Synergistic Effect and Phase Behavior of SCG-CAPB-H2O Ternary Compound System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Surface Tension Measurement
2.4. UV–Visible Spectrophotometer
2.5. Phase Behavior
2.6. Polarized Optical Microscopy (POM)
2.7. Small-Angle X-ray Scattering (SAXS)
2.8. Viscosity Measurement
3. Results and Discussion
3.1. Synergistic Effect of SCG/CAPB Ternary Compound System
3.1.1. CMC of SCG/CAPB System
3.1.2. Krafft Point of Sodium Cocoyl Glycinate (SCG)
3.1.3. Critical Packing Parameter (CPP) of Sodium Cocoyl Glycinate (SCG)
3.1.4. The Interaction Parameter (β) for the SCG/CAPB System
3.2. The Phase Behavior of SCG/CAPB System
3.2.1. POM and SAXS Results
3.2.2. Phase Diagram of SCG/CAPB/H2O Ternary Compound System
3.2.3. Mechanism of Phase Transition over SCG/CAPB/H2O System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, S.; Ray, A.; Pramanik, N. Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophys. Chem. 2020, 265, 106429. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.L.; Jia, Z.L.; Sun, H.T.; Liao, L.J.; Wen, Q.Z. Rheological behavior and microstructure of an anionic surfactant micelle solution with pyroelectric nanoparticle. Colloids Surf. A 2012, 395, 267–275. [Google Scholar] [CrossRef]
- Panmai, S.; Prud’homme, R.K.; Peiffer, D.G. Rheology of hydrophobically modified polymers with spherical and rod-like surfactant micelles. Colloids Surf. A 1999, 147, 3–15. [Google Scholar] [CrossRef]
- Choi, T.S.; Shimizu, Y.; Shirai, H.; Hamada, K. Solubilization of disperse dyes in cationic gemini surfactant micelles. Dyes Pigments 2000, 45, 145–152. [Google Scholar] [CrossRef]
- Gong, L.Y.; Liao, G.Z.; Chen, Q.S.; Luan, H.X.; Feng, Y.J. Swollen surfactant micelles: Properties and applications. Acta Phys.-Chim. Sin. 2019, 35, 816–828. [Google Scholar] [CrossRef]
- Qiao, W.; Zheng, Z.; Peng, H.; Shi, L. Synthesis and properties of three series amino acid surfactants. Tenside Surfactants Deterg. 2012, 49, 161–166. [Google Scholar] [CrossRef]
- Feng, S.H.; Wang, H.X.; Zhang, G.Y.; Xie, X.L. Rheological properties of lyotropic liquid crystal. Prog. Chem. 2004, 16, 687–695. [Google Scholar]
- Fong, C.; Le, T.; Drummond, C.J. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem. Soc. Rev. 2012, 41, 1297–1322. [Google Scholar] [CrossRef] [PubMed]
- Firouzi, A.; Atef, F.; Oertli, A.G.; Stucky, G.D.; Chmelka, B.F. Alkaline lyotropic silicate-surfactant liquid crystals. J. Am. Chem. Soc. 1997, 119, 3596–3610. [Google Scholar] [CrossRef]
- Braun, P.V.; Osenar, P.; Tohver, V.; Kennedy, S.B.; Stupp, S.I. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals. J. Am. Chem. Soc. 1999, 121, 7302–7309. [Google Scholar] [CrossRef]
- Li, G.Z.; Gu, Q.; Yan, L.C. Study of lyotropic liquid crystal containing nonionic surfactant of AEO-9. Acta Chim. Sin. 2001, 59, 6–10. [Google Scholar]
- Alam, M.M.; Matsumoto, Y.; Aramaki, K. Effects of surfactant hydrophilicity on the oil solubilization and rheological behavior of a nonionic hexagonal phase. J. Surfactants Deterg. 2014, 17, 19–25. [Google Scholar] [CrossRef]
- Funari, S.S. Induction of a hexagonal phase in phospholipid-surfactant bilayers. Eur. Biophys. J. 1998, 27, 590–594. [Google Scholar] [CrossRef]
