Coordinated Control of Constant Output Voltage and Maximum Efficiency in Wireless Power Transfer Systems
Abstract
:1. Introduction
2. Models and Methods
3. Simulation Verification and Analysis
4. Experimental Verification and Discussion
4.1. Hardware Design
4.2. Software Design
4.3. Experimental Verification
5. Discussion
5.1. Comparison with Existing Methods
5.2. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhen, Z.; Hong, P.; Apostolos, G.; Carlo, C. Wireless Power Transfer—An Overview. IEEE Trans. Ind. Electron. 2019, 2, 1044–1058. [Google Scholar]
- Liu, J.; Xu, F.; Sun, C.; Loo, K.H. A Soft-Switched Power-Factor-Corrected Single-Phase Bidirectional AC-DC Wireless Power Transfer Converter with an Integrated Power Stage. IEEE Trans. Power Electron. 2022, 37, 10029–10044. [Google Scholar] [CrossRef]
- Xu, F.; Wong, S.; Tse, C.K. Inductive Power Transfer System with Maximum Efficiency Tracking Control and Real-Time Mutual Inductance Estimation. IEEE Trans. Power Electron. 2022, 37, 6156–6167. [Google Scholar] [CrossRef]
- Mi, C.C.; Buja, G.; Choi, S.Y.; Rim, C.T. Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6533–6545. [Google Scholar] [CrossRef]
- Brizi, D.; Stang, J.P.; Monorchio, A.; Lazzi, G.A. Compact Magnetically Dispersive Surface for Low-Frequency Wireless Power Transfer Applications. IEEE Trans. Antennas Propag. 2020, 68, 1887–1895. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, W.; Liang, Z.; Wang, J. Topology-Reconfigurable Capacitor Matrix for Encrypted Dynamic Wireless Charging of Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 9284–9293. [Google Scholar] [CrossRef]
- Suh, I.S. Application of Shaped Magnetic Field in Resonance (SMFIR) Technology to Future Urban Transportation. In Proceedings of the 21st CIRP Design Conference, Daejeon, Republic of Korea, 27–29 March 2011; pp. 226–232. [Google Scholar]
- Yao, Y.; Wang, Y.; Liu, X.; Pei, Y.; Xu, D.; Liu, X. Particle Swarm Optimization-Based Parameter Design Method for S/CLC Compensated IPT Systems Featuring High Tolerance to Misalignment and Load Variation. IEEE Trans. Power Electron. 2019, 34, 5268–5282. [Google Scholar] [CrossRef]
- Zhong, W.; Hui, S.Y.R. Maximum Energy Efficiency Tracking for Wireless Power Transfer Systems. IEEE Trans. Power Electron. 2015, 30, 4025–4034. [Google Scholar] [CrossRef]
- Qu, X.; Jing, Y.; Han, H.; Wong, S.-C.; Tse, C.K. Higher Order Compensation for Inductive-Power-Transfer Converters with Constant-Voltage or Constant-Current Output Combating Transformer Parameter Constraints. IEEE Trans. Power Electron. 2017, 32, 394–405. [Google Scholar] [CrossRef]
- Song, K.; Li, Z.; Jiang, J.; Zhu, C. Constant Current/Voltage Charging Operation for Series-Series and Series-Parallel Compensated Wireless Power Transfer Systems Employing Primary-Side Controller. IEEE Trans. Power Electron. 2017, 33, 8065–8080. [Google Scholar] [CrossRef]
- Hiramatsu, T.; Huang, X.L.; Kato, M.; Imura, T.; Hori, Y. Wireless Charging Power Control for HESS Through Receiver Side Voltage Control. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte City, NC, USA, 15–19 March 2015; pp. 1614–1619. [Google Scholar]
- Li, H.; Li, J.; Wang, K.; Chen, W.; Yang, X. A Maximum Efficiency Point Tracking Control Scheme for Wireless Power Transfer Systems Using Magnetic Resonant Coupling. IEEE Trans. Power Electron. 2015, 30, 3998–4008. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H. Maximum Efficiency Tracking Control Method for WPT System Based on Dynamic Coupling Coefficient Identification and Impedance Matching Network. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3633–3643. [Google Scholar] [CrossRef]
- Zhai, Y.; Sun, Y.; Dai, X.; Su, Y.; Wang, Z. Strong Coupling Magnetic Resonance System Parameter Identification and Primary-Side Control. Electr. Mach. Control. 2014, 18, 1–6. [Google Scholar]
- Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G. A 3-kW Wireless Power Transfer System for Sightseeing Car Supercapacitor Charge. IEEE Trans. Power Electron. 2016, 32, 3301–3316. [Google Scholar] [CrossRef]
