Kinematic IMU-Based Assessment of Postural Transitions: A Preliminary Application in Clinical Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Acquisition Protocol
- -
- Sit to supine (SiSu). From a sitting position at the bed border, with their hands on their thighs, the subject is required to lay supine.
- -
- Supine to sit (SuSi). The subject is required to perform a transition from lying supine, with their hands by their sides, to a sitting position at the bed border. The subject is free to move their arms to perform a natural transition.
- -
- Sit to stand (SiSt). Starting from a sitting position at rest, with their hands on their thighs, the subject is required to perform a transition to a standing position.
- -
- Stand to sit (StSi). From a standing position, the subject is required to perform a transition to a sitting position.
- -
- Roll (Roll). From a supine position, the subject is required to roll onto their left side until resting on their left shoulder, return to the supine position, repeat the rotation in the opposite direction until resting on their right shoulder, and return to the supine position.
2.3. Experimental Setup
2.4. Data Analysis
2.5. Functional Parameters
- -
- Total time TT: this parameter quantifies the time actually elapsed from the beginning to the end of the movement, detected according to a repeatable strategy. TT also represents the normalizing factor for all the other parameters.
- -
- Smoothness J: This parameter investigates how much the movement is disrupted, assessing the evolution of the acceleration in time in terms of jerk.
- -
- Fluency Fl: This parameter quantifies the acceleration due to the bodily motion during the movement without considering the acceleration contributions generated by the actual focal movement, described by ag.
- -
- Movement velocity RMSG: This parameter combines the RMS values of the three components of the angular velocity measured during the movement.
- -
- Jerk root mean square RMSj: This parameter computes the RMS value of the jerk signal between the start and stop instants of the movement.
- -
- Maximum jerk variation Δj: This parameter measures the difference between the maximum and minimum values assumed by the jerk signal during the movement.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- i.
- The proposed experimental set-up, with a single IMU, allows investigating all of the proposed PTs and enables us to distinguish a population of healthy subjects from a population of subjects with pathological or abnormal changes in movement.
- ii.
- The set of the six evaluated parameters proposes rigorous indicators of the movement kinematics and allows task-independent descriptions of movement. The three parameters smoothness J, fluency Fl, and velocity RMSG revealed lower values of correlation with the other parameters, especially total time TT.
- iii.
- The combination of the experimental setup, data processing, and adopted functional parameters may represent a promising framework toward the implementation of strategies for the continuous monitoring of subjects. This evaluation paradigm could, for instance, allow understanding, through machine learning processes, which postural transitions were performed by a subject and in what manner, thus premising, for example, domiciliary monitoring of subjects at risk of falls.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Data Samples
