Derivation of Analytical Equations for the Fundamental Period of Framed Structures Using Machine Learning and SHAP Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Data Preprocessing
2.3. Machine Learning Modeling
2.4. Shapley Additive Explanations (SHAP)
3. Results
3.1. Machine Learning Regression
3.2. Regression Using SHAP
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RC | Reinforced Concrete |
ML | Machine Learning |
SHAP | Shapley Additive Explanations |
FUP | Fundamental Period |
RCB_MI | Reinforced Concrete Building with Masonry Infills |
ANN | Artificial Neural Network |
LIME | Local Interpretable Model-Agnostic Explanations |
PDP | Partial Dependence Plot |
References
- Penelis, G.; Kappos, A. Earthquake-Rresistant Concrete Structures; E and FN Spon: London, UK, 1997. [Google Scholar]
- Elnashai, A.S.; Di Sarno, L. Fundamentals of Earthquake Engineering: From Source to Fragility; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Theodoulidis, N.; Karakostas, C.; Lekidis, V.; Makra, K.; Margaris, B.; Morfidis, K.; Papaioannou, C.; Rovithis, E.; Salonikios, T.; Savvaidis, A. The Cephalonia, Greece, January 26 (M6. 1) and February 3, 2014 (M6. 0) earthquakes: Near-fault ground motion and effects on soil and structures. Bull. Earthq. Eng. 2016, 14, 1–38. [Google Scholar] [CrossRef]
- Eleftheriadou, A.; Karabinis, A.; Baltzopoulou, A. Fundamental Period versus Seismic Damage for Reinforced Concrete Buildings. In Proceedings of the 15th World Conference on Earthquake Engineering 2012 (15WCEE), Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Bathe, K.J. Finite Element Procedures; Prentice Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bhatt, P. Programming the Dynamic Analysis of Structures; Spon Press: London, UK, 2002. [Google Scholar]
- EN 1998-1:2005; Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- NZS3101; The Design of Concrete Structures. Technical Report; Standards New Zealand: Wellington, New Zealand, 2006.
- IS 1893-1; Criteria for Earthquake Resistant Design of Structures-Part 1: General Provisions and Buildings. Technical Report; Bureau of Indian Standards: New Delhi, India, 2002.
- ECP-201; Egyptian Code for Computation of Loads and Forces in Structural and Building Works. Technical Report; Housing and Building Research Center: Cairo, Egypt, 2012.
- AFPS. Recommendations for the Redaction of Rules Relative to the Structures and Installation Built in Regions Prone to Earthquakes; Technical Report; France Association of Earthquake Engineering: Paris, France, 1990. [Google Scholar]
- National Research Council. The National Building Code (NBC); Technical Report; National Research Council: Ottawa, ON, Canada, 1995.
- NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings; Technical Report; Building Seismic Safety Council: Washington, DC, USA, 1994.
- Uniform Building Code; Technical Report; International Conference of Building Officials: Whittier, CA, USA, 1997.
- Tentative Provisions for the Development of Seismic Regulations for Buildings; Technical Report; Applied Technology Council: Palo Alto, CA, USA, 1978.
- Minimum Design Loads for Buildings and Other Structures; Technical Report; American Society of Civil Engineers: Reston, VA, USA, 2010.
- Building Standard Law of Japan; Technical Report; Building Center of Japan: Tokyo, Japan, 2016.
- Recommended Lateral Force Requirements and Commentary; Technical Report; Structural Engineers Association of California: Sacramento, CA, USA, 1999.
