Additively Manufactured Continuous Processing Reactor System for Producing Liquid-Based Pharmaceutical Substances
Abstract
:1. Introduction
2. Materials and Methods for Production of Pharmaceutical Ingredients
2.1. Materials and Methods
2.2. Continuous Processes 1 and 2
2.2.1. Synthesis of Compound A
Method of Reducing the Nitro Group in Metronidazole to Prepare Compound A
2.2.2. Continuous Process 1 (A→B→D)
Method of Preparing Schiff Base Compound B
Method of Preparing Compound D
2.2.3. Continuous Process 2 (A→C→E)
Method of Preparing Schiff Base Compound C
Method of Preparing Compound E
3. Design and Additive Manufacturing Process and Integration of Reactor System
3.1. Design of the Reactor System
3.2. Manufacturing of the Reactor Components
4. Chemical Processes in the AM-Based Reactor System
Dependence of Product Yields on the Reaction Time and Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adamo, A.; Beingessner, R.L.; Behnam, M.; Chen, J.; Jamison, T.F.; Jensen, K.F.; Monbaliu, J.-C.M.; Myerson, A.S.; Revalor, E.M.; Snead, D.R.; et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 2016, 352, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mao, Q.; Li, X.; Yin, J.; Wang, Y.; Fu, J.; Huang, Y. High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Addit. Manuf. 2019, 30, 100889. [Google Scholar] [CrossRef]
- Domokos, A.; Nagy, B.; Szilágyi, B.; Marosi, G.; Nagy, Z.K. Integrated Continuous Pharmaceutical Technologies—A Review. Org. Process. Res. Dev. 2021, 25, 721–739. [Google Scholar] [CrossRef]
- Goole, J.; Amighi, K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm. 2016, 499, 376–394. [Google Scholar] [CrossRef] [PubMed]
- Vigato, P.A.; Tamburini, S. The challenge of cyclic and acyclic schiff bases and related derivatives. Coord. Chem. Rev. 2004, 248, 1717–2128. [Google Scholar] [CrossRef]
- Nawaz Shariff, S.; Saravu, S.; Ramakrishna, D. Schiff Base Complexes for Catalytic Application. In Schiff Base in Organic, Inorganic and Physical Chemistry; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Mahdy, A.R.E.; Abu Ali, O.A.; Serag, W.M.; Fayad, E.; Elshaarawy, R.F.; Gad, E.M. Synthesis, characterization, and biological activity of Co(II) and Zn(II) complexes of imidazoles-based azo-functionalized Schiff bases. J. Mol. Struct. 2022, 1259, 132726. [Google Scholar] [CrossRef]
- Pradeep, S.D.; Gopalakrishnan, A.K.; Manoharan, D.K.; Soumya, R.S.; Gopalan, R.K.; Mohanan, P.V. Isatin derived novel Schiff bases: An efficient pharmacophore for versatile biological applications. J. Mol. Struct. 2023, 1271, 134121. [Google Scholar] [CrossRef]
- Boulechfar, C.; Ferkous, H.; Delimi, A.; Djedouani, A.; Kahlouche, A.; Boublia, A.; Darwish, A.S.; Lemaoui, T.; Verma, R.; Benguerba, Y. Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun. 2023, 150, 110451. [Google Scholar] [CrossRef]
- Buldurun, K.; Turan, N.; Altun, A.; Çolak, N.; Özdemir, I. Synthesis, characterization and catalytic activities of some Schiff base ligands and Pd(II) complexes containing substituted groups. J. Mol. Struct. 2024, 1309, 138185. [Google Scholar] [CrossRef]
