Energy Blockchain for Public Energy Communities
Abstract
:1. Introduction
1.1. Motivation
1.2. State of the Art
1.3. Contribution of This Paper
2. Materials and Methods
2.1. Validated Sensor Power/Energy Values Readings as Open Data on Distributed Ledgers
- The availability of certified open data has always been a central point for the improvement in research and transparency; nevertheless, few repositories of this type exist, and none of them are maintained and populated enough. The centralization of the control of these repositories, being it public or private, can be seen as one of the main reasons of this, since their value tend to decrease if the interest and support of the maintaining party decreases (or terminate, in case of public grants).
- Commonly, the available open data is given in aggregated form, mainly provided and analyzed by the providing institution and does not exist on a public platform in which it is possible to analyze the raw data in a common format, as well as peer review the performed evaluations.
- The data is not provided in real time, and it is very hard to obtain data which is certified as completely reliable and provided in a common standard data type, and
- the upload of open data is completely voluntarily and not automatic, since the data should be acquired, evaluated, and reshaped before sharing it on the existing repositories. This effort can be very difficult to perform since not all institutions have the resources to properly perform such tasks.
2.2. LEC Sustainability KPIs
3. Field-Test Implementation and Results
3.1. LEC Description
3.2. Implementation Report
- GSM (class 4 @ GSM850/EGSM900),
- WIFI (802.11 b/g/n),
- BLE (v4.0), and
- LoraWan (v1.1 868 MHz EU).
3.3. On-Site Installation
3.4. LEC Analysis and Management
3.5. LEC Planning Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nastasi, B.; Manfren, M.; Noussan, M. Open Data and Energy Analytics. Energies 2020, 13, 2334. [Google Scholar] [CrossRef]
- Van Leeuwen, G.; AlSkaif, T.; Gibescu, M.; Van Sark, W. An integrated blockchain-based energy management platform with bilateral trading for microgrid communities. Appl. Energy 2020, 263, 114613. [Google Scholar] [CrossRef]
- Diestelmeier, L. Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law. Energy Policy 2019, 189–196. [Google Scholar] [CrossRef]
- Green, J.; Newman, P. Citizen utilities: The emerging power paradigm. Energy Policy 2017, 105, 283–293. [Google Scholar] [CrossRef]
- Ahl, A.; Yarime, M.; Tanaka, K.; Sagawa, D. Review of blockchain-based distributed energy: Implications for institutional development. Renew. Sustain. Energy Rev. 2019, 107, 200–211. [Google Scholar] [CrossRef]
- Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain based decentralized management of demand response programs in smart energy grids. Sensors 2018, 18, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siano, P.; De Marco, G.; Rolan, A.; Loia, V. A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Syst. J. 2019. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Gallo, P.; Ippolito, M.G.; Musca, R.; Riva Sanseverino, E.; Thi Tu Tran, Q.; Zizzo, G. Ancillary Services in the Energy Blockchain for Microgrids. IEEE Trans. Ind. Appl. 2019, 55, 7310–7319. [Google Scholar] [CrossRef]
- Abdella, J.; Shuaib, K. Peer to peer distributed energy trading in smart grids: A survey. Energies 2018, 11, 1560. [Google Scholar] [CrossRef] [Green Version]
- Di Silvestre, M.L.; Gallo, P.; Guerrero, J.M.; Musca, R.; Riva Sanseverino, E.; Sciumè, G.; Vásquez, J.C.; Zizzo, G. Blockchain for power systems: Current trends and future applications. Renew. Sustain. Energy Rev. 2020, 119, 109585. [Google Scholar] [CrossRef]
- Foti, M.; Vavalis, M. What blockchain can do for power grids? Blockchain 2021, 100008. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; 2008; pp. 1–9. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 24 February 2021).
- Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P.; Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P. A Survey on Microgrid Energy Management Considering Flexible Energy Sources. Energies 2019, 12, 2156. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Dong, Z.Y.; Liang, G.; Murata, J.; Xu, Z. A Distributed Electricity Trading System in Active Distribution Networks Based on Multi-Agent Coalition and Blockchain. IEEE Trans. Power Syst. 2018. [Google Scholar] [CrossRef]
- Mureddu, M.; Ghiani, E.; Pilo, F. Smart grid optimization with blockchain based decentralized genetic Algorithm. In Proceedings of the IEEE Power and Energy Society General Meeting, Montreal, QC, Canada, 2–6 August 2020. [Google Scholar] [CrossRef]
- Garau, M.; Ghiani, E.; Celli, G.; Pilo, F.; Corti, S. Co-Simulation of Smart Distribution Network Fault Management and Reconfiguration with LTE Communication. Energies 2018, 11, 1332. [Google Scholar] [CrossRef] [Green Version]
- Eberhardt, J.; Peise, M.; Kim, D.H.; Tai, S. Privacy-Preserving Netting in Local Energy Grids. In Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency, Toronto, ON, Canada, 2–6 May 2020. [Google Scholar] [CrossRef]
- Guan, Z.; Lu, X.; Yang, W.; Wu, L.; Wang, N.; Zhang, Z. Achieving efficient and Privacy-preserving energy trading based on blockchain and ABE in smart grid. J. Parallel Distrib. Comput. 2021, 147, 34–45. [Google Scholar] [CrossRef]
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling Localized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Trans. Ind. Inf. 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, J.; McCann, J.A.; Yang, Y.; Liu, Y.; Wang, X.; Deng, Y. Privacy-Preserving and Efficient Multi-Keyword Search over Encrypted Data on Blockchain. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 405–410. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, J.; Wu, H.; Yang, Y. Fairness-based Packing of Industrial IoT Data in Permissioned Blockchains. IEEE Trans. Ind. Inf. 2020. [Google Scholar] [CrossRef]
- Ruijer, E.; Détienne, F.; Baker, M.; Groff, J.; Meijer, A.J. The Politics of Open Government Data: Understanding Organizational Responses to Pressure for More Transparency. Am. Rev. Public Adm. 2020, 50, 260–274. [Google Scholar] [CrossRef] [Green Version]
- Morrison, R. Energy system modeling: Public transparency, scientific reproducibility, and open development. Energy Strategy Rev. 2018, 20, 49–63. [Google Scholar] [CrossRef]
- Ghiani, E.; Giordano, A.; Nieddu, A.; Rosetti, L.; Pilo, F. Planning of a Smart Local Energy Community: The Case of Berchidda Municipality (Italy). Energies 2019, 12, 4629. [Google Scholar] [CrossRef] [Green Version]
- Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. Ethereum Platform White Paper. 2014. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiy68q5m_rvAhXK3mEKHeTKDFIQFjABegQIBhAD&url=https%3A%2F%2Fblockchainlab.com%2Fpdf%2FEthereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf&usg=AOvVaw2IPhyg8xuFJPzuoDIM8tIi (accessed on 12 April 2021).
