Classification Performance for COVID Patient Prognosis from Automatic AI Segmentation—A Single-Center Study
Abstract
:1. Introduction
- age ≥ 70 years
- obesity BMI ≥ 30 kg/m2
- fever at hospitalization ≥ 38 °C
- respiratory rate ≥ 22 breaths/minute
- lymphocyte count ≤ 900 cells/mm3
- creatinine ≥ 1 mg/dl
- C-reactive protein ≥ 10 mg/dl
- lactate dehydrogenase ≥ 350 IU/l.
2. Materials and Methods
2.1. Patients Selection
2.2. Pipeline Overview
2.3. Lung Segmentation
2.4. GGO Segmentation
- Gamma corrected image (γ = 1.5);
- Adaptive Histogram Equalized image, in a radius of 3 voxels;
- Median blurred image with a kernel of radius 3 voxels;
- Standard deviation filtered image with a kernel of radius 1 voxels.
- Healthy lung;
- Edges;
- Remaining vessels;
- Noise;
- GGO.
- Sensitivity
- Specificity
- Precision
- F1 score
2.5. Feature Extraction
- Texture;
- Gray Level Distribution;
- GGO Shape;
- Bilaterality (distribution of GGO between left and right lung);
- Peripherality;
- GGO volume
2.6. Classification
- Multifocal GGO;
- Presence of Crazy Paving;
- Presence of Consolidation;
- Roundish GGO;
- Peripheral GGO;
- PREDI-CO score;
- Patient survival.
- Logistic Classifier (L1 penalty);
- (Logistic) Ridge Classifier (L2 penalty);
- K-Nearest Neighbors;
- Random Forest Classifier.
- Precision
- Sensitivity
- F1 score
- Balanced accuracy
3. Results
3.1. GGO Segmentation
3.2. Feature Extraction
3.3. Individual Features Analysis
3.3.1. Multifocal GGO
- Skewness of the gray level distribution (Radiomics);
- Interquartile (25–75) of the roundness distribution (Radiomics);
- Kurtosis of the gray level distribution (Radiomics).
- Kurtosis of the gray level distribution (Radiomics);
- Minimum of the distance distribution (Radiomics);
- Skewness of the gray level distribution (Radiomics).
3.3.2. Presence of Crazy Paving
- Median of the gray level distribution (Radiomics);
- Maximum of the Elongation distribution (Radiomics);
- Entropy (Haralick).
- Median of the gray level distribution (Radiomics);
- Inverse Difference Moment (Haralick);
- Skewness of the gray level distribution (Radiomics).
3.3.3. Presence of Consolidation
- Cluster Prominence (Haralick);
- Median of the gray level distribution (Radiomics);
- Median of the elongation distribution (Radiomics).
- Median of the gray level distribution (Radiomics);
- Median of the elongation distribution (Radiomics);
- Cluster Prominence (Haralick).
3.3.4. Roundish GGO
- GGO volume percentage (Radiomics);
- Skewness of the roundness distribution (Radiomics);
- Median of the roundness distribution (Radiomics).
- GGO volume percentage (Radiomics);
- Skewness of the roundness distribution (Radiomics);
- Median of the roundness distribution (Radiomics).
3.3.5. Peripheral GGO
- Patient age (Clinical);
- Minimum of the distance distribution (Radiomics);
- Skewness of the gray level distribution (Radiomics).
- Minimum of the distance distribution (Radiomics);
- Patient age (Clinical);
- Skewness of the elongation distribution (Radiomics).
3.4. Primary Outcomes
3.4.1. PREDI-CO Score
- Patient age (Clinical);
- Median of the distance distribution (Radiomics);
- Interquartile (25–75) of the roundness distribution (Radiomics).
- Patient age (Clinical);
- Interquartile (25–75) of the elongation distribution (Radiomics);
- Maximum of the distance distribution (Radiomics).
3.4.2. Patient Survival
- Inverse difference moment (Haralick);
- Median of the elongation distribution (Radiomics);
- Median of the distance distribution (Radiomics).