- Emami, L.; Khabnadideh, S.; Faghih, Z.; Solhjoo, A.; Malek, S.; Mohammadian, A.; Divar, M.; Faghih, Z. Novel N-substituted isatin-ampyrone Schiff bases as a new class of antiproliferative agents: Design, synthesis, molecular modeling and in vitro cytotoxic activity. J. Heterocycl. Chem. 2022, 59, 1144–1159. [Google Scholar] [CrossRef]
- Oladipo, S.D.; Luckay, R.C.; Olofinsan, K.A.; Obakachi, V.A.; Zamisa, S.J.; Adeleke, A.A.; Badeji, A.A.; Ogundare, S.A.; George, B.P. Antidiabetes and antioxidant potential of Schiff bases derived from 2-naphthaldehye and substituted aromatic amines: Synthesis, crystal structure, Hirshfeld surface analysis, computational, and invitro studies. Heliyon 2024, 10, e23174. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, A.A.; Kumar, U.; Jain, P.; Sharma, A.K.; Kant, C.; Faizi, S.H. Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal. J. Mol. Struct. 2023, 1294, 136346. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, H.; Hussain, R.; Khan, Y.; Khan, M.U.; Khan, M.; Sattar, A.; Khan, M.S. Synthesis, in vitro bio-evaluation, and molecular docking study of thiosemicarbazone-based isatin/bis-Schiff base hybrid analogues as effective cholinesterase inhibitors. J. Mol. Struct. 2023, 1284, 135351. [Google Scholar] [CrossRef]
- Cui, J.; Wang, Y.; Liang, X.; Zhao, J.; Ji, Y.; Tan, W.; Dong, F.; Guo, Z. Synthesis, antimicrobial activity, antioxidant activity and molecular docking of novel chitosan derivatives containing glycine Schiff bases as potential succinate dehydrogenase inhibitors. Int. J. Biol. Macromol. 2024, 267, 131407. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.; Odunayo, A.; Tolbert, M.K. The use of metronidazole in acute diarrhea in dogs: A narrative review. Top. Companion Anim. Med. 2023, 56–57, 100824. [Google Scholar] [CrossRef] [PubMed]
- Wuersching, S.N.; Huth, K.C.; Hickel, R.; Kollmuss, M. Targeting antibiotic tolerance in anaerobic biofilms associated with oral diseases: Human antimicrobial peptides LL-37 and lactoferricin enhance the antibiotic efficacy of amoxicillin, clindamycin and metronidazole. Anaerobe 2021, 71, 102439. [Google Scholar] [CrossRef] [PubMed]
- Maithani, D.; Sharma, A.; Gangola, S.; Chaudhary, P.; Bhatt, P. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiol. Res. 2022, 261, 127053. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Manske, C.; Randl, S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. 2022, 33, 100562. [Google Scholar] [CrossRef]
- Sun, H.-T.; Pan, B.; Zhang, S.-S.; Su, X.-B.; Xu, M.-R.; Hu, Z.-Q.; Xu, G.-Z. Continuous flow synthesis of C-acyloxy-substituted aziridines in microchannel reactor: Addition of carboxylic acids to 2-methylenaziridines. Tetrahedron Lett. 2024, 138, 154982. [Google Scholar] [CrossRef]
- Montaner, M.B.; Hilton, S.T. Recent advances in 3D printing for continuous flow chemistry. Curr. Opin. Green Sustain. Chem. 2024, 47, 100923. [Google Scholar] [CrossRef]
- Bishnoi, M.; Mody, N.; Jain, A. Additive manufacturing strategies for personalized drug delivery systems and medical devices. In Medical Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2024; pp. 619–647. [Google Scholar] [CrossRef]