- Linemann, R.; Lauger, J.; Schmidt, G.; Kratzat, K.; Richtering, W. Linear and nonlinear rheology of micellar solutions in the isotropic, cubic and hexagonal phase probed by rheo-small-angle light-scattering. Rheol. Acta 1995, 34, 440–449. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, X.M.; Lee, S.; Pfefferle, L.D.; Haller, G.L. Surfactant chain length effect on the hexagonal-to-cubic phase transition in mesoporous silica synthesis. Microporous Mesoporous Mater. 2012, 147, 242–251. [Google Scholar] [CrossRef]
- Gutberlet, T.; Dietrich, U.; Klose, G.; Rapp, G. X-ray diffraction study of the lamellar-hexagonal phase transition in phospholipid/surfactant mixtures. J. Colloid Interface Sci. 1998, 203, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.C.; Basri, M.; Omar, D.; Rahman, M.B.A.; Salleh, A.; Rahman, R. Self-assembly behaviour of alkylpolyglucosides (APG) in mixed surfactant-stabilized emulsions system. J. Mol. Liq. 2011, 158, 175–181. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, X.L.; Yan, H.; Wang, Y.; Feng, J. Self-assembly behaviors of heterogemini surfactant in aqueous solution investigated by dissipative particle dynamics. J. Dispers. Sci. Technol. 2014, 35, 1300–1307. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhao, Y.R.; Han, S.Y.; Chen, C.X.; Xu, H. Self-assembly of surfactant-like peptides and their applications. Sci. China-Chem. 2014, 57, 1634–1645. [Google Scholar] [CrossRef]
- Svenson, S. Controlling surfactant self-assembly. Curr. Opin. Colloid Interface Sci. 2004, 9, 201–212. [Google Scholar] [CrossRef]
- Alzahid, Y.A.; Mostaghimi, P.; Walsh, S.D.C.; Armstrong, R.T. Flow regimes during surfactant flooding: The influence of phase behaviour. Fuel 2019, 236, 851–860. [Google Scholar] [CrossRef]
- Zhang, K.W.; Karlstrom, G.; Lindman, B. Phase-behavior of systems of a nonionic surfactant and a nonionic polymer in aqueous-solution. Colloids Surf. 1992, 67, 147–155. [Google Scholar] [CrossRef]
- Chen, L.F.; Shang, Y.Z.; Liu, H.L.; Hu, Y. Phase behavior of n-butanol/n-octane/water/cationic gemini surfactant system. J. Dispers. Sci. Technol. 2006, 27, 317–323. [Google Scholar] [CrossRef]
- Branco, M.A.; Pinherio, L.; Faustino, C. Amino acid-based cationic gemini surfactant-protein interactions. Colloids Surf. A 2015, 480, 105–112. [Google Scholar] [CrossRef]
- Ishwarya, S.P.; Nisha, P. Insights into the composition, structure-function relationship, and molecular organization of surfactants from spent coffee grounds. Food Hydrocoll. 2022, 124, 107204. [Google Scholar] [CrossRef]
- Infante, M.R.; Pérez, L.; Pinazo, A.; Clapés, P.; Morán, M.C.; Angelet, M.; García, M.T.; Vinardell, M.P. Amino acid-based surfactants. Comptes Rendus Chim. 2004, 7, 583–592. [Google Scholar] [CrossRef]
- FAINERMAN, V.B.; MILLER, R. Dynamic surface tensions of surfactant mixtures at the water-air interface. Colloids Surf. A 1995, 97, 65–82. [Google Scholar] [CrossRef]
- Bera, A.; Ojha, K.; Mandal, A. Synergistic effect of mixed surfactant systems on foam behavior and surface tension. J. Surfactants Deterg. 2013, 16, 621–630. [Google Scholar] [CrossRef]
- Shalel, S.; Streichman, S.; Marmur, A. Monitoring surfactant-induced hemolysis by surface tension measurement. J. Colloid Interface Sci. 2002, 255, 265–269. [Google Scholar] [CrossRef]
- Manyala, D.L.; Varade, D. Formation and characterization of microemulsion with novel anionic sodium n-lauroylsarcosinate for personal care. J. Mol. Liq. 2021, 343, 117657. [Google Scholar] [CrossRef]