- Inverse difference moment (Haralick);
- Median of the elongation distribution (Radiomics);
- Skewness of the elongation distribution (Radiomics).
4. Discussion
4.1. GGO Segmentation
4.2. Individual Features Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loeffelholz, M.J.; Tang, Y.W. Laboratory diagnosis of emerging human coronavirus infections—The state of the art. Emerg. Microbes Infect. 2020, 9, 747–756. [Google Scholar] [CrossRef]
- Fu, Z.; Tang, N.; Chen, Y.; Ma, L.; Wei, Y.; Lu, Y.; Ye, K.; Liu, H.; Tang, F.; Huang, G.; et al. CT features of COVID-19 patients with two consecutive negative RT-PCR tests after treatment. Sci. Rep. 2020, 10, 11548. [Google Scholar] [CrossRef]
- Ciccarese, F.; Coppola, F.; Spinelli, D.; Galletta, G.L.; Lucidi, V.; Paccapelo, A.; De Benedittis, C.; Balacchi, C.; Golfieri, R. Diagnostic accuracy of north america expert consensus statement on reporting CT findings in patients suspected of having COVID-19 infection: An italian single-center experience. Radiol. Cardiothorac. Imag. 2020, 2, e200312. [Google Scholar] [CrossRef]
- Byrne, D.; Neill, S.B.O.; Müller, N.L.; Müller, C.I.S.; Walsh, J.P.; Jalal, S.; Parker, W.; Bilawich, A.M.; Nicolaou, S. RSNA Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19: Interobserver Agreement Between Chest Radiologists. Can. Assoc. Radiol. J. 2021, 72, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Esbin, M.N.; Whitney, O.N.; Chong, S.; Maurer, A.; Darzacq, X.; Tjian, R. Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection. RNA 2020, 26, 771–783. [Google Scholar] [CrossRef]
- Basso, D.; Aita, A.; Navaglia, F.; Franchin, E.; Fioretto, P.; Moz, S.; Bozzato, D.; Zambon, C.F.; Martin, B.; Dal Prà, C.; et al. SARS-CoV-2 RNA identification in nasopharyngeal swabs: Issues in pre-analytics. Clin. Chem. Lab. Med. 2020, 58, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.D.; Ryerson, C.J.; Haramati, L.B.; Sverzellati, N.; Kanne, J.P.; Raoof, S.; Schluger, N.W.; Volpi, A.; Yim, J.J.; Martin, I.B.K.; et al. The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Chest 2020, 158, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020, 296, E32–E40. [Google Scholar] [CrossRef] [Green Version]
- Akbari, Y.; Hassen, H.; Al-ma’adeed, S.; Zughaier, S. COVID-19 Lesion Segmentation Using Lung CT Scan Images: Comparative Study Based on Active Contour Models. Res. Square 2020. [Google Scholar] [CrossRef]
- Fusco, R.; Granata, V.; Mazzei, M.A.; Meglio, N.D.; Roscio, D.D.; Moroni, C.; Monti, R.; Cappabianca, C.; Picone, C.; Neri, E.; et al. Quantitative imaging decision support (QIDSTM) tool consistency evaluation and radiomic analysis by means of 594 metrics in lung carcinoma on chest CT scan. Cancer Control 2021, 28, 1073274820985786. [Google Scholar] [CrossRef]
- Collins, J.; Stern, E. Ground-glass opacity at CT: The ABCs. Am. J. Roentgenol. 1997, 169, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shi, B.; Wei, C.; Ding, H.; Gu, J.; Dong, J. Initial CT features and dynamic evolution of early-stage patients with COVID-19. Radiol. Infect. Dis. 2020, 7, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, G.; Cai, C.; Xu, Z.; Wu, H.; Guo, Y.; Xie, Z.; Shi, H.; Cheng, G.; Wang, J. Development of a quantitative segmentation model to assess the effect of comorbidity on patients with COVID-19. Eur. J. Med. Res. 2020, 25, 49. [Google Scholar] [CrossRef] [PubMed]
- Adair, L.B.; Ledermann, E.J. Chest CT findings of early and progressive phase COVID-19 infection from a US patient. Radiol. Case Rep. 2020, 15, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shi, Y.; Lu, H.; Xu, J.; Li, F.; Qian, Z.; Jiang, Y.; Hua, X.; Ding, X.; Song, F.; et al. Clinical and CT features of early stage patients with COVID-19: A retrospective analysis of imported cases in Shanghai, China. Eur. Respir. J. 2020, 55, 2000407. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Qi, S.; Yue, Y.; Teng, Y.; Xu, L.; Yao, Y.; Qian, W. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed. Eng. Online 2019, 18, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, E.; Coppola, F.; Larici, A.R.; Sverzellati, N.; Mazzei, M.A.; Sacco, P.; Dalpiaz, G.; Feragalli, B.; Miele, V.; Grassi, R. Structured reporting of chest CT in COVID-19 pneumonia: A consensus proposal. Insights Imag. 2020, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- ACR Website. Position Statement Section. Available online: https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection (accessed on 3 June 2021).
