Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Case Study—Arsenic Contamination of Groundwater in Bangladesh
2.1. Background
2.2. Geology of Bangladesh
2.3. Mobilization of Arsenic in Groundwater in Bangladesh
2.3.1. Pyrite Oxidation Hypothesis
2.3.2. Iron Oxyhydroxide Reduction Hypothesis
3. Effects of Arsenic Contamination
3.1. Effects on Health
3.2. Effects on Agriculture
3.3. Social Effects
3.4. Economic Impact
4. Arsenic Removal Processes
- (i)
- Oxidation and filtration process: This usually involves the oxidation of arsenic with inorganic iron and manganese oxides, followed by removal of the residues by filtration [82,83]. Due to the uncharged nature of As(III) complexes, an oxidation step is often employed to oxidize As(III) complexes to As(V) complexes [84].
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
4.1. Biological Process
4.2. Precipitative Processes
4.3. Membrane Processes
4.3.1. Arsenic Removal by Membrane Distillation
4.3.2. Membrane and Adsorption Process Hybrid
4.4. Adsorptive Processes
4.4.1. Iron Oxides/Oxyhydroxides Based Adsorbents
4.4.2. Application of Nanoparticles for Arsenic Removal from Water
5. Household Filter for Arsenic Removal for Drinking Water
6. Conclusions and Future Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Shanker, U.; Shikha. Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014, 2014, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Shaji, E.; Santosh, M.; Sarath, K.; Prakash, P.; Deepchand, V.; Divya, B. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Ali, W.; Rasool, A.; Junaid, M.; Zhang, H. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: A global perspective with prominence of Pakistan scenario. Environ. Geochem. Health 2019, 41, 737–760. [Google Scholar] [CrossRef]
- Saha, N.; Rahman, M.S. Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicol. Environ. Saf. 2020, 206, 111349. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Arsenic removal from water/wastewater using adsorbents-A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Ali, M.A. Environmental Chemistry of Arsenic, Arsenic Contamination: Bangladesh Perspective; International Training Network BUET: Dhaka, Bangladesh, 2003; pp. 21–41. [Google Scholar]
- Smedley, P.; Kinniburgh, D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Azcue, J.M.; Nriagu, J.O. Arsenic historical perspective. In Arsenic in the Environment; Part, J., Nriagu, J.O., Eds.; John Wiley & Sons: London, UK, 1994; pp. 1–49. [Google Scholar]
- Sharma, V.K.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef]
- Gupta, D.K.; Srivastava, S.; Huang, H.; Romero-Puertas, M.C.; Sandalio, L.M. Detoxification of Heavy Metals; Springer: Cham, Switzerland, 2011; pp. 169–179. [Google Scholar]
- Al-Abed, S.R.; Jegadeesan, G.; Purandare, J.; Allen, D. Arsenic release from iron rich mineral processing waste: Influence of pH and redox potential. Chemosphere 2007, 66, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Bodek, I. Environmental Inorganic Chemistry: Properties, Processes, and Estimation Methods; Pergamon Press: New York, NY, USA, 1988. [Google Scholar]
- Singh, M.K.; Kumar, A. A global problem of arsenic in drinking water and its mitigation—A review. Int. J. Adv. Eng. Technol. 2012, 3, 196–203. [Google Scholar]
- Cassone, G.; Chillé, D.; Foti, C.; Giuffrè, O.; Ponterio, R.; Sponer, J.; Saija, F. Stability of hydrolytic arsenic species in aqueous solutions: As3+ vs. As5+. Phys. Chem. Chem. Phys. 2018, 20, 23272–23280. [Google Scholar] [CrossRef]
- Quinodóz, F.B.; Maldonado, L.; Blarasin, M.; Matteoda, E.; Lutri, V.; Cabrera, A.; Albo, J.G.; Giacobone, D. The development of a conceptual model for arsenic mobilization in a fluvio-eolian aquifer using geochemical and statistical methods. Environ. Earth Sci. 2019, 78, 206. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Boopathy, R.; Hadibarata, T. Challenges and solutions for sustainable groundwater usage: Pollution control and integrated management. Curr. Pollut. Rep. 2020, 6, 310–327. [Google Scholar] [CrossRef]
- Csalagovits, I. Arsenic–bearing artesian waters of Hungary. Annu. Rep. Geol. Inst. Hung. 1999, 1992–1993/II, 85–92. [Google Scholar]
- Rowland, H.A.; Omoregie, E.O.; Millot, R.; Jimenez, C.; Mertens, J.; Baciu, C.; Hug, S.J.; Berg, M. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 2011, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, J.; Armienta, M.A.; Birkle, P. Natural Arsenic in Groundwaters of Latin America; CRC Press: New York, NY, USA, 2008. [Google Scholar]
- UNICEF. Arsenic Mitigation in Bangladesh Fact Sheet. 2010. Available online: http://www.unicef.org/bangladesh/Arsenic.pdf (accessed on 12 December 2020).