Appendix A.2. Correlation Analyses
Roll, H | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.752 | 0.520 | −0.262 | −0.371 | −0.496 | −0.262 | −0.347 | −0.429 | |
Smoothness | 1.000 | 0.926 | −0.418 | 1.000 | 0.941 | −0.370 | 0.989 | 0.929 | |
Fluency | 1.000 | −0.511 | 1.000 | −0.352 | 0.919 | 0.880 | |||
Velocity RMS | 1.000 | 1.000 | −0.338 | −0.250 | |||||
Jerk RMS RMSj | 1.000 | 0.961 | |||||||
Max Jerk Variation Δj | 1.000 |
Roll, P | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.918 | 0.791 | 0.077 | −0.522 | −0.588 | 0.077 | −0.434 | −0.335 | |
Smoothness | 1.000 | 0.929 | 0.028 | 1.000 | 0.967 | −0.374 | 0.984 | 0.874 | |
Fluency | 1.000 | −0.077 | 1.000 | −0.341 | 0.967 | 0.885 | |||
Velocity RMS | 1.000 | 1.000 | −0.324 | −0.099 | |||||
Jerk RMS RMSj | 1.000 | 0.901 | |||||||
Max Jerk Variation Δj | 1.000 |
SiSt, H | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.628 | 0.533 | 0.393 | −0.065 | −0.020 | 0.393 | −0.073 | −0.101 | |
Smoothness | 1.000 | 0.962 | 0.439 | 1.000 | 0.953 | 0.180 | 0.995 | 0.940 | |
Fluency | 1.000 | 0.379 | 1.000 | 0.242 | 0.956 | 0.875 | |||
Velocity RMS | 1.000 | 1.000 | 0.161 | 0.235 | |||||
Jerk RMS RMSj | 1.000 | 0.946 | |||||||
Max Jerk Variation Δj | 1.000 |
SiSt, P | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.764 | 0.505 | 0.269 | −0.115 | −0.313 | 0.269 | -0.088 | 0.088 | |
Smoothness | 1.000 | 0.885 | 0.066 | 1.000 | 0.896 | −0.379 | 0.962 | 0.868 | |
Fluency | 1.000 | 0.055 | 1.000 | −0.308 | 0.923 | 0.824 | |||
Velocity RMS | 1.000 | 1.000 | −0.291 | −0.209 | |||||
Jerk RMS RMSj | 1.000 | 0.934 | |||||||
Max Jerk Variation Δj | 1.000 |
StSi, H | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.819 | 0.750 | 0.256 | −0.163 | −0.224 | 0.254 | −0.056 | 0.129 | |
Smoothness | 1.000 | 0.953 | 0.230 | 1.000 | 0.898 | −0.221 | 0.971 | 0.881 | |
Fluency | 1.000 | 0.144 | 1.000 | −0.242 | 0.845 | 0.702 | |||
Velocity RMS | 1.000 | 1.000 | −0.134 | −0.029 | |||||
Jerk RMS RMSj | 1.000 | 0.949 | |||||||
Max Jerk Variation Δj | 1.000 |
StSi, P | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.940 | 0.956 | 0.242 | −0.170 | −0.231 | 0.258 | 0.418 | 0.418 | |
Smoothness | 1.000 | 0.973 | 0.110 | 1.000 | 0.901 | −0.104 | 0.599 | 0.308 | |
Fluency | 1.000 | 0.159 | 1.000 | 0.050 | 0.407 | 0.082 | |||
Velocity RMS | 1.000 | 1.000 | 0.017 | −0.066 | |||||
Jerk RMS RMSj | 1.000 | 0.896 | |||||||
Max Jerk Variation Δj | 1.000 |
SiSu, H | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.848 | 0.792 | 0.014 | −0.125 | −0.125 | 0.033 | −0.192 | −0.099 | |
Smoothness | 1.000 | 0.979 | −0.063 | 1.000 | 0.934 | 0.134 | 0.929 | 0.672 | |
Fluency | 1.000 | 0.015 | 1.000 | 0.214 | 0.902 | 0.686 | |||
Velocity RMS | 1.000 | 1.000 | 0.126 | 0.143 | |||||
Jerk RMS RMSj | 1.000 | 0.847 | |||||||
Max Jerk Variation Δj | 1.000 |
SiSu, P | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.918 | 0.791 | 0.077 | −0.522 | −0.588 | 0.077 | −0.434 | −0.335 | |
Smoothness | 1.000 | 0.929 | 0.028 | 1.000 | 0.967 | −0.374 | 0.984 | 0.874 | |
Fluency | 1.000 | −0.077 | 1.000 | −0.341 | 0.967 | 0.885 | |||
Velocity RMS | 1.000 | 1.000 | −0.324 | −0.099 | |||||