- Kirsch, J.; Ramirez, J.; Mohammed, T.L.; Amorosa, J.K.; Brown, K.; Dyer, D.S.; Ginsburg, M.E.; Heitkamp, D.E.; Jeudy, J.; Macmahon, H.; et al. ACR Appropriateness Criteria® acute respiratory illness in immunocompetent patients. J. Thorac. Imaging 2011, 15, W42–W44. [Google Scholar] [CrossRef]
- Neri, E.; Miele, V.; Coppola, F.; Grassi, R. Use of CT and artificial intelligence in suspected or COVID-19 positive patients: Statement of the Italian Society of Medical and Interventional Radiology. Radiol. Med. 2020, 125, 505–508. [Google Scholar] [CrossRef]
- Zhang, B.; Ni-Jia-Ti, M.Y.; Yan, R.; An, N.; Chen, L.; Liu, S.; Chen, L.; Chen, Q.; Li, M.; Chen, Z.; et al. CT-based radiomics for predicting the rapid progression of coronavirus disease 2019 (COVID-19) pneumonia lesions. Br. J. Radiol. 2021, 94, 20201007. [Google Scholar] [CrossRef]
- Ria, F.; Fu, W.; Chalian, H.; Abadi, E.; Segars, P.W.; Fricks, R.; Khoshpouri, P.; Samei, E. A comparison of COVID-19 and imaging radiation risk in clinical patient populations. J. Radiol. Prot. 2020, 40, 1336. [Google Scholar] [CrossRef]
- Jin, S.; Wang, B.; Xu, H.; Luo, C.; Wei, L.; Zhao, W.; Hou, X.; Ma, W.; Xu, Z.; Zheng, Z.; et al. AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. medRxiv 2020, 98, 106897. [Google Scholar]
- Cattabriga, A.; Cocozza, M.A.; Vara, G.; Coppola, F.; Golfieri, R. Lung CT Segmentation to Identify Consolidations and Ground Glass Areas for Quantitative Assesment of SARS-CoV Pneumonia. J. Vis. Exp. 2020, 166. [Google Scholar] [CrossRef]
- Mansoor, A.; Foster, B.; Xu, Z.; Papadakis, G.; Folio, L.; Udupa, J.; Mollura, D. Segmentation and image analysis of abnormal lungs at CT: Current approaches, challenges, and future trends. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2015, 35, 1056–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oulefki, A.; Agaian, S.; Trongtirakul, T.; Laouar, A.K. Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images. Pattern Recognit. 2020, 114, 107747. [Google Scholar] [CrossRef] [PubMed]
- Nakagomi, K.; Shimizu, A.; Kobatake, H.; Yakami, M.; Fujimoto, K.; Togashi, K. Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume. Med. Image Anal. 2013, 17, 62–77. [Google Scholar] [CrossRef]
- Dai, S.; Lu, K.; Dong, J.; Zhang, Y.; Chen, Y. A novel approach of lung segmentation on chest CT images using graph cuts. Neurocomputing 2015. [Google Scholar] [CrossRef]
- Li, B.; Christensen, G.; Mclennan, G.; Hoffman, E.; Reinhardt, J. Establishing a normative atlas of the human lung: Inter-subject warping and registration of volumetric CT. Acad. Radiol. 2003, 10, 255–265. [Google Scholar] [CrossRef]
- Dey, N.; Rajinikanth, V.; Fong, S.J.; Kaiser, M.S.; Mahmud, M. Social-group-optimization assisted Kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. Cogn. Comput. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Chang, V.; Hawash, H.; Chakrabortty, R.K.; Ryan, M. FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection. Knowl. Based Syst. 2021, 212, 106647. [Google Scholar] [CrossRef] [PubMed]