- WHO. Guidelines for Drinking-Water Quality: Recommendations, 3rd ed.; World Health Organization: Geneva, Switzerland, 2004; Volume 1. [Google Scholar]
- BGS; DPHE. Arsenic Contamination of Groundwater in Bangladesh; Final, Report; British Geological Survey: Keyworth, UK; Department of Public Health Engineering: Dhaka, Bangladesh, 2001; Volume 2. [Google Scholar]
- Herath, I.; Vithanage, M.; Bundschuh, J.; Maity, J.P.; Bhattacharya, P. Natural arsenic in global groundwaters: Distribution and geochemical triggers for mobilization. Curr. Pollut. Rep. 2016, 2, 68–89. [Google Scholar] [CrossRef] [Green Version]
- BBS. Per Capaita Income of Bangladesh: Bangladesh Bureau of Staticts; Ministry of Planning, Government of Bangladesh: Dhaka, Bangladesh, 2016. [Google Scholar]
- BGS. Groundwater Studies for Arsenic Contamination in Bangladesh; Main report and, supplemental; Government of the Peoples Republic of Bangladesh: Dhaka, Bangladesh; Ministry of Local Government, Rural Development and Cooperatives: Dhaka, Bangladesh; Department of Public Health Engineering: Dhaka, Bangladesh; Mott MacDonald International Ltd.: London, UK, 2000; Volume 1–3. [Google Scholar]
- GoB; UNDP. Millennium Development Goals Needs Assessment & Costing 2009–2015 Bangladesh; Government of Bangladesh: Dhaka, Bangladesh; UNDP: New York, NY, USA, 2015. [Google Scholar]
- Tan, S.N.; Yong, J.W.H.; Ng, Y.F. Arsenic exposure from drinking water and mortality in Bangladesh. Lancet 2010, 376, 1641–1642. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Ahmed, T. Status of remediation of arsenic contamination of groundwater in Bangladesh. Compr. Water Qual. Purif. 2014, 1, 104–121. [Google Scholar]
- Polizzotto, M.L.; Harvey, C.F.; Li, G.; Badruzzman, B.; Ali, A.; Newville, M.; Sutton, S.; Fendorf, S. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem. Geol. 2006, 228, 97–111. [Google Scholar] [CrossRef]
- Uddin, A.; Shamsudduha, M.; Saunders, J.; Lee, M.-K.; Ahmed, K.M.; Chowdhury, M. Mineralogical profiling of alluvial sediments from arsenic-affected Ganges–Brahmaputra floodplain in central Bangladesh. Appl. Geochem. 2011, 26, 470–483. [Google Scholar] [CrossRef]
- Harvey, C.F.; Ashfaque, K.N.; Yu, W.; Badruzzaman, A.; Ali, M.A.; Oates, P.M.; Michael, H.A.; Neumann, R.B.; Beckie, R.; Islam, S.; et al. Groundwater dynamics and arsenic contamination in Bangladesh. Chem. Geol. 2006, 228, 112–136. [Google Scholar] [CrossRef]
- McArthur, J.M.; Banerjee, D.M.; Hudson-Edwards, K.A.; Mishra, R.; Purohit, R.; Ravenscroft, P.; Cronin, A.; Howarth, R.J.; Chatterjee, A.; Talukder, T.; et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Appl. Geochem. 2004, 19, 1255–1293. [Google Scholar] [CrossRef]
- Bundschuh, J.; Bhattacharya, P.; Sracek, O.; Mellano, M.F.; Ramírez, A.E.; Storniolo, A.D.R.; Martín, R.A.; Cortés, J.; Litter, M.I.; Jean, J.-S. Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. J. Environ. Sci. Heal. Part A 2011, 46, 1297–1310. [Google Scholar] [CrossRef]
- Acharyya, S.K.; Shah, B.A. Groundwater arsenic pollution affecting deltaic West Bengal, India. Curr. Sci. 2010, 99, 1787–1794. [Google Scholar]
- Mallick, S.; Rajagopal, N. Groundwater development in the arsenic-affected alluvial belt of West Bengal—Some questions. Curr. Sci. 1996, 70, 956–958. [Google Scholar]
- Mandal, B.K.; Chowdhury, T.R.; Samanta, G.; Mukherjee, D.P.; Chanda, C.R.; Saha, K.C.; Chakraborti, D. Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Sci. Total. Environ. 1998, 218, 185–201. [Google Scholar] [CrossRef]
- Singh, A.K. Chemistry of arsenic in groundwater of Ganges-Brahmaputra river basin. Curr. Sci. 2006, 91, 599–606. [Google Scholar]
- Fazal, M.A.; Kawachi, T.; Ichion, E. Extent and severity of groundwater arsenic contamination in Bangladesh. Water Int. 2001, 26, 370–379. [Google Scholar] [CrossRef]
- Acharyya, S. Arsenic in Groundwater—Geological Overview: Consultation on Arsenic in Drinking Water; World Health Organization (WHO): New Delhi, India, 1997. [Google Scholar]
- Safiuddin, M.; Shirazi, S.M.; Yussof, S. Arsenic contamination of groundwater in Bangladesh: A review. Int. J. Phys. Sci. 2011, 6, 6791–6800. [Google Scholar] [CrossRef]
- Nickson, R.; McArthur, J.; Burgess, W.; Ahmed, K.M.; Ravenscroft, P.; Rahmanñ, M. Arsenic poisoning of Bangladesh groundwater. Nat. Cell Biol. 1998, 395, 338. [Google Scholar] [CrossRef]
- Fendorf, S.; Michael, H.A.; Van Geen, A. Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science 2010, 328, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Reza, A.S.; Jean, J.-S.; Yang, H.-J.; Lee, M.-K.; Woodall, B.; Liu, C.-C.; Lee, J.-F.; Luo, S.-D. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Water Res. 2010, 44, 2021–2037. [Google Scholar] [CrossRef] [PubMed]
- McArthur, J.M.; Ravenscroft, P.; Safiulla, S.; Thirlwall, M.F. Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 2001, 37, 109–117. [Google Scholar] [CrossRef]
- Maity, J.P.; Nath, B.; Kar, S.; Chen, C.-Y.; Banerjee, S.; Jean, J.-S.; Liu, M.-Y.; Centeno, J.A.; Bhattacharya, P.; Chang, C.L.; et al. Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: An exposure assessment study. Environ. Geochem. Health 2012, 34, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Islam, F. Arsenic Contamination in Groundwater in Bangladesh: An Environmental and Social Disaster; IWA Water Wiki: London, UK, 2010; Available online: www.iwawaterwiki.org (accessed on 16 December 2020).