- Tan, T.; Chen, K.; Lin, Q.; Jiang, Y.; Yuan, L.; Zhao, Z. Impedance Shaping Control Strategy for Wireless Power Transfer System Based on Dynamic Small-Signal Analysis. IEEE Trans. Circuits Syst. I-Regul. Pap. 2021, 68, 1354–1365. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, B.; Jiang, Y. Position-Independent Constant Current or Constant Voltage Wireless Electric Vehicles Charging System without Dual-Side Communication and DC-DC Converter. IEEE Trans. Ind. Electron. 2022, 69, 7930–7939. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, J.; Hui, S.Y.R. A Fast Primary-Side Current and Voltage Control for Direct Wireless Battery Chargers. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 355–366. [Google Scholar] [CrossRef]
- Colak, K.; Asa, E.; Bojarski, M.; Czarkowski, D.; Onar, O.C. A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer. IEEE Trans. Power Electron. 2015, 30, 6288–6297. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, W.; Kiratipongvoot, S.; Tan, S.; Hui, S.Y.R. Dynamic Improvement of Series–Series Compensated Wireless Power Transfer Systems Using Discrete Sliding Mode Control. IEEE Trans. Power Electron. 2018, 33, 6351–6360. [Google Scholar] [CrossRef]
- Berger, A.; Agostinelli, M.; Vesti, S.; Oliver, J.A.; Cobos, J.A.; Huemer, M. A Wireless Charging System Applying Phase-Shift and Amplitude Control to Maximize Efficiency and Extractable Power. IEEE Trans. Power Electron. 2015, 30, 6338–6348. [Google Scholar] [CrossRef]
- Mai, R.; Liu, Y.; Li, Y.; Yue, P.; Cao, G.; He, Z. An Active-Rectifier-Based Maximum Efficiency Tracking Method Using an Additional Measurement Coil for Wireless Power Transfer. IEEE Trans. Power Electron. 2018, 33, 716–728. [Google Scholar] [CrossRef]
- Mansouri, A.; El Magri, A.; Lajouad, R.; Giri, F. Novel Adaptive Observer for HVDC Transmission Line: A New Power Management Approach for Renewable Energy Sources Involving Vienna Rectifier. IFAC J. Syst. Control 2024, 27, 100255. [Google Scholar] [CrossRef]
- Mansouri, A.; El Magri, A.; Lajouad, R.; Giri, F.; Watil, A. Nonlinear Control Strategies with Maximum Power Point Tracking for Hybrid Renewable Energy Conversion Systems. Asian J. Control 2023, 26, 1047–1056. [Google Scholar] [CrossRef]
- Mansouri, A.; Ammar, A.; El Magri, A.; Elaadouli, N.; Lajouad, R.; Giri, F. An Adaptive Control Strategy for Integration of Wind Farm Using a VSC-HVDC Transmission System. Results Eng. 2024, 102359. [Google Scholar] [CrossRef]
Topology | Output Voltage | Input Resistance |
---|---|---|
Buck | ||
Boost | ||
Buck–Boost |
Parameters | Symbol | Values |
---|---|---|
System operating frequency | f | 85 kHz |
DC source voltage | Udc | 80 V |
Primary side compensation inductance | Lp1 | 55.95 µH |
Primary side parallel compensation capacitance | Cp1 | 62.94 nF |
Primary side series compensation capacitance | Cp2 | 28.18 nF |
Self-inductance of the transmit coil | L1 | 181 µH |
Self-inductance of the receive coil | L2 | 179.24 µH |
Resistance of the transmit coil | RL1 | 149 mΩ |
Resistance of the receive coil | RL2 | 128 mΩ |
Secondary side series compensation capacitance | Cs1 | 19.5 nF |
Switching frequency of the Buck–Boost converter | fs | 50 kHz |
Inductance of the Buck–Boost converter | Lf | 120 mH |
Output filter capacitance | Co | 220 μF |
Ref. | Number of DC–DC Converters | Controller | Number of Samples | Response Time | Maximum Efficiency |
---|---|---|---|---|---|
[13] | Two | FPGA controller | Two | Not provided | 85% |
[14] | One | STM32F429VIT6 | Six | <100 ms | 85.4% |
[16] | One | Not provided | One | 100 ms | 88% |
[17] | One | TMS320F28379D | Five | 17 ms | Not provided |
[20] | Zero | FPGA controller | Three | Not provided | 94.4% |
proposed | One | TMS320F28335 | Three | <50 ms | 88.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guo, Y.; Wang, R.; Zhang, Y. Coordinated Control of Constant Output Voltage and Maximum Efficiency in Wireless Power Transfer Systems. Appl. Sci. 2024, 14, 6546. https://doi.org/10.3390/app14156546
Wang X, Guo Y, Wang R, Zhang Y. Coordinated Control of Constant Output Voltage and Maximum Efficiency in Wireless Power Transfer Systems. Applied Sciences. 2024; 14(15):6546. https://doi.org/10.3390/app14156546
Chicago/Turabian StyleWang, Xu, Yanjie Guo, Ruimin Wang, and Yajing Zhang. 2024. "Coordinated Control of Constant Output Voltage and Maximum Efficiency in Wireless Power Transfer Systems" Applied Sciences 14, no. 15: 6546. https://doi.org/10.3390/app14156546