- Hofmanninger, J.; Prayer, F.; Pan, J.; Röhrich, S.; Prosch, H.; Langs, G. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur. Radiol. Exp. 2020, 4, 50. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Lee, E.H.; Zheng, J.; Zhang, W.; Halabi, S.; Liu, C.; Deng, K.; Song, J.; Yeom, K.W. Decoding COVID-19 pneumonia: Comparison of deep learning and radiomics CT image signatures. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 1–9. [Google Scholar] [CrossRef]
- Gozes, O.; Frid-Adar, M.; Greenspan, H.; Browning, P.D.; Zhang, H.; Ji, W.; Bernheim, A.; Siegel, E. Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis. arXiv 2020, arXiv:2003.05037. [Google Scholar]
- Müller, D.; Rey, I.S.; Kramer, F. Automated chest CT image segmentation of COVID-19 lung infection based on 3D u-net. arXiv 2020, arXiv:2007.04774. [Google Scholar]
- Bernheim, A.; Mei, X.; Huang, M.; Yang, Y.; Fayad, Z.A.; Zhang, N.; Diao, K.; Lin, B.; Zhu, X.; Li, K.; et al. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection. Radiology 2020, 295, 200463. [Google Scholar] [CrossRef] [Green Version]
- Simpson, S.; Kay, F.U.; Abbara, S.; Bhalla, S.; Chung, J.H.; Chung, M.; Henry, T.S.; Kanne, J.P.; Kligerman, S.; Ko, J.P.; et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA—Secondary Publication. J. Thorac. Imaging 2020, 35, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology 2020, 296, E41–E45. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Liu, T.; Huang, L.; Liu, H.; Lei, M.; Xu, W.; Hu, X.; Chen, J.; Liu, B. Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion. Radiology 2020, 295, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020, 296, E115–E117. [Google Scholar] [CrossRef]
- Inui, S.; Fujikawa, A.; Jitsu, M.; Kunishima, N.; Watanabe, S.; Suzuki, Y.; Umeda, S.; Uwabe, Y. Chest CT findings in cases from the cruise ship diamond princess with coronavirus disease (COVID-19). Radiol. Cardiothorac. Imag. 2020, 2, e200110. [Google Scholar] [CrossRef] [Green Version]
- Belkhatir, Z.; Estépar, R.S.J.; Tannenbaum, A.R. Supervised Image Classification Algorithm Using Representative Spatial Texture Features: Application to COVID-19 Diagnosis Using CT Images. medRxiv 2020. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Liu, C.; Sun, Q.; Peng, W. Differentiating novel coronavirus pneumonia from general pneumonia based on machine learning. Biomed. Eng. Online 2020, 19, 66. [Google Scholar] [CrossRef]
- Zeng, Q.Q.; Zheng, K.I.; Chen, J.; Jiang, Z.H.; Tian, T.; Wang, X.B.; Ma, H.L.; Pan, K.H.; Yang, Y.J.; Chen, Y.P.; et al. Radiomics-based model for accurately distinguishing between severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and influenza A infected pneumonia. MedComm 2020. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Hu, X.W.; Cheng, Q.; Zhao, Y.M.; Ge, Y.Q. Identification of common and severe COVID-19: The value of CT texture analysis and correlation with clinical characteristics. Eur. Radiol. 2020, 30, 6788–6796. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Zerunian, M.; Polici, M.; Pucciarelli, F.; Polidori, T.; Rucci, C.; Guido, G.; Bracci, B.; De Dominicis, C.; Laghi, A. Chest CT Features of COVID-19 in Rome, Italy. Radiology 2020, 296, E79–E85. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review. Eur. Radiol. 