- Safiuddin, M.; Karim, M. Groundwater arsenic contamination in Bangladesh: Causes, effects and remediation. In Proceedings of the 1st International Conference and Annual Paper Meet on Civil Engineering, Chittagong, Bangladesh, 2–3 November 2016; Volume 43, pp. 79–84. [Google Scholar]
- Huq, S.I.; Joardar, J.; Parvin, S.; Correll, R.; Naidu, R. Arsenic contamination in food-chain: Transfer of arsenic into food materials through groundwater irrigation. J. Heal. Popul. Nutr. 2006, 24, 305–316. [Google Scholar]
- Khan, S.I.; Ahmed, A.M.; Yunus, M.; Rahman, M.; Hore, S.K.; Vahter, M.; Wahed, M. Arsenic and cadmium in food-chain in Bangladesh—An exploratory study. J. Heal. Popul. Nutr. 2010, 28, 578–584. [Google Scholar] [CrossRef] [Green Version]
- ITNC Position Paper on Bangladesh Response to Arsenic Contamination of Groundwater; International Training Network Centre, Bangladesh University of Engineering and Technology (BUET): Dhaka, Bangladesh, 2008.
- SOES; DCH. Groundwater Arsenic Contamination in Bangladesh; A summarized survey, report; The School of Environmental Studies, Jadavpur University: Kolkata, India; Dhaka Community Hospital: Dhaka, Bangladesh, 2000. [Google Scholar]
- Dhar, R.K.; Biswas, B.K.; Samanta, G.; Mandal, B.K.; Chakraborti, D.; Roy, S.; Jafar, A.; Islam, A.; Ara, G.; Kabir, S.; et al. Groundwater arsenic calamity in Bangladesh. Curr. Sci. 1997, 73, 48–59. [Google Scholar]
- Farmer, J.G.; Johnson, L.R. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic. Occup. Environ. Med. 1990, 47, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Arnold, H.; Odam, R.; James, W. Diseases of the Skin: Clinical Dermatology, 8th ed.; WB Sanders: Philadelphia, PA, USA, 1990. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Udensi, U.K.; Pacurari, M.; Stevens, J.J.; Patlolla, A.K.; Noubissi, F.; Kumar, S. State of the science review of the health effects of inorganic arsenic: Perspectives for future research. Environ. Toxicol. 2019, 34, 188–202. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 2011; Volume 4, pp. 315–318. [Google Scholar]
- Dastgiri, S.; Mosaferi, M.; Fizi, M.A.; Olfati, N.; Zolali, S.; Pouladi, N.; Azarfam, P. Arsenic exposure, dermatological lesions, hypertension, and chromosomal abnormalities among people in a rural community of northwest Iran. J. Health Popul. Nutr. 2010, 28, 14–22. [Google Scholar] [PubMed] [Green Version]
- Lazaroff, C. Arsenic Standard Delayed by Call for More Studies; Environment News Service: 2001. Available online: www.ens-newswire.com (accessed on 10 October 2011).
