Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum
Abstract
:1. Introduction
2. NOCT (Nominal Operating Cell Temperature)-Based Module Temperature
3. Energy Balance Equation
4. Proposed Spectrum Model-Combined Energy Balance Equation and Solar Spectrum Method
5. Photovoltaic (PV) Module Temperature-Simulation Results
6. Discussion
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Armstrong, S.; Hurley, W.G. A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 2010, 30, 1488–1495. [Google Scholar] [CrossRef]
- Koehl, M.; Heck, M.; Weismeier, S. Wirth, Modeling of the nominal operating temperature based on outdoor weathering J. Sol. Energy Mater. Sol. Cells 2011, 95, 1638–1646. [Google Scholar]
- Skoplaki, E.; Palyvos, J.A. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 2009, 34, 23–29. [Google Scholar] [CrossRef]
- Liao, W.; Heo, Y.; Xu, S. Evaluation of temperature dependent models for OV yield prediction. In Proceedings of the 4th Building Simulation and Optimization Conference, Cambridge, UK, 11–12 September 2018. [Google Scholar]
- Aoun, N. Outdoor testing of free standing PV module temperature under desert climate. Int. J. Ambient Energy 2019. [Google Scholar] [CrossRef]
- Ciulla, G.; Brano, V.I.; Moreci, E. Forcasting the cell temperature of PV module with an adaptive system. Int. J. Photoenergy 2013. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshardi, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world- a review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Brano, V.L.; Ciulla, G.; Franzitta, V.; Viola, A. A novel implicit correlation for the operative temperature of a PV panel. AASRI Procedia 2012, 2, 112–120. [Google Scholar] [CrossRef]
- Alonso Garcia, M.C.; Balenzategui, J.L. Estimation of photovoltaic module yearly calculations. Renew. Energy 2004, 29, 1997–2010. [Google Scholar] [CrossRef]
- Migan, G.A. Study of the Operating Temperature of a PV Module; Project Report 2013 MVK160 Heat and Mass Transfer; Lund University, Faculty of Engineering: Lund, Sweden, 2013. [Google Scholar]
- How HOMER Calculates the PV Cell Temperature. Available online: https://www.homerenergy.com/products/pro/docs/latest/how_homer_calculates_the_pv_cell_temperature.html (accessed on 1 January 2020).
- Wenham, M.A.; Green, M.A.; Watt, M.E.; Corkish, R. Applied Photovoltaics, 2nd ed.; UNSW. Centre for photovoltaic Engineering: Sydney, Australia, 2006. [Google Scholar]
- Muzathik, A.M. Photovoltaic module operating temperature estimation using a simple correlation. Int. J. Energy Eng. 2014, 4, 151–158. [Google Scholar]
- Umoette, A.T.; Ubom, E.A.; Akpan, I.E. Comparative analysis of three NOCT cell temperature models. Int. J. Syst. Sci. Appl. Math. 2016, 1, 69–75. [Google Scholar]
- Evans, D.L. Simplified method for predicting photovoltaic array output. Sol. Energy 1981, 27, 555–560. [Google Scholar] [CrossRef]
- Mattei, M.; Notton, G.; Cristofari, C.; Muselli, M.; Poggi, P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 2006, 31, 553–567. [Google Scholar] [CrossRef]
- Neises, T.W.; Klein, S.A.; Reindl, D.A. Development of a thermal model for photovoltaics modules and analysis of NOCT Guidelines. J. Sol. Energy Eng. 2011, 134. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: London, UK, 1991; ISBN 978-0-471-51056-7. [Google Scholar]
- Prentice, J.S.C. Spectral response of a-Si:H p-i-n solar cells. Sol. Energy Mater. Sol. Cells 2001, 69, 303–314. [Google Scholar] [CrossRef]
- Nann, S.; Emery, K. Spectral effects on PV-device rating. Sol. Energy Mater. Sol. Cells 1992, 27, 189–216. [Google Scholar] [CrossRef]
- Dirnberger, D.; Blackburn, G.; Muller, B.; Reise, C. On the impact of solar spectral irradiance on the yield of different PV technologies. Sol. Energy Mater. Sol. Cells 2015, 132, 431–442. [Google Scholar] [CrossRef]