2020, 30, 4381–4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albarello, F.; Pianura, E.; Di Stefano, F.; Cristofaro, M.; Petrone, A.; Marchioni, L.; Palazzolo, C.; Schininà, V.; Nicastri, E.; Petrosillo, N.; et al. 2019-novel Coronavirus severe adult respiratory distress syndrome in two cases in Italy: An uncommon radiological presentation. Int. J. Infect. Dis. 2020, 93, 192–197. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Zhang, H.; Hung, C.L.; Min, G.; Guo, J.P.; Liu, M.; Hu, X. GPU-Accelerated GLRLM Algorithm for Feature Extraction of MRI. Sci. Rep. 2019, 9, 10883. [Google Scholar] [CrossRef]
- Hu, X.; Ye, W.; Li, Z.; Chen, C.; Cheng, S.; Lv, X.; Weng, W.; Li, J.; Weng, Q.; Pang, P.; et al. Non-invasive evaluation for benign and malignant subcentimeter pulmonary ground-glass nodules (≤1 cm) based on CT texture analysis. Br. J. Radiol. 2020, 93, 20190762. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Kruger, U.; Homayounieh, F.; Chao, H.; Zhang, J.; Digumarthy, S.R.; Arru, C.D.; Kalra, M.K.; Yan, P. Association of AI quantified COVID-19 chest CT and patient outcome. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 435–44524. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, M.; Giannella, M.; Scudeller, L.; Tedeschi, S.; Rinaldi, M.; Bussini, L.; Fornaro, G.; Pascale, R.; Pancaldi, L.; Pasquini, Z.; et al. Development and validation of a prediction model for severe respiratory failure in hospitalized patients with SARS-CoV-2 infection: A multicentre cohort study (PREDI-CO study). Clin. Microbiol. Infect. 2020, 26, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Jun, M.; Cheng, G.; Yixin, W.; Xingle, A.; Jiantao, G.; Ziqi, Y.; Minqing, Z.; Xin, L.; Xueyuan, D.; Shucheng, C.; et al. COVID-19 CT Lung and Infection Segmentation Dataset; CERN: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Yokota, K.; Maeda, S.; Kim, H.; Tan, J.K.; Ishikawa, S.; Tachibana, R.; Hirano, Y.; Kido, S. Automatic detection of GGO regions on CT images in LIDC dataset based on statistical features. In Proceedings of the 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), Kitakyushu, Japan, 3–6 December 2014; pp. 1374–1377. [Google Scholar]
- Frangi, R.; Niessen, W.J.; Vincken, K.; Viergever, M. Multiscale vessel enhancement filtering. Med. Image Comput. Comput. Assist. Interv. 2000. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Nakajima, S.; Shiraga, N.; Atsumi, H.; Yoshida, S.; Koller, T.; Gerig, G.; Kikinis, R. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 1998, 2, 143–168. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms SODA ’07, Society for Industrial, Applied Mathematics, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Yaniv, Z.; Lowekamp, B.C.; Johnson, H.J.; Beare, R. Simple ITK Image-Analysis Notebooks: A Collaborative Environment for Education and Reproducible Research. J. Digit. Imaging 2018, 31, 290–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowekamp, B.C.; Chen, D.T.; Ibáñez, L.; Blezek, D. The Design of SimpleITK. Front. Neuroinf. 2013, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradski, G. The OpenCV Library. Dr. Dobb J. Softw. Tools 2000, 120, 122–125. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, G. La Bel Object Representation and Manipulation with ITK. 2007. Available online: http://hdl.handle.net/1926/584 (accessed on 4 June 2021).