- Smith, A. Report and Action Plan for Arsenic in Drinking Water Focusing on Health, Bangladesh; Assignment Report (WHO Project BAN CWS 001); World Health Organization (WHO): New Delhi, India, 1997; p. 9. [Google Scholar]
- Yunus, M.; Sohel, N.; Hore, S.K.; Rahman, M. Arsenic exposure and adverse health effects: A review of recent findings from arsenic and health studies in Matlab, Bangladesh. Kaohsiung J. Med Sci. 2011, 27, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalequzzaman, M.; Faruque, F.S.; Mitra, A.K. Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh. Int. J. Environ. Res. Public Health 2005, 2, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.M. Arsenic in groundwater and health problems in Bangladesh. Water Res. 2000, 34, 304–310. [Google Scholar] [CrossRef]
- Asadullah, M.N.; Chaudhury, N. Poisoning the mind: Arsenic contamination of drinking water wells and children’s educational achievement in rural Bangladesh. Econ. Educ. Rev. 2011, 30, 873–888. [Google Scholar] [CrossRef] [Green Version]
- Sohel, N.; Vahter, M.; Ali, M.; Rahman, M.; Rahman, A.; Streatfield, P.K.; Kanaroglou, P.S.; Persson, L. Åke spatial patterns of fetal loss and infant death in an arsenic-affected area in Bangladesh. Int. J. Heal. Geogr. 2010, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Santra, S.C. Arsenic contamination in rice, wheat, pulses, and vegetables: A study in an arsenic affected area of West Bengal, India. Water Air Soil Pollut. 2010, 213, 3–13. [Google Scholar] [CrossRef]
- Martin, M.; Ferdousi, R.; Hossain, K.M.J.; Barberis, E. Arsenic from groundwater to paddy fields in Bangladesh: Solid-liquid partition, sorption and mobility. Water Air and Soil Pollut. 2010, 212, 27–36. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci. Total Environ. 2011, 409, 4645–4655. [Google Scholar] [CrossRef] [Green Version]
- Saha, N.; Zaman, M.R. Concentration of selected toxic metals in groundwater and some cereals grown in Shibganj area of Chapai Nawabganj, Rajshahi, Bangladesh. Curr. Sci. 2011, 101, 427–431. [Google Scholar]
- Williams, P.; Islam, M.; Hussain, S.; Meharg, A. Arsenic absorption by rice. Behavior of Arsenic in Aquifers, Soils and Plants. (Conference Proceedings), Dhaka, Bangladesh, 16–18th January 2005. [Google Scholar]
- Kumarathilaka, P.; Seneweera, S.; Ok, Y.S.; Meharg, A.A.; Bundschuh, J. Mitigation of arsenic accumulation in rice: An agronomical, physicochemical, and biological approach—A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 31–71. [Google Scholar] [CrossRef]
- Jiang, J.-Q.; Ashekuzzaman, S.M.; Jiang, A.; Sharifuzzaman, S.M.; Chowdhury, S.R. Arsenic contaminated groundwater and its treatment options in Bangladesh. Int. J. Environ. Res. Public Health 2013, 10, 18–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.A.M.; Alam, J.B.; Ahmed, A.A.M. Evaluation of socioeconomic impact of arsenic contamination in Bangladesh. J. Toxicol. Environ. Health Sci. 2011, 3, 298–307. [Google Scholar]
- Mahmood, S.; Halder, A. The socioeconomic impact of arsenic poisoning in Bangladesh. J. Toxicol. Environ. Health Sci. 2011, 3, 65–73. [Google Scholar]
- Ahmad, S.A.; Sayed, M.H.; Khan, M.H.; Karim, M.N.; Haque, M.A.; Bhuiyan, M.S. Sociocultural aspects of arsenicArsenicosis in Bangladesh: Community perspective. J. Environ. Sci. Health A Toxicol. Hazard Subst Environ. Eng. 2007, 42, 1945–1958. [Google Scholar] [CrossRef]
- Rahmana, M.A.; Rahmanc, A.; Kaiser Khan, M.Z.; Renzahod, A.M.N. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicol. Environ. Saf. 2018, 150, 335–343. [Google Scholar] [CrossRef]
- Guha Mazumder, D.; Dasgupta, U.B. Chronic arsenic toxicity: Studies in West Bengal, India. Kaohsiung J. Med. Sci. 2011, 27, 360–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alka, S.; Shahir, S.; Ibrahim, N.; Ndejiko, M.J.; Vo, D.-V.N.; Manan, F.A. Arsenic removal technologies and future trends: A mini review. J. Clean. Prod. 2021, 278, 123805. [Google Scholar] [CrossRef]
- Weerasundara, L.; Ok, Y.-S.; Bundschuh, J. Selective removal of arsenic in water: A critical review. Environ. Pollut. 2021, 268, 115668. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.K.; Singh, R.D. Technological options for the removal of arsenic with special reference to South East Asia. J. Environ. Manag. 2012, 107, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ghurye, G.; Clifford, D.; Tripp, A. Iron coagulation and direct microfiltration to remove arsenic from groundwater. J. Am. Water Work. Assoc. 2004, 96, 143–152. [Google Scholar] [CrossRef]
- Leupin, O.X.; Hug, S.J. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 2005, 39, 1729–1740. [Google Scholar] [CrossRef]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part II: Oxidation of arsenic and its removal in water treatment. Acta Hydrochim. Hydrobiol. 2003, 31, 97–107. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Zouboulis, A.I. Application of biological processes for the removal of arsenic from groundwaters. Water Res. 2004, 38, 17–26. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res. 2006, 40, 549–552. [Google Scholar] [CrossRef]