- Eke, R.; Betts, T.R.; Gottschalg, R. Spectral irradiance effect on the outdoor performance of photovoltaic modules. Renew. Sustain. Energy Rev. 2017, 69, 429–434. [Google Scholar] [CrossRef] [Green Version]
- McClatchey, R.A.; Selby, J.E. Atmospheric Transmittance from 0.25 to 28.5 lm: Computer Code LOWTRAN2; AFCRL-72-0745, Environ. Res. Paper No. 427; Airforce Cambridge Research Laboratories: Wright-Patterson Air Force Base, OH, USA, 1972. [Google Scholar]
- Bird, R.E. A simple, solar spectral model for direct-normal and diffuse horizontal irradiance. Sol. Energy 1984, 32, 461–471. [Google Scholar] [CrossRef]
- Gueymard, C.A. SMARTS2, a Simple Model. of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment; FSEC-PF-270-95; Florida Solar Energy Center: Cocoa, FL, USA, 1995. [Google Scholar]
- Gueymard, C.A. REST2, High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation—Validation with a benchmark dataset. Sol. Energy 2008, 82, 272–285. [Google Scholar] [CrossRef]
- Utrillas, M.P.; Boscá, J.V.; Martínez-Lozano, J.A.; Cañada, J.; Tena, F.; Pinazo, J.M. A comparative study of SPCTRAL2 and SMARTS2 parameterized models based on spectral irradiance measurements at Valencia, Spain. Sol. Energy 1998, 63, 161–171. [Google Scholar] [CrossRef]
- Santbergen, R.; van Zolingen, R.J.C. The absorption factor of crystalline silicon PV cells: A numerical and experimental study. Sol. Energy Mater. Sol. Cells 2008, 92, 432–444. [Google Scholar] [CrossRef]
- Santbergen, R.; Goud, J.M.; Zeman, M.; van Roosmalen, J.A.M.; van Zolingen, R.J.C. The AM1.5 absorption factor of thin-film solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 715–723. [Google Scholar] [CrossRef]
- Kumar, N.M.; Kumar, M.R.; Rejoice, P.R.; Mathew, M. Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation TOOL. Energy Procedia 2017, 117, 180–189. [Google Scholar] [CrossRef]
- Barua, S.; Prasath, R.A.; Boruah, D. Rooftop solar photovoltaic system design and assessment for the academic campus using PVsys software. Int. J. Electr. Eng. 2017, 5, 76–83. [Google Scholar]
I/O | Description/Comments |
---|---|
1. longitude (deg.) | East positive |
2. latitude (deg.) | North positive |
3. altitude (m) | Above sea level |
4. alpha (-) | Angstrom exponent (440–870 nm) |
5. tau500 (-) | Aerosol optical depth at 500 nm |
6. watvap (cm) | water vapor precipitation |
7. ozone (atm./cm) | ozone amount |
8. zenref (deg.) | Zenith angle |
9. daynum (-) | Day number (1 – Jan.1st) |
Output 1. specx () | Spectral wavelength (0.3–1.7) |
2. specdir | direct power spectrum at surface normal to beam |
3. specdif | diffuse power spectrum at horizontal surface |
Inputs | Sde Boker Feb 1, 16:00 | Eilat Aug 4, 12:00 |
---|---|---|
1. longitude (deg.) | 34.8 | 34.9 |
2. latitude (deg.) | 30.9 | 29.5 |
3. altitude (m) | 480 | 15 |
4. alpha (-) | 2.17 | 1.4 |
5. tau500 (-) | 0.084 | 0.209 |
6. watvap (cm) | 0.85 | 2.4 |
7. ozone | 0.257 | 0.279 |
Module | Technology | ||||
---|---|---|---|---|---|
SCHOTT MONO™ 190 | c-Si | −0.44 | 43.2 | 46 | 2.8 |
SCHOTT ASI™ 100 | a-Si/c-Si | −0.20 | 44.6 | 49 | 4.4 |
FirstSolarFS-280 Series 2™ | CdTe | −0.25 | 43.6 | 45 | 1.4 |
Wurth Solar GeneCIS 80 | CIGS | −0.36 | 45.2 | 47 | 1.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appelbaum, J.; Maor, T. Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum. Appl. Sci. 2020, 10, 914. https://doi.org/10.3390/app10030914
Appelbaum J, Maor T. Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum. Applied Sciences. 2020; 10(3):914. https://doi.org/10.3390/app10030914
Chicago/Turabian StyleAppelbaum, Joseph, and Tamir Maor. 2020. "Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum" Applied Sciences 10, no. 3: 914. https://doi.org/10.3390/app10030914