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238. [Google Scholar]
- Yan, Q.; Wang, B.; Gong, D.; Luo, C.; Zhao, W.; Shen, J.; Shi, Q.; Jin, S.; Zhang, L.; You, Z. COVID-19 Chest CT Image Segmentation—A Deep Convolutional Neural Network Solution. arXiv 2020, arXiv:2004.10987. [Google Scholar]
Cases | Specificity | Sensitivity | Precision | F1 Score |
---|---|---|---|---|
CORONACASES OVERALL | 0.9992 ± 0.0005 | 0.62 ± 0.13 | 0.79 ± 0.12 | 0.67 ± 0.07 |
GOLD STD OVERALL | 0.9993 ± 0.0003 | 0.74 ± 0.14 | 0.67 ± 0.28 | 0.65 ± 0.18 |
OVERALL | 0.9992 ± 0.0005 | 0.66 ± 0.15 | 0.75 ± 0.20 | 0.67 ± 0.12 |
Study | Technique | F1 Score | Sensitivity | Specificity | Precision |
---|---|---|---|---|---|
Fan2020 [66] | InfNet | 0.579 | 0.870 | 0.974 | 0.500 |
Fan2020 [66] | SemiInfNet | 0.597 | 0.865 | 0.977 | 0.915 |
Muller2020 [49] | U-Net | 0.761 | 0.739 | 0.999 | - |
Jun2020 [52] | 3D U-Net | 67.3 ± 22.3 | - | - | - |
Jun2020 [52] | 2D U-Net | 60.9 ± 24.5 | - | - | - |
Qingsen2020 [65] | U-Net | 0.726 | 0.751 | - | 0.726 |
Fisher | χ2 | All | |
---|---|---|---|
Logistic | 0.56 | 0.52 | 0.42 |
Ridge | 0.62 | 0.58 | 0.45 |
KNN | 0.44 | 0.44 | 0.48 |
R. Forest | 0.49 | 0.43 | 0.47 |
Multifocal 1 = Presence 0 = Absence | Fisher PPV | χ2 PPV | Fisher TPR | χ2 TPR | Fisher F1 | χ2 F1 | |
---|---|---|---|---|---|---|---|
Logistic | 0 | 0.72 | 0.69 | 0.64 | 0.64 | 0.68 | 0.67 |
1 | 0.39 | 0.34 | 0.48 | 0.40 | 0.43 | 0.37 | |
Ridge | 0 | 0.77 | 0.74 | 0.64 | 0.64 | 0.70 | 0.69 |
1 | 0.44 | 0.41 | 0.60 | 0.52 | 0.51 | 0.46 | |
KNN | 0 | 0.65 | 0.65 | 0.83 | 0.83 | 0.73 | 0.73 |
1 | 0.10 | 0.10 | 0.04 | 0.04 | 0.06 | 0.06 | |
R. Forest | 0 | 0.67 | 0.64 | 0.77 | 0.77 | 0.72 | 0.70 |
1 | 0.29 | 0.14 | 0.20 | 0.08 | 0.24 | 0.10 |
Fisher | χ2 | All | |
---|---|---|---|
Logistic | 0.57 | 0.61 | 0.47 |
Ridge | 0.51 | 0.56 | 0.45 |
KNN | 0.46 | 0.50 | 0.57 |
R. Forest | 0.50 | 0.51 | 0.51 |
Crazy Paving 1 = Presence 0 = Absence | Fisher PPV | χ2 PPV | Fisher TPR | χ2 TPR | Fisher F1 | χ2 F1 | |
---|---|---|---|---|---|---|---|
Logistic | 0 | 0.56 | 0.60 | 0.49 | 0.57 | 0.52 | 0.58 |
1 | 0.59 | 0.63 | 0.66 | 0.66 | 0.62 | 0.64 | |
Ridge | 0 | 0.48 | 0.55 | 0.41 | 0.46 | 0.44 | 0.50 |
1 | 0.53 | 0.57 | 0.61 | 0.66 | 0.57 | 0.61 | |
KNN | 0 | 0.43 | 0.47 | 0.43 | 0.51 | 0.43 | 0.49 |
1 | 0.49 | 0.43 | 0.49 | 0.49 | 0.49 | 0.51 | |
