1. Introduction
Electricity generation from wind turbines has been one of the most rapidly growing sustainable energy sources in the last decade, with more than 743 GW installed worldwide at the end of 2021, as reported by the Global Wind Energy Council [
1], since it does not produce atmospheric emissions. However, generating electricity from wind can be challenging due to various reasons, including operation and maintenance (O&M) costs. Recently, reducing O&M costs, which includes control and condition monitoring and improving reliability, has become crucial in wind turbine and farm operational strategies because of their long-term impact on the reliability and productivity of wind site operations.
The rotor, which consists of nacelle situated on top of the tower, hub, and blades, is a crucial component of the wind turbine (
Figure 1). As minimum (cut-in) wind blows toward the blades of the wind turbine generator, it starts increasing speed.
Wind turbine control consists of two parts, namely synthesis and strategy [
2,
3]. This paper focuses on synthesis only, which involves designing single input, single output (SISO) linear controllers using PI, or PID controllers in each operating mode. More precisely, linear controllers are frequently designed in three operating modes in the intermediate wind speeds, i.e., below-rated wind speeds (mode 1), in higher—but still just below rated—wind speeds (mode 2), and in the above-rated wind speeds (mode 3) (refer to
Figure 2). Control strategy, which is not covered in this paper, includes smoothly combining these linear controllers, yielding a full envelop controller that covers the entire wind speed range (
Figure 2). In order to determine the strategy, the implementation issues such as accommodation of the variation in plant dynamics over the operational envelope and switching transients and actuator constraints, which are most relevant to the application, need to be identified and the controller realisation, which best resolves them, selected. It is related to nonlinear aspects of the plant dynamics, and an investigation of the global behaviour of the system is required.
Moreover, the controllers have peculiar structures and gains in each mode, i.e., the controller exploits generator torque in modes 1 and 2 to maximize the power output and maintain a constant generator speed (), respectively. The controller also exploits the pitch angle demand in mode 3 to maintain the rated power, i.e., 5 MW in this study. In this study, a linear optimal controller is designed at mean wind speeds of 8, 10, and 16 m/s in modes 1, 2, and 3, respectively. In each mode, a linear controller is designed using pertinent control algorithms. Although most existing wind turbines are equipped with controllers that stem from the PID control, over the past decade, optimal controllers have been gaining enough attention in the literature due to their flexibility and ability to incorporate wind speed estimation/prediction into the objective functions that are only present in optimal controllers.
Optimal controller are becoming even more relevant because more wind turbines are being equipped with a LiDAR (light detection and ranging) system, which measures the upcoming wind before it impacts the turbine. In this paper, wind turbine controllers are designed using three of the most popular optimal controllers, i.e., model predictive control (MPC), linear quadratic Gaussian (LQG), and
control. Thus, there is some work in the literature that reports on the design of wind turbine controllers based on optimal controllers. For example, the design of an SISO LQG controller to alleviate the fatigue loads on the blades, drive-train, and tower is reported in [
4,
5,
6]. The design of a multi-input multi-output (MIMO) LQG controller that attempts to strike a good balance between the maximization of power output and minimization of fatigue loading is introduced in [
5,
6,
7]. Similar work but based on MPC [
8,
9,
10] and
controller [
11,
12] instead of LQG [
4,
5,
6] is available in the literature. However, to the best of the authors’ knowledge, there is no paper that provides a comparison between these optimal controllers. In this paper, MPC, LQG, and
controllers are compared not only with each other but also with the standard PID controller most frequently used in industry.
In this study, optimal controllers require linear models, and the DNV Bladed models of the Supergen Wind Energy Consortium (Supergen) 5 MW exemplar turbine, which has been used for various EU and UK projects over the past 12 years, are linearised in each mode. Each linear model is attained in the state space form. Since the resulting linearized models are extremely complex, realization and tuning of optimal controllers are more difficult. Thus, these linearized models must be reduced.
Therefore, a Match-DC-gain model reduction algorithm [
13] is employed. This algorithm eliminates the weakly coupled states, i.e., the states with the smallest Hankel singular values. In addition, MPC, LQG, and
controllers are developed based on these linear models, and their performances are compared not only with each other but also with the standard proportional-integral-derivative (PID) controller [
14].
Therefore, the main contribution of this paper is not to introduce a new control algorithm but to apply existing optimal control algorithms, i.e., MPC, LQG, and and to compare their performances. The optimal controllers are compared not only with each other but also with the controller mostly used in industry, i.e., PID. Moreover, the most significant findings of this work include that while the standard PID controller requires a drive-train damper to remove oscillation due to the drive-train mode, the optimal controllers, particularly MPC and , do not require one, thereby significantly simplifying the controller design process.