Jerk RMS RMSj | 1.000 | 0.901 | |||||||
Max Jerk Variation Δj | 1.000 |
SuSi, H | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.752 | 0.520 | −0.262 | −0.371 | −0.496 | −0.262 | −0.347 | −0.429 | |
Smoothness | 1.000 | 0.926 | −0.418 | 1.000 | 0.941 | −0.370 | 0.989 | 0.929 | |
Fluency | 1.000 | −0.511 | 1.000 | −0.352 | 0.919 | 0.880 | |||
Velocity RMS | 1.000 | 1.000 | −0.338 | −0.250 | |||||
Jerk RMS RMSj | 1.000 | 0.961 | |||||||
Max Jerk Variation Δj | 1.000 |
SuSi, P | Traditional Definition (_B) | Adopted Definition | |||||||
---|---|---|---|---|---|---|---|---|---|
Functional Parameter | JB | FlB | RMSG_B | J | Fl | RMSG | RMSj | Δj | |
Total Time TT | 0.918 | 0.791 | 0.077 | −0.522 | −0.588 | 0.077 | −0.434 | −0.335 | |
Smoothness | 1.000 | 0.929 | 0.028 | 1.000 | 0.967 | −0.374 | 0.984 | 0.874 | |
Fluency | 1.000 | −0.077 | 1.000 | −0.341 | 0.967 | 0.885 | |||
Velocity RMS | 1.000 | 1.000 | −0.324 | −0.099 | |||||
Jerk RMS RMSj | 1.000 | 0.901 | |||||||
Max Jerk Variation Δj | 1.000 |
References
- Parvaneh, S.; Mohler, J.; Toosizadeh, N.; Grewal, G.S.; Najafi, B. Postural Transitions during Activities of Daily Living Could Identify Frailty Status: Application of Wearable Technology to Identify Frailty during Unsupervised Condition. Gerontology 2017, 63, 479–487. [Google Scholar] [CrossRef]
- Shanbhag, J.; Wolf, A.; Wechsler, I.; Fleischmann, S.; Winkler, J.; Leyendecker, S.; Eskofier, B.M.; Koelewijn, A.D.; Wartzack, S.; Miehling, J. Methods for integrating postural control into biomechanical human simulations: A systematic review. J. Neuroeng. Rehabil. 2023, 20, 111. [Google Scholar] [CrossRef]
- Atrsaei, A.; Dadashi, F.; Hansen, C.; Warmerdam, E.; Mariani, B.; Maetzler, W.; Aminian, K. Postural transitions detection and characterization in healthy and patient populations using a single waist sensor. J. Neuroeng. Rehabil. 2020, 17, 70. [Google Scholar] [CrossRef]
- Green, L.N.; Williams, K. Differences in Developmental Movement Patterns Used by Active Versus Sedentary Middle-aged Adults Coming from a Supine Position to Erect Stance. Phys. Ther. 1992, 72, 560–568. [Google Scholar] [CrossRef]
- Collen, F.M.; Wade, D.T.; Robb, G.F.; Bradshaw, C.M. The Rivermead Mobility Index: A further development of the Rivermead Motor Assessment. Int. Disabil. Stud. 1991, 13, 50–54. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- World Health Organization ICF: International Classification of Functioning, Disability and Health/World Health Organization; World Health Organization: Geneva, Switzerland, 2001.
- Papi, E.; Koh, W.S.; McGregor, A.H. Wearable technology for spine movement assessment: A systematic review. J. Biomech. 2017, 64, 186–197. [Google Scholar] [CrossRef]
- Camboim, B.D.; Elison, J.; Tavares, R.; Tavares, M.C.; Luis, J.; Barbosa, V. Posture monitoring in healthcare: A systematic mapping study and taxonomy. Med. Biol. Eng. Comput. 2023, 61, 1887–1899. [Google Scholar] [CrossRef]
- Liang, W.; Wang, F.; Fan, A.; Zhao, W.; Yao, W.; Yang, P. Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation. Sensors 2023, 23, 4229. [Google Scholar] [CrossRef]
- Vanmechelen, I.; Haberfehlner, H.; De Vleeschhauwer, J.; Van Wonterghem, E.; Feys, H.; Desloovere, K.; Aerts, J.M.; Monbaliu, E. Assessment of movement disorders using wearable sensors during upper limb tasks: A scoping review. Front. Robot. AI 2023, 9, 1068413. [Google Scholar] [CrossRef]