R. Forest | 0 | 0.48 | 0.50 | 0.35 | 0.35 | 0.41 | 0.41 |
1 | 0.53 | 0.54 | 0.66 | 0.68 | 0.59 | 0.60 |
Fisher | χ2 | All | |
---|---|---|---|
Logistic | 0.54 | 0.54 | 0.70 |
Ridge | 0.54 | 0.54 | 0.69 |
KNN | 0.51 | 0.51 | 0.50 |
R. Forest | 0.50 | 0.50 | 0.49 |
Consolidation 1 = Presence 0 = Absence | Fisher PPV | χ2 PPV | Fisher TPR | χ2 TPR | Fisher F1 | χ2 F1 | |
---|---|---|---|---|---|---|---|
Logistic | 0 | 0.91 | 0.91 | 0.59 | 0.59 | 0.71 | 0.71 |
1 | 0.12 | 0.12 | 0.50 | 0.50 | 0.20 | 0.20 | |
Ridge | 0 | 0.91 | 0.91 | 0.59 | 0.59 | 0.71 | 0.71 |
1 | 0.12 | 0.12 | 0.50 | 0.50 | 0.20 | 0.20 | |
KNN | 0 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
1 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | |
R. Forest | 0 | 0.90 | 0.90 | 0.90 | 1.00 | 0.95 | 0.95 |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher | χ2 | All | |
---|---|---|---|
Logistic | 0.60 | 0.60 | 0.59 |
Ridge | 0.58 | 0.60 | 0.56 |
KNN | 0.43 | 0.43 | 0.50 |
R. Forest | 0.45 | 0.45 | 0.50 |
Roundish 1 = Presence 0 = Absence | Fisher PPV | χ2 PPV | Fisher TPR | χ2 TPR | Fisher F1 | χ2 F1 | |
---|---|---|---|---|---|---|---|
Logistic | 0 | 0.92 | 0.92 | 0.64 | 0.64 | 0.75 | 0.75 |
1 | 0.17 | 0.17 | 0.56 | 0.56 | 0.26 | 0.26 | |
Ridge | 0 | 0.91 | 0.92 | 0.61 | 0.64 | 0.73 | 0.75 |
1 | 0.16 | 0.17 | 0.56 | 0.56 | 0.24 | 0.26 | |
KNN | 0 | 0.87 | 0.87 | 0.86 | 0.87 | 0.86 | 0.87 |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
R. Forest | 0 | 0.87 | 0.87 | 0.90 | 0.90 | 0.94 | 0.89 |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher | χ2 | All | |
---|---|---|---|
Logistic | 0.47 | 0.47 | 0.62 |
Ridge | 0.52 | 0.52 | 0.61 |
KNN | 0.52 | 0.52 | 0.51 |
R. Forest | 0.42 | 0.42 | 0.53 |
Peripheral 1 = Presence 0 = Absence | Fisher PPV | χ2 PPV | Fisher TPR | χ2 TPR | Fisher F1 | χ2 F1 | |
---|---|---|---|---|---|---|---|
Logistic | 0 | 0.74 | 0.74 | 0.43 | 0.43 | 0.55 | 0.55 |
1 | 0.21 | 0.21 | 0.50 | 0.50 | 0.30 | 0.30 | |
Ridge | 0 | 0.79 | 0.79 | 0.43 | 0.43 | 0.56 | 0.56 |
1 | 0.24 | 0.24 | 0.61 | 0.61 | 0.35 | 0.35 | |
KNN | 0 | 0.78 | 0.78 | 0.87 | 0.87 | 0.82 | 0.82 |
1 | 0.27 | 0.27 | 0.17 | 0.17 | 0.21 | 0.21 | |
R. Forest | 0 | 0.74 | 0.74 | 0.83 | 0.83 | 0.78 | 0.78 |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fisher | χ2 | All | |
---|---|---|---|
Logistic | 0.70 | 0.70 | 0.59 |
Ridge | 0.70 | 0.70 | 0.52 |