The remainder of this paper is organized as follows. The linear models, which are obtained using Bladed software, and wind speed model required to run the models are reported in
Section 2. In
Section 3, a brief description of control objectives and optimal controllers (MPC,
, and LQG) are presented. In
Section 4, the simulation results are demonstrated, followed by conclusions in
Section 5.
4. Simulation Results
In this section, all optimal controllers are compared with one another and with a standard PID controller in the frequency and time domains, as well as on the torque/speed plane.
Figure 9 depicts the measured output at each mean wind speed (i.e., generator speed).
Figure 9a shows the time responses for the MPC, LQG, and
controllers in mode 1. It is difficult to confirm if the
curve is tracked, which is the control objective in the time domain as discussed in
Section 3.1, i.e., in
Figure 9a. However, tracking of the
curve is better presented on the torque/speed plane in
Figure 10. The figure demonstrates how all the optimal controllers, MPC (in red),
(in blue), and LQG (in black), perform on the torque/speed plane. They all appear to be satisfactory in closely tracking the
curve. The corresponding time responses of the power output for the MPC, LQG, and
controllers at a mean wind speed of 8 m/s (below-rated wind speed, i.e., mode 1) are illustrated in
Figure 11a.
Controller performance is also interpreted in the frequency domain, i.e., open-loop frequency response (
Figure 12). The open-loop system [
22] (
) in
Figure 8 is considered the product of the controller (open-loop) and the process (i.e., wind turbine ). The controllers should achieve a gain crossover frequency in the range of 0.6 to 2 rad/s due to wind characteristics [
23]. Gain crossover frequencies below 0.6 rad/s could cause an extremely slow control action, whereas those above 2 rad/s could cause an aggressive control action, potentially resulting in saturation of actuator, particularly in high wind speeds, i.e., in the above-rated region.
In mode 1,
Figure 12 shows that the gain crossover frequencies of the controllers (MPC, LQG, and
) are approximately between 0.6 and 2 rad/s. Notably, that PID controller is included in this study for comparison purposes only. The implication is that these controllers are neither too aggressive nor too slow.
In summary, the time response in
Figure 9a, results on torque/speed plane in
Figure 10, and open-loop frequency responses in
Figure 12 all show that the overall performance of these optimal controllers are satisfactory.
Figure 13a shows the corresponding control input, i.e., torque demand in mode 1. Control of generator speed is achieved by adjusting torque in mode 1, as aforementioned.
As depicted in
Figure 9b the time responses of the MPC, LQG, and
controllers in mode 2 are adequate in terms of fluctuations, as they persist under 12%.
Table 1 summarizes the results of generator speed fluctuations of all optimal controllers in mode 2; it shows the mean fluctuations for each controller in mode 2. The results show that fluctuations appear satisfactory because they remain below 12%. The corresponding time responses of the power output of the MPC, LQG, and
controllers at a mean wind speed of 10 m/s (just below-rated wind speeds, i.e., mode 2) are illustrated in
Figure 11b.
The controller performance is also interpreted in the frequency domain.
Figure 14 shows that at a mean wind speed of 10 m/s and the gain crossover frequencies of the controllers (MPC, LQG, and
) are in the range of 0.6 to 2 rad/s, which is satisfactory as aforementioned. Note that, again, the PID controller is also included here for comparison purposes only. The results imply that these controllers are neither extremely aggressive nor slow. However, for the PID controller, the peaks at about 14.13 rad/s persist mostly above 0 dB, which corresponds to the drive-train mode, indicating that the controller would be sensitive to noise and uncertainty; hence, it is not robust. Furthermore, these peaks are eliminated by employing a drive-train damper [
17]; i.e., the PID controller requires a drive-train damper to maintain the peak at about 14.13 rad/s below 0 dB (
Figure 15). Furthermore, the red and blue plots represent the open-loop frequency responses without and with drive-train damper, respectively.
Figure 15 shows the open-loop frequency response of the PID controller when a drive-train damper (in blue) is used, compared with the open-loop frequency response of the PID controller when a drive-train damper (in red) is not used.
Figure 15 shows that the damper removes the peak at 14.13 rad/s, which is due to the drive-train mode. Thus, oscillation due to the drive-train mode is removed. However, the drive-train damper is not required when the optimal controllers are in place (
Figure 14), which is a significant advantage over standard PID controllers.
In summary, the time responses shown in
Figure 9b, results presented in
Table 1, and open-loop frequency responses shown in
Figure 14 show that the overall performance of these optimal controllers are satisfactory. In contrast to the PID controller, the MPC and
controllers exhibit better performance than the LQG controller because the peak still remains when the LQG controller is in place although it is maintained below 0 dB.
Figure 13b shows the corresponding control input, i.e., torque demand in mode 2. Generator speed control is achieved by adjusting torque in mode 2 as aforementioned.