- Hering, J.G.; Chen, P.-Y.; Wilkie, J.A.; Elimelech, M. Arsenic removal from drinking water during coagulation. J. Environ. Eng. 1997, 123, 800–807. [Google Scholar] [CrossRef]
- Chen, H.-W.; Frey, M.M.; Clifford, D.; McNeill, L.S.; Edwards, M. Arsenic treatment considerations. J. Am. Water Work. Assoc. 1999, 91, 74–85. [Google Scholar] [CrossRef]
- Lakshmipathiraj, P.; Narasimhan, B.R.V.; Prabhakar, S.; Raju, G.B. Adsorption of arsenate on synthetic goethite from aqueous solutions. J. Hazard. Mater. 2006, 136, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Vaclavikova, M.; Matik, M.; Jakabsky, S.; Hredzak, S. Preparation and sorption properties of Fe-nanomaterials for removal of arsenic from waters. In Book of Abstract of NATO CCMS on Clean Products and Processes; NATO: Lillehammer, Norway, 2005; p. 13. [Google Scholar]
- Hlavay, J.; Polyak, K. Determination of surface properties of ironhydrocide-coated alumina adsorbent prepared for removal of arsenic from drinking water. J. Colloid Interface Sci. 2005, 284, 71–77. [Google Scholar] [CrossRef]
- Jekel, M. Removal of arsenic in drinking water treatment. In Arsenic in the Environment. Part I: Cycling and Characterization; Nriagu, J.O., Ed.; Wiley: New York, NY, USA, 1994; p. 119. [Google Scholar]
- Rau, I.; Gonzalo, A.; Valiente, M. Arsenic(V) adsorption by immobilized iron mediation. Modeling of the adsorption process and influence of interfering anions. React. Funct. Polym. 2003, 54, 85–94. [Google Scholar] [CrossRef]
- Ning, R.Y. Arsenic removal by reverse osmosis. Desalination 2002, 143, 237–241. [Google Scholar] [CrossRef]
- Kang, M.; Kawasaki, M.; Tamada, S.; Kamei, T.; Magara, Y. Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination 2000, 131, 293–298. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A. Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement (I0CC). J. Colloid Interface Sci. 2005, 290, 52–60. [Google Scholar] [CrossRef]
- Manna, A.K.; Sen, M.; Martin, A.R.; Pal, P. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation. Environ. Pollut. 2010, 158, 805–811. [Google Scholar] [CrossRef]
- Yarlagadda, S.; Gude, V.G.; Camacho, L.M.; Pinappu, S.; Deng, S. Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process. J. Hazard. Mater. 2011, 192, 1388–1394. [Google Scholar] [CrossRef]
- Hasan, H.A.; Muhammad, M.H.; Ismail, N.I. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. J. Water Process Eng. 2020, 33, 101035. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X. On the potential of biological treatment for arsenic contaminated soils and groundwater. J. Environ. Manag. 2009, 90, 2367–2376. [Google Scholar] [CrossRef]
- Mazumder, P.; Sharma, S.K.; Taki, K.; Kalamdhad, A.S.; Kumar, M. Microbes involved in arsenic mobilization and respiration: A review on isolation, identification, isolates and implications. Environ. Geochem. Health 2020, 42, 3443–3469. [Google Scholar] [CrossRef]
- Han, B.; Runnels, T.; Zimbron, J.; Wickamasinghe, R. Arsenic removal from drinking water by floculation and microfiltration. Desalination 2002, 145, 293–298. [Google Scholar] [CrossRef]
- Kumar, P.R.; Chaudhari, S.; Khilar, K.C.; Mahajan, S. Removal of arsenic from water by electrocoagulation. Chemosphere 2004, 55, 1245–1252. [Google Scholar] [CrossRef]
- Dutta, A.; Chaudhuri, M. Removal of arsenic from ground water by lime softening with powdered coal additive. J. Water SRT-Aqua. 1991, 40, 25–29. [Google Scholar]
- Petrusevski, B.; Sharma, S.K.; Schippers, J.C. Groundwater Treatment. Part II, UNESCO-IHE Lecture Notes; UNESCO: Delft, The Netherlands, 2003. [Google Scholar]
- Schippers, J.C. Surface Water Treatment, UNESCO-IHE Lectures Notes; UNESCO: Delft, The Netherlands, 2003. [Google Scholar]
- US-EPA Office of Ground Water and Drinking Water. Implementation Guidance for the Arsenic Rule; EPA report-816-D-02-005; EPA: Cincinnati, OH, USA, 2002. [Google Scholar]
- Siddique, T.A.; Dutta, N.K.; Choudhury, N.R. Nanofiltration for arsenic removal: Challenges, recent developments, and perspectives. Nanomaterials 2020, 10, 1323. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Nakajima, T.; Ohki, A. Adsorption and removal of arsenic (V) from drinking water by aluminium loaded Shirazuzeolite. J. Hazard. Mater. B 2002, 92, 275–278. [Google Scholar] [CrossRef]
- Vigneswaran, S.; Nguyen, T.V. Water Filtration System Wins $500k Technology Against Poverty Prize. School of Environmental and Environmental Engineering, UTS. 2017. Available online: https://www.ecovoice.com.au/uts-water-filtration-system-wins-technology-against-poverty-500k-prize/ (accessed on 15 December 2017).