- Crawford, R.; Ward, H.S. Determination of the natural periods of buildings. Bull. Seismol. Soc. Am. 1964, 54, 1743–1756. [Google Scholar] [CrossRef]
- Bertero, V.V. Fundamental Period of Reinforced Concrete Moment-Resisting Frame Structures; Number 87; John A. Blume Earthquake Engineering Center: Stanford, CA, USA, 1988. [Google Scholar]
- Goel, R.K.; Chopra, A.K. Period formulas for moment-resisting frame buildings. J. Struct. Eng. 1997, 123, 1454–1461. [Google Scholar] [CrossRef]
- Goel, R.K.; Chopra, A.K. Period formulas for concrete shear wall buildings. J. Struct. Eng. 1998, 124, 426–433. [Google Scholar] [CrossRef]
- Balkaya, C.; Kalkan, E. Estimation of fundamental periods of shear-wall dominant building structures. Earthq. Eng. Struct. Dyn. 2003, 32, 985–998. [Google Scholar] [CrossRef]
- Hong, L.L.; Hwang, W.L. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthq. Eng. Struct. Dyn. 2000, 29, 327–337. [Google Scholar] [CrossRef]
- Verderame, G.M.; Iervolino, I.; Manfredi, G. Elastic period of sub-standard reinforced concrete moment resisting frame buildings. Bull. Earthq. Eng. 2010, 8, 955–972. [Google Scholar] [CrossRef]
- Chiauzzi, L.; Masi, A.; Mucciarelli, M.; Cassidy, J.; Kutyn, K.; Traber, J.; Ventura, C.; Yao, F. Estimate of fundamental period of reinforced concrete buildings: Code provisions vs. experimental measures in Victoria and Vancouver (BC, Canada). In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012; Volume 3033. [Google Scholar]
- Salama, M.I. Estimation of period of vibration for concrete moment-resisting frame buildings. HBRC J. 2015, 11, 16–21. [Google Scholar] [CrossRef]
- Hadzima-Nyarko, M.; Morić, D.; Draganić, H.; Štefić, T. Comparison of fundamental periods of reinforced shear wall dominant building models with empirical expressions. Teh. Vjesn. 2015, 22, 685–694. [Google Scholar] [CrossRef]
- El-saad, M.N.A.; Salama, M.I. Estimation of period of vibration for concrete shear wall buildings. HBRC J. 2017, 13, 286–290. [Google Scholar] [CrossRef]
- Badkoubeh, A.; Massumi, A. Fundamental period of vibration for seismic design of concrete shear wall buildings. Sci. Iran. 2017, 24, 1010–1016. [Google Scholar] [CrossRef]
- Mohamed, A.N.; El Kashif, K.F.; Salem, H.M. An investigation of the fundamental period of vibration for moment resisting concrete frames. Civ. Eng. J. 2019, 5, 2626–2642. [Google Scholar] [CrossRef]
- Shatnawi, A.S.; Al-Beddawe, E.H.; Musmar, M.A. Estimation of fundamental natural period of vibration for reinforced concrete shear walls systems. Earthq. Struct. 2019, 16, 295–310. [Google Scholar]
- Alrudaini, T. Estimating vibration period of reinforced concrete moment resisting frame buildings. Res. Eng. Struct. Mater. 2023, 9, 1417–1432. [Google Scholar] [CrossRef]
- Dominguez Morales, M. Fundamental Period of Vibration for Reinforced Concrete Buildings; University of Ottawa: Ottawa, ON, Canada, 2000. [Google Scholar]
- Amanat, K.M.; Hoque, E. A rationale for determining the natural period of RC building frames having infill. Eng. Struct. 2006, 28, 495–502. [Google Scholar] [CrossRef]
- Kwon, O.S.; Kim, E.S. Evaluation of building period formulas for seismic design. Earthq. Eng. Struct. Dyn. 2010, 39, 1569–1583. [Google Scholar] [CrossRef]
- Crowley, H.; Pinho, R. Revisiting Eurocode 8 formulae for periods of vibration and their employment in linear seismic analysis. Earthq. Eng. Struct. Dyn. 2010, 39, 223–235. [Google Scholar] [CrossRef]
- Ricci, P.; Verderame, G.M.; Manfredi, G. Analytical investigation of elastic period of infilled RC MRF buildings. Eng. Struct. 2011, 33, 308–319. [Google Scholar] [CrossRef]