Figure 9c shows that the time responses for the MPC, LQG, and
controllers at a mean wind speed of 16 m/s are adequate in terms of fluctuations as they persist under 12%.
Table 1 summarizes the results for generator speed fluctuations of all optimal controllers in mode 3. It depicts that fluctuations are adequate as they persist below 12% which is within the controller design specifications mentioned in
Section 3.1.
Figure 11c illustrates the corresponding time response of the power output of the MPC, LQG, and
controllers at a mean wind speed of 16 m/s (above-rated wind speeds, i.e., mode 3).
Furthermore, modes 1 and 2 controller performances are also interpreted in the frequency domain.
Figure 16 shows that, the gain crossover frequencies of the controllers (MPC, LQG, and
) at a mean wind speed of 16 m/s are in the range of 0.6 to 2 rad/s. Note that the PID controller is included here for comparison only. The results imply that these controllers are neither extremely aggressive nor slow. However, the peak corresponding to the drive-train mode for the PID and LQG controllers remain mostly above 0 dB at about 13.75 rad/s (higher frequency range), indicating that the controller’s sensitivity to noise and uncertainty is high. These peaks are removed by incorporating a drive-train damper [
17]; i.e., the PID controllers require a drive-train damper to maintain the peak at around 13.75 rad/s below 0 dB (
Figure 15). However, MPC and
controllers achieve the same results without incorporating such dampers, i.e., in contrast to modes 1 and 2, the peak remains present but is below 0 dB. Nonetheless, these controllers in mode 3 are more sensitive than those in mode 2.
In summary, the time responses of the generator speed shown in
Figure 9c, the output power shown in
Figure 11c, results presented in
Table 1, and open loop frequency responses indicate that the overall performance of the optimal controllers, particularly MPC and
controllers, outperform PID controllers, as illustrated in the frequency domain.
Figure 13c shows the corresponding control input, i.e., pitch angle demand in mode 3. Generator speed control is achieved by adjusting the pitch angle in mode 3, as aforementioned.
The results discussed so far are summarized in
Table 2. It introduces the performance of all optimal controllers using error metrics. As aforementioned, the
curve is tracked in order to extract as much energy as possible from the wind in mode 1; in mode 2, the constant generator speed (
) is tracked; and the rated power is maintained in mode 3 by active pitching.
Table 2 illustrates that, in mode 1, all optimal controllers appear to be satisfactory in terms of tacking the
curve. In mode 2, all optimal controllers appear to satisfactorily track the constant generator speed (
). In mode 3, all optimal controllers appear to satisfactorily maintain the rated power.
5. Conclusions
In this study, a linear model is obtained by using the Bladed model of the Supergen Wind Energy Consortium (Supergen) 5 MW exemplar turbine model in different modes. These linear models are complex; hence, the realization and tuning of optimal controllers can be more challenging. Thus, the models must be reduced in order to design optimal controllers. Therefore, the Match-DC-Gain model reduction algorithm is used to reduce the model. The resulting models are similar to the original models in the meaningful frequency range. Based on these linear models MPC, , and LQG controllers are synthesized in each mode and compared with each other and with the standard PID controller, which is also included for comparison.
Simulation results demonstrate that in, mode 1, all optimal controllers show satisfactory performances not only in time and frequency domain but also in the torque/speed plane. In mode 2, the open-loop frequency responses demonstrate that the optimal controllers, especially the MPC and controllers, outperform the standard PID controllers. In more detail, the PID controller requires a drive-train damper to remove oscillation due to the drive-train mode, and designing such a damper could be challenging. However, when the optimal controllers are used, the oscillation due to the drive-train mode is removed without having to incorporate a drive-train damper. In mode 3, only the MPC and controllers can be designed without having to incorporate a drive-train damper. The LQG controller needs to incorporate a drive-train damper similar to the PID controller, making the LQG controller less competitive than the other optimal controllers. Furthermore, the MPC and controllers are more sensitive than those in mode 2; hence, extra care should be taken when designing MPC and controllers in mode 3. In summary, the MPC and controller perform most satisfactorily because they can achieve performance on a par with the PID controller, without incorporating a drivetrain damper that is compulsory in the PID design. The LQG controller performs as well as the other optimal controllers only in mode 2, but it is more sensitive and harder to tune than the other controllers overall.
As discussed in
Section 1, wind turbine control involves both the determination of the operating strategy of the controller and its synthesis. This paper only discusses synthesis, which is concerned with designing SISO linear controllers at different operating points or modes. Further research will involve the operating strategy, which will allow the linear controllers designed in this paper to be combined by introducing an appropriate switching method to obtain the full envelope controller that covers the full operational envelope of wind speed. Finally, in this paper, the optimal controllers are designed as SISO controllers, but designing the optimal controllers as an MIMO controllers, which could be more efficient, will also be considered.