- Deliyanni, E.; Bakoyannakis, D.; Zouboulis, A.; Matis, K. Sorption of As(V) ions by akaganéite-type nanocrystals. Chemosphere 2003, 50, 155–163. [Google Scholar] [CrossRef]
- Matis, K.A.; Lehmann, M.; Zouboulis, A.I. Modelling sorption of metals from aqueous solution onto mineral particles: The case of arsenic ions and goethite ore. In Natural Microporous Materials in Environmental Technology; Springer International Publishing: New York, NY, USA, 1999; pp. 463–472. [Google Scholar]
- Badruzzaman, M.; Westerhoff, P.; Knappe, D.R. Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Res. 2004, 38, 4002–4012. [Google Scholar] [CrossRef] [PubMed]
- Sperlich, A.; Werner, A.; Genz, A.; Amy, C.; Worch, E.; Jekel, I. Breakthrongh behavior of granular ferric hydroxide (C PH) fixed- bed adsorption filters: Modeling and experimental approaches. Water Res. 2005, 39, 1190–1198. [Google Scholar] [CrossRef]
- Zhang, W.; Singh, P.; Paling, E.; Delides, S. Arsenic removal from contaminated water by natural iron ores. Miner. Eng. 2004, 17, 517–524. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef]
- Singh, T.S.; Pant, K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep. Purif. Technol. 2004, 36, 139–147. [Google Scholar] [CrossRef]
- Manju, G.; Raji, C.; Anirudhan, T. Evaluation of coconut husk carbon for the removal of As from water. Water Res. 1998, 32, 3062–3070. [Google Scholar] [CrossRef]
- Pattanayak, J.; Mondal, K.; Mathew, S.; Lalvani, S. A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents. Carbon 2000, 38, 589–596. [Google Scholar] [CrossRef]
- Bertocchi, A.F.; Ghiani, M.; Peretti, R.; Zucca, A. Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. J. Hazard. Mater. 2006, 134, 112–119. [Google Scholar] [CrossRef]
- Demarco, M.J.; Sengupta, A.K.; Greenleaf, J.E. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res. 2003, 37, 164–176. [Google Scholar] [CrossRef]
- Genç-Fuhrman, H.; Bregnhøj, H.; McConchie, D. Arsenate removal from water using sand–red mud columns. Water Res. 2005, 39, 2944–2954. [Google Scholar] [CrossRef]
- Altundoğan, H.; Altundoğan, S.; Tümen, F.; Bildik, M. Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag. 2002, 22, 357–363. [Google Scholar] [CrossRef]
- Dutta, P.K.; Ray, A.K.; Sharma, V.K.; Millero, F.J. Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Colloid Interface Sci. 2004, 278, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Meng, X.; Liu, S.; Baidas, S.; Patraju, R.; Christodoulatus, C.; Korfiatis, C. Surface complexation of organic arsenic on nanocrystalline titanium dioxide. J. Colloid Interface Sci. 2005, 290, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, E.; Ciminelli, V.S.; Höll, W.H. Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Res. 2005, 39, 5212–5220. [Google Scholar] [CrossRef]
- Lenoble, V.; Laclautre, C.; Serpaud, B.; Deluchat, V.; Bollinger, J.-C. As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin. Sci. Total Environ. 2004, 326, 197–207. [Google Scholar] [CrossRef]
- Ghimire, K.; Inoue, K.; Yamaguchi, H.; Makino, K.; Miyajima, T. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 2003, 34, 4945–4953. [Google Scholar] [CrossRef]
- Loukidou, M.; Matis, K.; Zouboulls, A.; Liakopoulou-Kyriakidou, M. Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res. 2003, 37, 4544–4552. [Google Scholar] [CrossRef]
- Maiti, A.; Thakur, B.K.; Basu, J.K.; De, S. Comparison of treated laterite as arsenic adsorbent from different locations and performance of best filter under field conditions. J. Hazard. Mater. 2013, 262, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukkarasu, O.S.; Viraraghavan, T.; Subramanian, K.S. Arsenic removal from drinking water using iron oxide-coated sand. Water Air Soil Pollut. 2003, 142, 95–111. [Google Scholar] [CrossRef]
- Sahira Joshi, S.; Sharma, M.; Kumari, A.; Surendra Shrestha, S.; Shrestha, B. Arsenic removal from water by adsorption onto iron oxide/nano-porous carbon magnetic composite. Appl. Sci. 2019, 9, 3732. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L. A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal. Water Res. 2003, 37, 4351–4358. [Google Scholar] [CrossRef]
- Mamindy-Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. Arsenic adsorption onto hematite and goethite. Comptes Rendus Chim. 2009, 12, 876–881. [Google Scholar] [CrossRef]
- Omeroglu, P. Use of Iron Coated Sand for Arsenic Removal. M.Sc. Thesis, SEE 131, UNESCO-IHE, Delft, The Netherlands, 2001. [Google Scholar]
- Mondal, P.; Bhowmick, S.; Chatterjee, D.; Figoli, A.; Van der Bruggen, B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere 2013, 92, 157–170. [Google Scholar] [CrossRef]
- Hristovski, K.; Baumgardner, A.; Westerhoff, P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 2007, 147, 265–274. [Google Scholar] [CrossRef]
- Maiti, A.; Mishra, S.; Chaudhary, M. Nanoscale materials for arsenic removal from water. In Nanoscale Materials in Water Purification; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 707–733. [Google Scholar]