- Martino Cinnera, A.; Picerno, P.; Bisirri, A.; Koch, G.; Morone, G.; Vannozzi, G. Upper limb assessment with inertial measurement units according to the international classification of functioning in stroke: A systematic review and correlation meta-analysis. Top. Stroke Rehabil. 2023, 31, 66–85. [Google Scholar] [CrossRef]
- Godfrey, A.; Conway, R.; Meagher, D.; ÓLaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386. [Google Scholar] [CrossRef]
- Herrero, P.; Ríos-Asín, I.; Lapuente-Hernández, D.; Pérez, L.; Calvo, S.; Gil-Calvo, M. The Use of Sensors to Prevent, Predict Transition to Chronic and Personalize Treatment of Low Back Pain: A Systematic Review. Sensors 2023, 23, 7695. [Google Scholar] [CrossRef]
- Anastasi, D.; Carpinella, I.; Gervasoni, E.; Matsuda, P.N.; Bovi, G.; Ferrarin, M.; Cattaneo, D. Instrumented Version of the Modified Dynamic Gait Index in Patients with Neurologic Disorders. PM&R 2019, 11, 1312–1319. [Google Scholar] [CrossRef]
- Solla, P.; Cugusi, L.; Bertoli, M.; Cereatti, A.; Della Croce, U.; Pani, D.; Fadda, L.; Cannas, A.; Marrosu, F.; Defazio, G.; et al. Sardinian Folk Dance for Individuals with Parkinson’s Disease: A Randomized Controlled Pilot Trial. J. Altern. Complement. Med. 2019, 25, 305–316. [Google Scholar] [CrossRef]
- Berner, K.; Cockcroft, J.; Louw, Q. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: A validity and reliability study. Biomed. Eng. Online 2020, 19, 57. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable inertial sensors to assess standing balance: A systematic review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef]
- Marques, J.B.; Auliffe, S.M.; Thomson, A.; Sideris, V.; Santiago, P.; Read, P.J. The use of wearable technology as an assessment tool to identify between-limb differences during functional tasks following ACL reconstruction. A scoping review. Phys. Ther. Sport 2022, 55, 1–11. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Buraschi, R.; Pollet, J.; Villafañe, J.H.; Piovanelli, B.; Negrini, S. Temporal and kinematic analyses of timed up and go test in chronic low back pain patients. Gait Posture 2022, 96, 137–142. [Google Scholar] [CrossRef]
- Pollet, J.; Buraschi, R.; Villafañe, J.H.; Piovanelli, B.; Negrini, S. Gait parameters assessed with inertial measurement unit during 6-minute walk test in people after stroke. Int. J. Rehabil. Res. 2021, 44, 358–363. [Google Scholar] [CrossRef]
- Marin, F.; Warmerdam, E.; Marin, Z.; Ben Mansour, K.; Maetzler, W.; Hansen, C. Scoring the Sit-to-Stand Performance of Parkinson’s Patients with a Single Wearable Sensor. Sensors 2022, 22, 8340. [Google Scholar] [CrossRef]
- Negrini, S.; Serpelloni, M.; Amici, C.; Gobbo, M.; Silvestro, C.; Buraschi, R.; Borboni, A.; Crovato, D.; Lopomo, N.F. Use of wearable inertial sensor in the assessment of Timed-Up-and-Go Test: Influence of device placement on temporal variable estimation. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Berlin/Heidelberg, Germany, 2017; Volume 192, pp. 310–317. [Google Scholar] [CrossRef]
- Bagala, F.; Klenk, J.; Cappello, A.; Chiari, L.; Becker, C.; Lindemann, U. Quantitative description of the lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 624–633. [Google Scholar] [CrossRef]