- Noor, S.; Yang, W.; Guo, M.; van Dam, K.H.; Wang, X. Energy Demand Side Management within micro-grid networks enhanced by blockchain. Appl. Energy 2018, 228, 1385–1398. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 143–174. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Hu, Z.Z.; Lin, J.R.; Zhang, J.P. Linking data model and formula to automate KPI calculation for building performance benchmarking. Energy Rep. 2021, 7, 1326–1337. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Mundow, D.; Sisinni, M.; Rezgui, Y. Building Energy Metering and Environmental Monitoring—A State-of-the-Art Review and Directions for Future Research. Energy Build. 2016, 120, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Fattori di Emissione Atmosferica di Gas a Effetto Serra nel Settore Elettrico Nazionale e nei Principali Paesi Europei; Atmospheric Greenhouse Gas Emission Factors in the National Electricity Sector and in the Main European Countries. Technical Report; Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA): Rome, Italy, 2020. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/fattori-di-emissione-atmosferica-di-gas-a-effetto-serra-nel-settore-elettrico-nazionale-e-nei-principali-paesi-europei (accessed on 24 February 2021).
- Paavolainen, S.; Carr, C. Security Properties of Light Clients on the Ethereum Blockchain. IEEE Access 2020, 8, 124339–124358. [Google Scholar] [CrossRef]
- Hafid, A.; Hafid, A.S.; Samih, M. New Mathematical Model to Analyze Security of Sharding-Based Blockchain Protocols. IEEE Access 2019, 7, 185447–185457. [Google Scholar] [CrossRef]
- Singh, A.; Click, K.; Parizi, R.M.; Zhang, Q.; Dehghantanha, A.; Choo, K.K.R. Sidechain technologies in blockchain networks: An examination and state-of-the-art review. J. Netw. Comput. Appl. 2020, 149, 102471. [Google Scholar] [CrossRef]
Building | Size Installed (kWp) |
---|---|
City hall | 6 |
Primary school | 4 |
Police building | 0 |
Sports club | 3 |
Library | 2 |
Scenario with No Renewable Sources | Current Scenario | |||
---|---|---|---|---|
Building | Emissions [CO] | Costs [k€] | Emissions [CO] | Costs [k€] |
Library | 19.28 | 1.66 | 15.04 | 1.22 |
Sports club | 10.16 | 0.92 | 8.45 | 0.52 |
City hall | 115.00 | 9.82 | 93.37 | 7.99 |
Primary school | 7.59 | 0.72 | 4.92 | 0.16 |
Police building | 32.77 | 2.76 | 32.77 | 2.76 |
Total | 184.80 | 15.88 | 154.55 | 12.65 |
Building | Installed Size (kWp) | Optimized Size (kWp) |
---|---|---|
City hall | 6 | 12 |
Primary school | 4 | 8 |
Police building | 0 | 2 |
Sports club | 3 | 4 |
Library | 2 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galici, M.; Mureddu, M.; Ghiani, E.; Celli, G.; Pilo, F.; Porcu, P.; Canetto, B. Energy Blockchain for Public Energy Communities. Appl. Sci. 2021, 11, 3457. https://doi.org/10.3390/app11083457
Galici M, Mureddu M, Ghiani E, Celli G, Pilo F, Porcu P, Canetto B. Energy Blockchain for Public Energy Communities. Applied Sciences. 2021; 11(8):3457. https://doi.org/10.3390/app11083457
Chicago/Turabian StyleGalici, Marco, Mario Mureddu, Emilio Ghiani, Gianni Celli, Fabrizio Pilo, Paolo Porcu, and Beatrice Canetto. 2021. "Energy Blockchain for Public Energy Communities" Applied Sciences 11, no. 8: 3457. https://doi.org/10.3390/app11083457
APA StyleGalici, M., Mureddu, M., Ghiani, E., Celli, G., Pilo, F., Porcu, P., & Canetto, B. (2021). Energy Blockchain for Public Energy Communities. Applied Sciences, 11(8), 3457. https://doi.org/10.3390/app11083457