- Asteris, P.G.; Repapis, C.C.; Cavaleri, L.; Sarhosis, V.; Athanasopoulou, A. On the fundamental period of infilled RC frame buildings. Struct. Eng. Mech. 2015, 54, 1175–1200. [Google Scholar] [CrossRef]
- Asteris, P.G.; Repapis, C.C.; Tsaris, A.K.; Di Trapani, F.; Cavaleri, L. Parameters affecting the fundamental period of infilled RC frame structures. Earthq. Struct. 2015, 9, 999–1028. [Google Scholar] [CrossRef]
- Perrone, D.; Leone, M.; Aiello, M.A. Evaluation of the infill influence on the elastic period of existing RC frames. Eng. Struct. 2016, 123, 419–433. [Google Scholar] [CrossRef]
- Asteris, P.G.; Repapis, C.C.; Repapi, E.V.; Cavaleri, L. Fundamental period of infilled reinforced concrete frame structures. Struct. Infrastruct. Eng. 2017, 13, 929–941. [Google Scholar] [CrossRef]
- Al-Balhawi, A.; Zhang, B. Investigations of elastic vibration periods of reinforced concrete moment-resisting frame systems with various infill walls. Eng. Struct. 2017, 151, 173–187. [Google Scholar] [CrossRef]
- Ruggieri, S.; Fiore, A.; Uva, G. A new approach to predict the fundamental period of vibration for newly-designed reinforced concrete buildings. J. Earthq. Eng. 2022, 26, 6943–6968. [Google Scholar] [CrossRef]
- Harirchian, E.; Hosseini, S.E.A.; Jadhav, K.; Kumari, V.; Rasulzade, S.; Işık, E.; Wasif, M.; Lahmer, T. A review on application of soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings. J. Build. Eng. 2021, 43, 102536. [Google Scholar] [CrossRef]
- Xie, Y.; Ebad Sichani, M.; Padgett, J.E.; DesRoches, R. The promise of implementing machine learning in earthquake engineering: A state-of-the-art review. Earthq. Spectra 2020, 36, 1769–1801. [Google Scholar] [CrossRef]
- Sun, H.; Burton, H.V.; Huang, H. Machine learning applications for building structural design and performance assessment: State-of-the-art review. J. Build. Eng. 2021, 33, 101816. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A systematic review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S. Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art. In Proceedings of the Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 223–229. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Deka, P.C. A Primer on Machine Learning Applications in Civil Engineering; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Chatterjee, P.; Yazdani, M.; Fernández-Navarro, F.; Pérez-Rodríguez, J. Machine Learning Algorithms and Applications in Engineering; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Koutroumbas, K.; Theodoridis, S. Pattern Recognition, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Kose, M.M. Parameters affecting the fundamental period of RC buildings with infill walls. Eng. Struct. 2009, 31, 93–102. [Google Scholar] [CrossRef]
- Asteris, P.G. The FP4026 Research Database on the fundamental period of RC infilled frame structures. Data Brief 2016, 9, 704–709. [Google Scholar] [CrossRef]
- Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Di Trapani, F.; Karypidis, D.F. Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016, 2016, 5104907. [Google Scholar] [CrossRef] [PubMed]
- Asteris, P.G.; Nikoo, M. Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput. Appl. 2019, 31, 4837–4847. [Google Scholar] [CrossRef]
- Charalampakis, A.E.; Tsiatas, G.C.; Kotsiantis, S.B. Machine learning and nonlinear models for the estimation of fundamental period of vibration of masonry infilled RC frame structures. Eng. Struct. 2020, 216, 110765. [Google Scholar] [CrossRef]