- Amici, C.; Ragni, F.; Tiboni, M.; Pollet, J.; Buraschi, R. Quantitative Kinematic Assessment of the Sit-to-Stand Transition using an IMU Sensor. In Proceedings of the 2021 24th International Conference on Mechatronics Technology, ICMT 2021, Singapore, 18–22 December 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Rucco, R.; Sorriso, A.; Liparoti, M.; Ferraioli, G.; Sorrentino, P.; Ambrosanio, M.; Baselice, F. Correction: Rucco, R.; et al. Type and Location of Wearable Sensors for Monitoring Falls during Static and Dynamic Tasks in Healthy Elderly: A Review. Sensors 2018, 18, 2462. [Google Scholar] [CrossRef]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–167. [Google Scholar] [CrossRef]
- Amici, C.; Ragni, F.; Piovanelli, B.; Buraschi, R.; Faglia, R.; Negrini, S.; Pollet, J. Quantitative analysis of voluntary movement and anticipatory postural adjustments: A functional approach. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1660–1669. [Google Scholar] [CrossRef]
- Sadeh, S.; Gobert, D.; Shen, K.-H.; Foroughi, F.; Hsiao, H.-Y. Biomechanical and neuromuscular control characteristics of sit-to-stand transfer in young and older adults: A systematic review with implications for balance regulation mechanisms. Clin. Biomech. 2023, 109, 106068. [Google Scholar] [CrossRef]
- Pourahmadi, M.R.; Ebrahimi Takamjani, I.; Jaberzadeh, S.; Sarrafzadeh, J.; Sanjari, M.A.; Bagheri, R.; Taghipour, M. Kinematics of the Spine During Sit-to-Stand Movement Using Motion Analysis Systems: A Systematic Review of Literature. J. Sport Rehabil. 2019, 28, 77–93. [Google Scholar] [CrossRef]
- Ford-Smith, C.D.; VanSant, A.F. Age Differences in Movement Patterns Used to Rise from a Bed in Subjects in the Third Through Fifth Decades of Age. Phys. Ther. 1993, 73, 300–309. [Google Scholar] [CrossRef]
- Shields, R.K.; Enloe, L.J.; Evans, R.E.; Smith, K.B.; Steckel, S.D.; Goldsmith, C.H. Reliability, Validity, and Responsiveness of Functional Tests in Patients With Total Joint Replacement. Phys. Ther. 1995, 75, 169–176. [Google Scholar] [CrossRef]
- Reicherz, A.; Brach, M.; Cerny, J.; Nicolai, S.; Becker, C.; Lindemann, U. Development of the Lie-to-Sit-to-Stand-to-Walk Transfer (LSSWT) test for early mobilization in older patients in geriatric rehabilitation. Z. Gerontol. Geriatr. 2011, 44, 262–267. [Google Scholar] [CrossRef]
Parameter | Adopted Definition | Traditional Definition (_B) | Measurement Unit | |
---|---|---|---|---|
Adopted Definition | Traditional Definition | |||
Total Time (TT) | TT = Stop − Start | [s] | ||
Smoothness (J) | [m/s4] | [m] | ||
Fluency (Fl) | [m/s3] | [m] | ||
RMSG | [°/s] | |||
RMSj | - | [m/s4] | - | |
Max. Jerk Variation (Δj) | - | [m/s4] | - |
Very Weak | Weak | Moderate | Strong | Very Strong | |
---|---|---|---|---|---|
Correlation | 0.000–0.199 | 0.200–0.399 | 0.400–0.599 | 0.600–0.799 | 0.800–1.000 |
Color Convention |
Sample | Gender (Males, Females) | Age [Years] | Height [m] | Weight [kg] |
---|---|---|---|---|
Healthy | 15, 5 | 23.3 ± 2.2 | 1.77 ± 0.08 | 73.0 ± 12.4 |
Pathological | 10, 3 | 65.8 ± 16.6 | 1.70 ± 0.06 | 71.4 ± 8.5 |
