digestibility and availability of nutrients (such as calcium and total phosphorus | Ziaie et al. [128]; Denli and Demirel [127] |
Butyrate | Increased body weight, improved feed efficiency | Panda et al. [129]; Denli and Demirel [127] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrew Selaledi, L.; Mohammed Hassan, Z.; Manyelo, T.G.; Mabelebele, M. The Current Status of the Alternative Use to Antibiotics in Poultry Production: An African Perspective. Antibiotics 2020, 9, 594. https://doi.org/10.3390/antibiotics9090594
Andrew Selaledi L, Mohammed Hassan Z, Manyelo TG, Mabelebele M. The Current Status of the Alternative Use to Antibiotics in Poultry Production: An African Perspective. Antibiotics. 2020; 9(9):594. https://doi.org/10.3390/antibiotics9090594
Chicago/Turabian StyleAndrew Selaledi, Letlhogonolo, Zahra Mohammed Hassan, Tlou Grace Manyelo, and Monnye Mabelebele. 2020. "The Current Status of the Alternative Use to Antibiotics in Poultry Production: An African Perspective" Antibiotics 9, no. 9: 594. https://doi.org/10.3390/antibiotics9090594