- Habuda-Stanić, M.; Nujić, M. Arsenic removal by nanoparticles: A review. Environ. Sci. Pollut. Res. 2015, 22, 8094–8123. [Google Scholar] [CrossRef]
- Wong, W.; Wong, H.Y.; Badruzzaman, A.B.M.; Goh, H.H.; Zaman, M. Recent advances in exploitation of nanomaterial for arsenic removal from water: A review. Nanotechnology 2016, 28, 042001. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Tang, S.C.N.; Lo, I.M.C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632. [Google Scholar] [CrossRef] [PubMed]
- Kanel, S.R.; Manning, B.; Charlet, L.; Choi, H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005, 39, 1291–1298. [Google Scholar] [CrossRef]
- Jegadeesan, G.; Mondal, K.; Lalvani, S.B. Arsenate remediation using nanosized modified zerovalent iron particles. Environ. Prog. 2005, 24, 289–296. [Google Scholar] [CrossRef]
- Attinti, R.; Sarkar, D.; Barrett, K.R.; Datta, R. Adsorption of arsenic(V) from aqueous solutions by goethite/silica nanocomposite. Int. J. Environ. Sci. Technol. 2015, 12, 3905–3914. [Google Scholar] [CrossRef] [Green Version]
- Adegoke, H.I.; Adekola, F.A.; Fatoki, O.S.; Ximba, B.J. A comparative study of sorption of As (V) ions on nanoparticle hematite, goethite and magnetite. Nanotechnology 2014, 1, 184–187. [Google Scholar]
- Ramos, M.A.V.; Yan, W.; Li, X.-Q.; Koel, B.E.; Zhang, W.-X. Simultaneous oxidation and reduction of arsenic by zero-valent Iron nanoparticles: Understanding the significance of the core−shell structure. J. Phys. Chem. C 2009, 113, 14591–14594. [Google Scholar] [CrossRef]
- Litter, M.I.; Morgada, M.E.; Bundschuh, J. Possible treatments for arsenic removal in Latin American waters for human consumption. Environ. Pollut. 2010, 158, 1105–1118. [Google Scholar] [CrossRef]
- Tang, W.; Li, Q.; Gao, S.; Shang, J.K. Arsenic(III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J. Hazard. Mater. 2011, 192, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.R.; Yanful, E.K. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ. J. 2010, 25, 429–437. [Google Scholar] [CrossRef]
- Pena, M.E.; Korfiatis, G.P.; Patel, M.; Lippincott, L.; Meng, X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 2005, 39, 2327–2337. [Google Scholar] [CrossRef]
- Jegadeesan, G.; Al-Abed, S.R.; Sundaram, V.; Choi, H.; Scheckel, K.G.; Dionysiou, D.D. Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects. Water Res. 2010, 44, 965–973. [Google Scholar] [CrossRef]
- Nabi, D.; Aslam, I.; Qazi, I.A. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J. Environ. Sci. 2009, 21, 402–408. [Google Scholar] [CrossRef]
- Ashraf, S.; Siddiqa, A.; Shahida, S.; Qaisar, S. Titanium-based nanocomposite materials for arsenic removal from water: A review. Heliyon 2019, 5, e01577. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Du, J.; Meng, X.; Sun, Y.; Sun, B.; Hu, Q. Application of titanium dioxide in arsenic removal from water: A review. J. Hazard. Mater. 2012, 215–216, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, Q.; Gao, S.; Shang, J.K. As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Res. 2010, 44, 5713–5721. [Google Scholar] [CrossRef] [PubMed]
- Hussam, A.; Munir, A.K.M. A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health Part A 2007, 42, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, R. Filtering Out Arsenic in Nepal; MIT Komaza Magazine: Cambridge, MA, USA, 2011; pp. 17–19. [Google Scholar]
- Ngai, T.K.; Shrestha, R.R.; Dangol, B.; Maharjan, M.; Murcott, S.E. Design for sustainable development—Household drinking water filter for arsenic and pathogen treatment in Nepal. J. Environ. Sci. Health Part A 2007, 42, 1879–1888. [Google Scholar] [CrossRef]
- Singh, A.; Smith, L.S.; Shrestha, S.; Maden, N. Efficacy of arsenic filtration by kanchan arsenic filter in Nepal. J. Water Health 2014, 12, 596–599. [Google Scholar] [CrossRef]
- Hayder, S.; Ahmed, T.; Tariq, M. Arsenic: A low-cost household level treatment for rural settings in developing countries. J. Pollut. Eff. Control. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Naus, F.L.; Burer, K.; Van Laerhoven, F.; Griffioen, J.; Ahmed, K.M.; Schot, P. Why do people remain attached to unsafe drinking water options? Quantitative evidence from Southwestern Bangladesh. Water 2020, 12, 342. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Sarkar, P.; Panda, J.; Pal, P. Low-cost field test kits for arsenic detection in water. J. Environ. Sci. Health Part A 2013, 49, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Industrial Test Systems Quick 481396-5 Arsenic for Water Quality Testing. Available online: https://www.amazon.com/Industrial-Test-Systems-481396-5-Arsenic/dp/B07V9C3W5Y (accessed on 18 January 2021).
- Vitasalus Inc., Troy, MI, USA. Available online: http://www.equinox-products.com/ArsenicMaster.htm (accessed on 20 December 2020).