KNN | 0.62 | 0.60 | 0.50 |
R. Forest | 0.61 | 0.61 | 0.59 |
PREDI-CO 1 = PREDI-CO > 1 0 = PREDI-CO ≤ 1 | Fisher PPV | χ2 PPV | Fisher TPR | χ2 TPR | Fisher F1 | χ2 F1 | |
---|---|---|---|---|---|---|---|
Logistic | 0 | 0.67 | 0.67 | 0.71 | 0.71 | 0.69 | 0.69 |
1 | 0.72 | 0.72 | 0.68 | 0.68 | 0.70 | 0.70 | |
Ridge | 0 | 0.67 | 0.67 | 0.71 | 0.71 | 0.69 | 0.69 |
1 | 0.72 | 0.72 | 0.68 | 0.68 | 0.70 | 0.70 | |
KNN | 0 | 0.56 | 0.54 | 0.85 | 0.85 | 0.67 | 0.66 |
1 | 0.75 | 0.72 | 0.39 | 0.34 | 0.52 | 0.46 | |
R. Forest | 0 | 0.60 | 0.60 | 0.53 | 0.53 | 0.56 | 0.56 |
1 | 0.62 | 0.62 | 0.68 | 0.68 | 0.65 | 0.65 |
Fisher | χ2 | All | |
---|---|---|---|
Logistic | 0.41 | 0.48 | 0.43 |
Ridge | 0.62 | 0.70 | 0.41 |
KNN | 0.41 | 0.42 | 0.50 |
R. Forest | 0.46 | 0.48 | 0.50 |
Survival 1 = Dead 0 = Alive | Fisher PPV | χ2 PPV | Fisher TPR | χ2 TPR | Fisher F1 | χ2 F1 | |
---|---|---|---|---|---|---|---|
Logistic | 0 | 0.88 | 0.90 | 0.82 | 0.82 | 0.85 | 0.85 |
1 | 0.00 | 0.08 | 0.00 | 0.14 | 0.00 | 0.10 | |
Ridge | 0 | 0.93 | 0.95 | 0.82 | 0.82 | 0.87 | 0.88 |
1 | 0.20 | 0.25 | 0.43 | 0.57 | 0.27 | 0.35 | |
KNN | 0 | 0.89 | 0.89 | 0.83 | 0.85 | 0.86 | 0.87 |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
R. Forest | 0 | 0.90 | 0.90 | 0.94 | 0.95 | 0.92 | 0.93 |
1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biondi, R.; Curti, N.; Coppola, F.; Giampieri, E.; Vara, G.; Bartoletti, M.; Cattabriga, A.; Cocozza, M.A.; Ciccarese, F.; De Benedittis, C.; et al. Classification Performance for COVID Patient Prognosis from Automatic AI Segmentation—A Single-Center Study. Appl. Sci. 2021, 11, 5438. https://doi.org/10.3390/app11125438
Biondi R, Curti N, Coppola F, Giampieri E, Vara G, Bartoletti M, Cattabriga A, Cocozza MA, Ciccarese F, De Benedittis C, et al. Classification Performance for COVID Patient Prognosis from Automatic AI Segmentation—A Single-Center Study. Applied Sciences. 2021; 11(12):5438. https://doi.org/10.3390/app11125438
Chicago/Turabian StyleBiondi, Riccardo, Nico Curti, Francesca Coppola, Enrico Giampieri, Giulio Vara, Michele Bartoletti, Arrigo Cattabriga, Maria Adriana Cocozza, Federica Ciccarese, Caterina De Benedittis, and et al. 2021. "Classification Performance for COVID Patient Prognosis from Automatic AI Segmentation—A Single-Center Study" Applied Sciences 11, no. 12: 5438. https://doi.org/10.3390/app11125438