- Niu, C.; Xia, W.; Li, Y.; Bu, X.; Wang, Y.; Xie, G. Insight into the low-rank coal flotation using amino acid surfactant as a promoter. Fuel 2022, 307, 121810. [Google Scholar] [CrossRef]
- Godek, E.; Grzadka, E.; Maciolek, U.; Bastrzyk, A. Influence of zwitterionic CAPB on flocculation of the aqueous cationic guar gum/glauconite suspensions at various pH. Int. J. Mol. Sci. 2021, 22, 12157. [Google Scholar] [CrossRef]
- Tzocheva, S.S.; Kralchevsky, P.A.; Danov, K.D.; Georgieva, G.S.; Post, A.J.; Ananthapadmanabhan, K.P. Solubility limits and phase diagrams for fatty acids in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions. J. Colloid Interface Sci. 2012, 369, 274–286. [Google Scholar] [CrossRef] [PubMed]
- El-Dossoki, F.I.; Abdalla, N.S.Y.; Gomaa, E.A.; Hamza, O.K. An insight into thermodynamic and association behaviours of cocamidopropyl betaine (CAPB) surfactant in water and water-alcohol mixed media. SN Appl. Sci. 2020, 2, 690. [Google Scholar] [CrossRef]
- Ganjoo, R.; Sharma, S.; Thakur, A.; Assad, H.; Sharma, P.K.; Dagdag, O.; Berisha, A.; Seydou, M.; Ebenso, E.E.; Kumar, A. Experimental and theoretical study of sodium cocoyl glycinate as corrosion inhibitor for mild steel in hydrochloric acid medium. J. Mol. Liq. 2022, 364, 119988. [Google Scholar] [CrossRef]
- Manna, S.; Adak, D.; Manna, S.; Maity, S.; Jana, S.; Bhattacharya, R.; Medda, S.K. Antireflection cum photocatalytic with superhydrophilic based durable single layer mesoporous TiO2-ZrO2 coating surface for efficient solar photovoltaic application. Sustain. Energy Technol. Assess. 2023, 57, 103236. [Google Scholar] [CrossRef]
- Grundke, K.; Uhlmann, P.; Gietzelt, T.; Redlich, B.; Jacobasch, H.J. Studies on the wetting behaviour of polymer melts on solid surfaces using the wilhelmy balance method. Colloids Surf. A. 1996, 116, 93–104. [Google Scholar] [CrossRef]
- Wu, N.; Dai, J.L.; Micale, F.J. Dynamic surface tension measurement with a dynamic wilhelmy plate technique. J. Colloid Interface Sci. 1999, 215, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Zhang, D.R.; Zeng, Z.; Lytton, R.L. Effect of surface tension on the measurement of surface energy components of asphalt binders using the wilhelmy plate method. Constr. Build. Mater. 2015, 98, 900–909. [Google Scholar] [CrossRef]
- Inoue, T.; Dong, B.; Zheng, L.Q. Phase behavior of binary mixture of 1-dodecyl-3-methylimidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy. J. Colloid Interface Sci. 2007, 307, 578–581. [Google Scholar] [CrossRef]
- Zhang, S.H.; Yuan, J.; Ma, H.C.; Li, N.; Zheng, L.Q.; Inoue, T. Aqueous phase behavior of ionic liquid-related gemini surfactant revealed by differential scanning calorimetry and polarized optical microscopy. Colloid Polym. Sci. 2011, 289, 213–218. [Google Scholar] [CrossRef]
- Ma, G.Q.; Yuan, X.B.; Sheng, J. Phase structure in blends of polypropylene with ethylene-propylene rubber: A study by small angle X-ray scattering. Acta Polym. Sin. 2002, 1, 63–67. [Google Scholar]
- Lang, P.; Marczuk, P.; Lermann, E.; Möller, M. Gels of semifluorinated alkanes: Structural investigations by small angle X-ray scattering. Berichte Bunsen-Ges.-Phys. Chem. Chem. Phys. 1998, 102, 1644–1647. [Google Scholar] [CrossRef]