Country | Region | [As], µg/L | Permissible Limit, µg/L |
---|---|---|---|
Afghanistan | Ghazni | 10–500 | 10 (WHO) |
* Argentina | 10–1000 | 50 (WHO) | |
# Australia | Perth Northern New South Wales Victoria (Gold mining regions) | 7000 52–337 <1–300,000 | 10 (WHO) |
Bangladesh | Noakhali | <1–4730 | 50 (WHO) |
Brazil | Minas Gerais (Southeastern Brazil) | 0.4–350 (Surface water) | 10 (WHO) |
Cambodia | Prey Veng and Kandal-Mekong delta | Up to 9001–1610 | 10 (WHO) |
Canada | Nova Scotia (Halifax county) | 1.5–738.8 | 10 (WHO) |
* Chile | 900–1040 | 50 (WHO) | |
China | - | 50–4440 | 50 (WHO) |
* China Inner Mongolia | 1–2400 | 50 (WHO) | |
# Croatia (Eastern) | Osijek area | 27 (Shallow groundwater) 205–240 (Deep groundwater) | 10 (WHO) |
Finland | Southwest Finland | 17–980 | 10 (WHO) |
# Germany | - | 10–150 | 10 (WHO) |
# Ghana | - | <1–175 | 50 (WHO) |
Greece | Fairbanks (mine tailings) | Up to 10,000 | 10 (WHO) |
* Hungary | Pannonian Basin | 10–176 0.5–240 | 10 (WHO) |
India | West Bengal Uttar Pradesh | 10–3200 | 50 (WHO) |
Italy | Volcano island and Phlegrean Fields | 0.1–6940 | 10 (WHO) |
Japan | Fukuoka Prefecture (southern region) | 1–293 | 10 (WHO) |
# Lao PDR | Laos | 277.8 | 50 (WHO) |
Mexico | Lagunera | 8–620 | 25 |
Nepal | Rupandehi | Up to 2620 | 50 |
# New Zealand | Taupo Volcanic zone | 21 | 10 (WHO) |
Pakistan | Muzaffargarh (southwestern Punjab) | Up to 906 | 50 |
* Peru | 500 | 50 (WHO) | |
* Romania | 10–176 | 10 (WHO) | |
# Slovakia | Banska Bystrica and Nitra | 37–39 | 10 (WHO) |
# Spain | - | <1–100 | 10 (WHO) |
Taiwan | - | 10–1820 | 10 (WHO) |
Thailand | Ron Phibun | 1–>5000 | 10 (WHO) |
# UK | Southwest England | <1–80 | 10 (WHO) |
USA | Tulare Lake | Up to 2600 | 10 (USEPA) |
Vietnam | Red River Delta (North Vietnam) Mekong Delta (South Vietnam) | <1–3050 | 10 (WHO) |
Country | Vegetables (μg/kg) | Rice (μg/kg) | Fish/Shrimp (μg/kg) | Other Foods (μg/kg) |
---|---|---|---|---|
Australia | 30 (20–40) | |||
Bangladesh | 54.5 (<5–540) | 500 (30–1840) | (97–1318) | 45.9 (44.9–46.9) Betel leaf |
Bangladesh a | (70–3990) | 496 (58–1830) | ||
Bangladesh b | (214–266) | |||
China | 140 (20–460) | |||
China a | 930 | |||
Europe | (<5–87) | |||
United Kingdom | 2 (green veg) 4.9 (other veg) | |||
USA | 250 (30–660) | |||
West Bengal (India) | 140 (20–400) | |||
West Bengal (India) a | 250 (140–480)330 (180–430) |
Treatment Process As(V) | Removal Efficiency | As Concentration |
---|---|---|
Oxidation and Filtration | ||
Aeration and filtration | >90% | 300 μg As(III)/L |
Fe2O3 filter | >95% | 100–400 μg As(III)/L |
As(III) oxidation by (OCl−) and Fe precipitation | >98% | 300 μg As(III)/L |
Co-precipitation | ||
Enhanced lime softening | 90% | |
Enhanced coagulation/filtration with alum | <90% | |
Enhanced coagulation/filtration with ferric chloride | 95% | |
Adsorption | ||
Iron doped activated carbon | >95% | 311 μg As/L |
Hybrid activated alumina | >95% | 2–20 mg As/L |
Iron based sorbents | Up to 98% | |
Layered double hydroxide (LDH) | Up to 96% | 300 μg As(V)/L |
Modified zeolites | Up to 99% | 100–400 μg As/L |
Modified clays | Up to 80% | 0.15 μM As |
Laterite and limonite | Up to 95% | 500 μg As/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeloju, S.B.; Khan, S.; Patti, A.F. Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. Appl. Sci. 2021, 11, 1926. https://doi.org/10.3390/app11041926
Adeloju SB, Khan S, Patti AF. Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. Applied Sciences. 2021; 11(4):1926. https://doi.org/10.3390/app11041926
Chicago/Turabian StyleAdeloju, Samuel B., Shahnoor Khan, and Antonio F. Patti. 2021. "Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review" Applied Sciences 11, no. 4: 1926. https://doi.org/10.3390/app11041926