Traditional Definition (_B) | Adopted Definition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PT | Condition | Total Time TT [s] | Smoothness JB [m] | Fluency FlB [m] | Velocity RMS RMSG_B [deg/s] | Smoothness J [m/s4] | Fluency Fl [m/s3] | Velocity RMS RMSG [deg/s] | Jerk RMS RMSj [m/s4] | Max Jerk Variation Δj [m/s4] |
Roll | Healthy | 6.69 ± 0.83 | 14.41 ± 0.42 | 9.53 ± 0.32 | 52.14 ± 14.04 | 987.90 ± 298.64 | 49.60 ± 14.25 | 52.12 ± 15.03 | 7.13 ± 2.37 | 59.02 ± 28.55 |
Pathological | 11.38 ± 3.74 | 15.89 ± 1.11 | 10.49 ± 0.80 | 63.72 ± 12.84 | 634.17 ± 276.08 | 31.37 ± 14.44 | 63.70 ± 12.84 | 4.60 ± 2.04 | 41.22 ± 16.65 | |
SuSi | Healthy | 3.44 ± 0.42 | 11.80 ± 0.48 | 7.79 ± 0.36 | 60.71 ± 20.16 | 1052.85 ± 288.64 | 65.28 ± 18.29 | 60.67 ± 20.15 | 7.40 ± 2.31 | 46.31 ± 16.41 |
Pathological | 5.26 ± 1.39 | 13.05 ± 1.03 | 8.58 ± 0.79 | 75.67 ± 23.08 | 779.13 ± 312.50 | 45.48 ± 19.46 | 75.63 ± 23.07 | 5.48 ± 2.47 | 38.75 ± 20.93 | |
SiSu | Healthy | 3.14 ± 0.42 | 11.80 ± 0.60 | 7.73 ± 0.46 | 60.46 ± 35.79 | 1546.46 ± 384.68 | 81.06 ± 20.65 | 60.41 ± 35.77 | 12.40 ± 3.96 | 92.55 ± 39.77 |
Pathological | 4.58 ± 1.57 | 12.68 ± 1.01 | 8.32 ± 0.72 | 60.04 ± 14.42 | 990.67 ± 461.50 | 55.19 ± 24.62 | 60.00 ± 14.41 | 7.63 ± 3.98 | 60.06 ± 36.40 | |
SiSt | Healthy | 3.16 ± 0.18 | 11.51 ± 0.33 | 8.02 ± 0.32 | 87.40 ± 34.41 | 1054.39 ± 263.78 | 101.59 ± 29.36 | 87.33 ± 34.38 | 8.75 ± 2.59 | 54.17 ± 17.77 |
Pathological | 3.44 ± 0.69 | 11.55 ± 0.63 | 7.73 ± 0.50 | 103.10 ± 31.98 | 855.32 ± 233.88 | 64.74 ± 23.40 | 103.03 ± 31.96 | 6.66 ± 2.37 | 42.69 ± 17.85 | |
StSi | Healthy | 3.01 ± 2.29 | 11.26 ± 0.43 | 7.67 ± 0.33 | 86.30 ± 30.38 | 1018.24 ± 276.98 | 82.19 ± 18.95 | 86.03 ± 30.38 | 8.28 ± 2.96 | 53.87 ± 26.69 |
Pathological | 3.62 ± 0.89 | 11.62 ± 0.85 | 7.62 ± 0.60 | 104.80 ± 48.24 | 797.66 ± 244.94 | 51.42 ± 16.34 | 105.12 ± 48.74 | 6.71 ± 2.33 | 51.19 ± 22.45 |
Method | Functional Parameter | Roll | SiSt | StSi | SiSu | SuSi | |
---|---|---|---|---|---|---|---|
Total Time | TT | <0.001 * | 0.376 | 0.019 * | <0.001 * | <0.001 * | |
Traditional Definition (_B) | Smoothness | JB | <0.001 * | 0.754 | 0.167 | 0.009 * | <0.001 * |
Fluency | FlB | <0.001 * | 0.053 | 0.985 | 0.009 * | <0.001 * | |
Velocity RMS | RMSG_B | 0.034 * | 0.094 | 0.311 | 0.217 | 0.034 * | |
Adopted Definition | Smoothness | J | 0.005 * | 0.053 | 0.010 * | 0.001 * | 0.005 * |
Fluency | Fl | 0.003 * | 0.001 * | <0.001 * | 0.004 * | 0.003 * | |
Velocity RMS | RMSG | 0.034 * | 0.094 | 0.277 | 0.217 | 0.034 * | |
Jerk RMS | RMSj | 0.008 * | 0.021 * | 0.053 | 0.002 * | 0.008 * | |
Max Jerk Variation | Δj | 0.049 * | 0.068 | 0.985 | 0.019 * | 0.049 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amici, C.; Pollet, J.; Ranica, G.; Bussola, R.; Buraschi, R. Kinematic IMU-Based Assessment of Postural Transitions: A Preliminary Application in Clinical Context. Appl. Sci. 2024, 14, 7011. https://doi.org/10.3390/app14167011
Amici C, Pollet J, Ranica G, Bussola R, Buraschi R. Kinematic IMU-Based Assessment of Postural Transitions: A Preliminary Application in Clinical Context. Applied Sciences. 2024; 14(16):7011. https://doi.org/10.3390/app14167011
Chicago/Turabian StyleAmici, Cinzia, Joel Pollet, Giorgia Ranica, Roberto Bussola, and Riccardo Buraschi. 2024. "Kinematic IMU-Based Assessment of Postural Transitions: A Preliminary Application in Clinical Context" Applied Sciences 14, no. 16: 7011. https://doi.org/10.3390/app14167011