- Lakkala, P.; Munnangi, S.R.; Bandari, S.; Repka, M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int. J. Pharm. X 2023, 5, 100159. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.C.; Valotta, A.; Hiebler, K.; Soritz, S.; Gavric, K.; Grabner, B.; Gruber-Woelfler, H. 3D printed reactors for synthesis of active pharmaceutical ingredients in continuous flow. Org. Process. Res. Dev. 2020, 24, 2197–2207. [Google Scholar] [CrossRef]
- Dhahir, A.A.; Hussein, M.S.; Mohammed, M.O. Synthesis and antibacterial evaluation of new derivatives of metronidazole. Int. J. Pharm. Res. 2020, 12, 1210. [Google Scholar] [CrossRef]
- Bayati, Z.; Amidi, S.; Shahabimehr, M.; Alebouyeh, M.; Mahboubi, A.; Tabatabai, S.A. Synthesis and biological evaluation of new nitroimidazole derivatives as anti-Helicobacter pylori agents against metronidazole-resistant strains. Iran. J. Pharm. Res. 2023, 22, e137969. [Google Scholar] [CrossRef]
- Sagandira, C.R.; Siyawamwaya, M.; Watts, P. 3D printing and continuous flow chemistry technology to advance pharmaceutical manufacturing in developing countries. Arab. J. Chem. 2020, 13, 7886–7908. [Google Scholar] [CrossRef]
Compound Name | Group | Shift | Compound Name | Group | Shift |
---|---|---|---|---|---|
MNZ (C6H9N3O3) | NH2- | 6.27 | C (C20H19N3O) | CH2- (of 9,10-dihydroanthracene) | 4.35 |
HO- | 4.96 | D (C34H36N6O6S2) | CH3- (bonded to benzene ring) | 2.43 | |
CH3- | 2.53 | CH3- (bonded to benzene ring) | 2.53 | ||
A (C6H11N3O) | HO- | 4.96 | CH- (of a benzene ring) | 7.45, 7.75 | |
CH3- | 2.53 | E (C27H25N3O3S) | CH3- (bonded to benzene ring) | 2.43 | |
B (C20H19N3O) | CH- (of the benzene ring) | 8.02 | CH3- (of a benzene ring) | 2.53 | |
H- | 8.99 | CH- (of a benzene ring) | 7.45, 7.75 |
Compound Name | I.R. (KBr) cm−1 | ||||
---|---|---|---|---|---|
υ (O-H) | υ (C-H) Arom. and Aliph. | υ (C=N) | υ (C-O) | Others | |
Metronidazole (C6H9N3O3) | CH2: 1466–1452 CH3: 1387 CH: 711 | 1070 | 1275–1096 | NO2: 1536, 1369 C=C: 1600 C=N: 1523 N=O: 1479, 1356 (asym) N=O: 1371 (sym) C-C: 1425–1426 | |
A (C6H11N3O) | - | 2950.07 | 1537 | 1075 | NH2: 3590–3518 |
B (C20H19N3O) | 3448 | 3100 2886 | 1620 | 1199 | |
C (C20H19N3O) | 3454 | 2866 | 1650 | 1199 | |
D (C34H36N6O6S2) | - | 3076 2953, 2916 | 1262 | S=O2: 1378 (asym) S=O2: 1173 (sym) | |
E (C27H25N3O3S) | - | 3075 2950, 2911 | 1262 | S=O2: 1382 (asym) S=O2: 1170 (sym) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khabiyev, A.; Dilibal, S.; Mussulmanbekova, A.; Kanapiya, M.; Kerimkulov, D. Additively Manufactured Continuous Processing Reactor System for Producing Liquid-Based Pharmaceutical Substances. Appl. Sci. 2024, 14, 6853. https://doi.org/10.3390/app14166853
Khabiyev A, Dilibal S, Mussulmanbekova A, Kanapiya M, Kerimkulov D. Additively Manufactured Continuous Processing Reactor System for Producing Liquid-Based Pharmaceutical Substances. Applied Sciences. 2024; 14(16):6853. https://doi.org/10.3390/app14166853
Chicago/Turabian StyleKhabiyev, Alibek, Savas Dilibal, Assel Mussulmanbekova, Magzhan Kanapiya, and Daniyar Kerimkulov. 2024. "Additively Manufactured Continuous Processing Reactor System for Producing Liquid-Based Pharmaceutical Substances" Applied Sciences 14, no. 16: 6853. https://doi.org/10.3390/app14166853