- Somala, S.N.; Karthikeyan, K.; Mangalathu, S. Time period estimation of masonry infilled RC frames using machine learning techniques. Structures 2021, 34, 1560–1566. [Google Scholar] [CrossRef]
- Mirrashid, M.; Naderpour, H. Computational intelligence-based models for estimating the fundamental period of infilled reinforced concrete frames. J. Build. Eng. 2022, 46, 103456. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Yahiaoui, A.; Dorbani, S.; Yahiaoui, L. Machine learning techniques to predict the fundamental period of infilled reinforced concrete frame buildings. Structures 2023, 54, 918–927. [Google Scholar] [CrossRef]
- Thisovithan, P.; Aththanayake, H.; Meddage, D.; Ekanayake, I.; Rathnayake, U. A novel explainable AI-based approach to estimate the natural period of vibration of masonry infill reinforced concrete frame structures using different machine learning techniques. Results Eng. 2023, 19, 101388. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Seismosoft. SeismoStruct—A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures; Seismosoft: Lombardia, Italy, 2013. [Google Scholar]
- Crisafulli, F.J.; Carr, A.J. Proposed macro-model for the analysis of infilled frame structures. Bull. N. Z. Soc. Earthq. Eng. 2007, 40, 69–77. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent individualized feature attribution for tree ensembles. arXiv 2018, arXiv:1802.03888. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Shapley, L.S. Notes on the n-Person Game-II: The Value of an n-Person Game; RAND Corporation: Santa Monica, CA, USA, 1951. [Google Scholar]
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graph. Stat. 2015, 24, 44–65. [Google Scholar] [CrossRef]
Metric | Formula |
---|---|
MAE | |
RMSE | |
Log-Transformed | Original Space | |||
---|---|---|---|---|
Training | Test | Training | Test | |
MAE | 0.0487 | 0.0517 | 0.0524 | 0.0545 |
RMSE | 0.0645 | 0.0723 | 0.0856 | 0.0870 |
0.9943 | 0.9932 | 0.9879 | 0.9879 |
MAE | RMSE | ||||
---|---|---|---|---|---|
Feature | Fitted Curve | Training | Test | Training | Test |
Number of stories | 0.0593 | 0.0623 | 0.0763 | 0.0801 | |
0.0823 | 0.0837 | 0.1011 | 0.1045 | ||
0.0546 | 0.0575 | 0.0740 | 0.0797 | ||
Opening percentage | 0.0758 | 0.0778 | 0.0888 | 0.0914 | |
0.0725 | 0.0763 | 0.0916 | 0.0955 | ||
Length of spans | 0.0246 | 0.0308 | 0.0330 | 0.0441 | |
0.0358 | 0.0350 | 0.0420 | 0.0414 | ||
Wall stiffness | 0.0450 | 0.0439 | 0.0544 | 0.0533 | |
0.0431 | 0.0438 | 0.0535 | 0.0538 |
Log-Transformed | Original Space | |||||
---|---|---|---|---|---|---|
Training | Test | Full Dataset | Training | Test | Full Dataset | |
MAE | 0.1185 | 0.1217 | 0.1193 | 0.1174 | 0.1193 | 0.1179 |
RMSE | 0.1485 | 0.1515 | 0.1493 | 0.1725 | 0.1707 | 0.1721 |
0.9706 | 0.9681 | 0.9700 | 0.9522 | 0.9510 | 0.9520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampinis, I.; Morfidis, K.; Iliadis, L. Derivation of Analytical Equations for the Fundamental Period of Framed Structures Using Machine Learning and SHAP Values. Appl. Sci. 2024, 14, 9072. https://doi.org/10.3390/app14199072
Karampinis I, Morfidis K, Iliadis L. Derivation of Analytical Equations for the Fundamental Period of Framed Structures Using Machine Learning and SHAP Values. Applied Sciences. 2024; 14(19):9072. https://doi.org/10.3390/app14199072
Chicago/Turabian StyleKarampinis, Ioannis, Konstantinos Morfidis, and Lazaros Iliadis. 2024. "Derivation of Analytical Equations for the Fundamental Period of Framed Structures Using Machine Learning and SHAP Values" Applied Sciences 14, no. 19: 9072. https://doi.org/10.3390/app14199072