- Nishikawa, K.; Morita, T. Fluid behavior at supercritical states studied by small-angle X-ray scattering. J. Supercrit. Fluids 1998, 13, 143–148. [Google Scholar] [CrossRef]
- Lin, T.L.; Yu, T.L.; Liu, W.J.; Tsai, Y.M. Phase segregation of crosslinked polyurethane by small angle X-ray scattering. Polym. J. 1999, 31, 120–126. [Google Scholar] [CrossRef]
- Rafique, A.S.; Khodaparast, S.; Poulos, A.S.; Sharratt, W.N.; Robles, E.S.; Cabral, J.T. Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: Effects of concentration, temperature, and salt. Soft Matter 2020, 16, 7835–7844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, B.; Han, F.; Zhou, Y.; Liu, H.; Li, Y.; Cui, L.; Tan, T.; Wang, N. Green synthesis, composition analysis and surface active properties of sodium cocoyl glycinate. Am. J. Anal. Chem. 2013, 4, 445–450. [Google Scholar] [CrossRef]
- Yea, D.; Lee, S.; Jo, S.; Yu, H.; Lim, J. Preparation of environmentally friendly amino acid-based anionic surfactants and characterization of their interfacial properties for detergent products formulation. J. Surfactants Deterg. 2018, 21, 541–552. [Google Scholar] [CrossRef]
- Danov, K.D.; Kralchevska, S.D.; Kralchevsky, P.A.; Ananthapadmanabhan, K.P.; Lips, A. Mixed solutions of anionic and zwitterionic surfactant (betaine): Surface-tension isotherms, adsorption, and relaxation kinetics. Langmuir 2004, 20, 5445–5453. [Google Scholar] [CrossRef]
- Ouverney Ferreira, M.; Câmara de Assis, H.F.; Percebom, A.M. Cocamidopropyl betaine can behave as a cationic surfactant and electrostatically associate with polyacids of high molecular weight. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 654, 130123. [Google Scholar] [CrossRef]
- Wilson, K.M.; Danielson, N.D. Micellar and sub-micellar chromatography with a cocamidopropyl betaine surfactant. J. Chromatogr. A 2022, 1681, 463442. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Pal, A.; Rakshit, A.; Saha, B. Properties and applications of amphoteric surfactant: A concise review. J. Surfactants Deterg. 2021, 24, 709–730. [Google Scholar] [CrossRef]
- Yavrukova, V.I.; Radulova, G.M.; Danov, K.D.; Kralchevsky, P.A.; Xu, H.; Ung, Y.W.; Petkov, J.T. Rheology of mixed solutions of sulfonated methyl esters and betaine in relation to the growth of giant micelles and shampoo applications. Adv. Colloid Interface Sci. 2020, 275, 102062. [Google Scholar] [CrossRef] [PubMed]
- Staszak, K.; Wieczorek, D.; Michocka, K. Effect of sodium chloride on the surface and wetting properties of aqueous solutions of cocamidopropyl betaine. J. Surfactants Deterg. 2015, 18, 321–328. [Google Scholar] [CrossRef]
- Dai, C.; Zhao, J.; Yan, L.; Zhao, M. Adsorption behavior of cocamidopropyl betaine under conditions of high temperature and high salinity. J. Appl. Polym. Sci. 2014, 131, 40424. [Google Scholar] [CrossRef]
- Kareem, S.H.; Sattar, B. Adsorption properties for aqueous solution of binary mixture of cocamidopropyl betaine-sodiumdodecyl sulfate surfactants on air-liquid interface. Int. J. Sci. 2015, 24, 50–58. [Google Scholar]
- Kamrath, R.F.; Franses, E.I. Thermodynamics of mixed micellization. Pseudo-phase separation models. Ind. Eng. Chem. Fundam. 1983, 22, 230–239. [Google Scholar] [CrossRef]
- Shinoda, K.; Hutchinson, E. Pseudo-phase separation model for thermodynamic calculations on micellar solutions1. J. Phys. Chem. 1962, 66, 577–582. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Deng, S.-P.; Li, X.-K. Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate. J. Colloid Interface Sci. 2008, 318, 389–396. [Google Scholar] [CrossRef]
- Donohue, M.D.; Aranovich, G.L. A new classification of isotherms for gibbs adsorption of gases on solids. Fluid Phase Equilib. 1999, 158, 557–563. [Google Scholar] [CrossRef]
- Zhang, S.M. Gibbs adsorption isotherm for concentration as variable. Surf. Rev. Lett. 2005, 12, 379–389. [Google Scholar] [CrossRef]
- Donohue, M.D.; Aranovich, G.L. Classification of gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76, 137–152. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena, 4th ed.; Wiley: Hoboken, NJ, USA, 2004; pp. 60–62. [Google Scholar]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Tanford, C. Micelle shape and size. J. Phys. Chem. 1972, 76, 3020–3024. [Google Scholar] [CrossRef]
- Holland, P.M.; Rubingh, D.N. Nonideal multicomponent mixed micelle model. J. Phys. Chem. 1983, 87, 1984–1990. [Google Scholar] [CrossRef]
- Rubingh, D.N. Mixed Micelle Solutions. In Solution Chemistry of Surfactants; Mittal, K.L., Ed.; Springer New York: Boston, MA, USA, 1979; Volume 1, pp. 337–354. [Google Scholar]
- Park, B.D.; Youm, J.K.; Jeong, S.K.; Choi, E.H.; Ahn, S.K.; Lee, S.H. The characterization of molecular organization of multilamellar emulsions containing pseudoceramide and type iii synthetic ceramide. J. Investig. Dermatol. 2003, 121, 794–801. [Google Scholar] [CrossRef]
X1 | CMC (mmol·L−1) | CMC* (mmol·L−1) | γCMC (mN·m−1) | pC20 |
---|---|---|---|---|
0 | 0.974 | - | 32.8 | 4.69 |
0.2 | 0.172 | 2.124 | 25.9 | 4.21 |
0.4 | 0.148 | 1.640 | 26.8 | 4.36 |
0.6 | 0.152 | 1.336 | 26.7 | 4.38 |
0.8 | 0.185 | 1.127 | 22.4 | 4.41 |
1 | 3.013 | - | 29.3 | 3.62 |
Parameter | Value |
---|---|
Krafft point | 36 |
3.085 | |
0.538 | |
CPP | 0.7935 |
0.2 | 0.490 | 0.529 | −10.112 | −12.531 | −1.124 | −0.902 | −2.419 | 0.222 |
0.4 | 0.531 | 0.558 | −9.854 | −12.152 | −2.298 | |||
0.6 | 0.567 | 0.583 | −9.606 | −11.685 | −2.079 | |||
0.8 | 0.612 | 0.631 | −9.254 | −11.012 | −1.758 |
Sample No. | SCG (wt%) | CAPB (wt%) | H2O (wt%) |
---|---|---|---|
1 | 5 | 10 | 85 |
2 | 5 | 40 | 55 |
3 | 15 | 45 | 40 |
4 | 15 | 25 | 60 |
Sample No. | SCG (wt%) | CAPB (wt%) | H2O (wt%) | Phase | Viscosity (Pa·S) |
---|---|---|---|---|---|
5 | 15 | 5 | 80 | S-L1 | 0.5168 |
6 | 5 | 15 | 80 | L1 | 0.0072 |
7 | 5 | 25 | 70 | L1 | 0.0176 |
8 | 10 | 30 | 60 | Lα | 1.1907 |
9 | 10 | 35 | 55 | Lα | 6.7612 |
10 | 15 | 35 | 50 | H | 16.3508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zhang, J.; Wang, F.; Feng, W.; Dang, L.; Wei, H. Synergistic Effect and Phase Behavior of SCG-CAPB-H2O Ternary Compound System. Appl. Sci. 2024, 14, 3081. https://doi.org/10.3390/app14073081
Zhu Z, Zhang J, Wang F, Feng W, Dang L, Wei H. Synergistic Effect and Phase Behavior of SCG-CAPB-H2O Ternary Compound System. Applied Sciences. 2024; 14(7):3081. https://doi.org/10.3390/app14073081
Chicago/Turabian StyleZhu, Zhendong, Jiahao Zhang, Feihong Wang, Wenhui Feng, Leping Dang, and Hongyuan Wei. 2024. "Synergistic Effect and Phase Behavior of SCG-CAPB-H2O Ternary Compound System" Applied Sciences 14, no. 7: 3081. https://doi.org/10.3390/app14073081