Recurrence Quantification Analysis Based Methodology in Automatic Aerobic Threshold Detection: Applicability and Accuracy across Age Groups, Exercise Protocols and Health Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exclusion Criteria
- (a)
- Insufficient consecutive HR data points (fewer than 150, corresponding to a test duration of 5 min)
- (b)
- Excessive difference (>10 beats per minute) between consecutive HR data points
- (c)
- HR values lower than the average of the preceding 10 data points within the time series
- (d)
- The presence of outliers in the HR time series is defined as values exceeding 4 standard deviations from the mean of that series.
2.3. Preprocessing
2.4. Data Cleaning
2.5. Gas Exchange Method (Gex Method) for AerT Detection
2.6. RQA-Based Method for AerT Automatic Detection
Automatic Detection Algorithm
- Data cleaning and preprocessing on HR and VO2 time series.
- The HR time series is divided into partially overlapping epochs of width = 100 points, shifted by 1 point, and for every epoch, RQA is performed, and DET values are calculated.
- The new DET time series is then analyzed to identify the most convex minima. After calculating the first and second derivatives, a point is considered a minimum if its second derivative is greater than or equal to the mean of the second derivative plus two times its standard deviation:
- 4.
- The AerT is identified by locating the most convex minimum of DET using the formula:
2.7. Statistics
3. Results
3.1. Variability of Heart Rate and Oxygen Consumption at Aerobic Threshold across Participant Groups
3.2. Comparative Analysis of Traditional and RQA-Based Methods in Assessing Aerobic Threshold
4. Discussion
Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Cardiopulmonary Tests
Appendix B
Data Cleaning
Appendix C
Recurrence Quantification Analysis
- Phase Space Reconstruction: the time series data is often reconstructed into a phase space to reveal the underlying dynamics. This is done using delay embedding techniques. Let’s supposed to have a time series x(t), where . The phase space can be reconstructed by creating a set of vectors Y(i), where each vector is given by:
- Constructing the Recurrence Matrix: A matrix R is then constructed by comparing each point in the phase space with every other point. The elements of the matrix R are defined by:
- Visualizing the Recurrence Plot: The recurrence plot is a two-dimensional representation of the matrix R. Each point (i,j) is plotted as a small dot if Ri,j = 1. The result is a plot that reveals patterns of recurrence within the dynamical system. Diagonal lines in the plot, for example, indicate a repeating pattern or periodic behaviour (Figure A1).
- Recurrence Rate (REC): This is the simplest RQA measure and is defined as the fraction of points in the recurrence plot that are recurrences.
- Determinism (DET): This measure reflects the predictability of the system. It is the fraction of recurrence points that form diagonal lines of at least a minimum length lmin in the RP.
- Laminarity (LAM): This measure reflects the proportion of recurrence points that form vertical (or horizontal, depending on the orientation) lines of at least a minimum length vmin in the RP.
Appendix D
Python Code for Automatic Detection Algorithm
References
- Bossi, A.H.; Cole, D.; Passfield, L.; Hopker, J. Conventional Methods to Prescribe Exercise Intensity Are Ineffective for Exhaustive Interval Training. Eur. J. Appl. Physiol. 2023, 123, 1655–1670. [Google Scholar] [CrossRef]
- Meyer, T.; Lucía, A.; Earnest, C.P.; Kindermann, W. A Conceptual Framework for Performance Diagnosis and Training Prescription from Submaximal Gas Exchange Parameters—Theory and Application. Int. J. Sports Med. 2005, 26 (Suppl. S1), S38–S48. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, G.; Lorenzo, A.D.; Tramontano, A.; Iannone, F.P.; D’Angelo, A.; Pezzella, R.; Testa, C.; Parlato, A.; Merone, P.; Pacileo, M.; et al. Exercise Training in Patients with Heart Failure: From Pathophysiology to Exercise Prescription. Rev. Cardiovasc. Med. 2022, 23, 144. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.J.; Goss, F.L.; Dube, J.; Rutkowski, J.; Dupain, M.; Brennan, C.; Andreacci, J. Validation of the Adult OMNI Scale of Perceived Exertion for Cycle Ergometer Exercise. Med. Sci. Sports Exerc. 2004, 36, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Cauwenberghs, N.; Sente, J.; Sabovčik, F.; Ntalianis, E.; Hedman, K.; Claes, J.; Goetschalckx, K.; Cornelissen, V.; Kuznetsova, T. Cardiorespiratory Fitness Components in Relation to Clinical Characteristics, Disease State and Medication Intake: A Patient Registry Study. Clin. Physiol. Funct. Imaging 2023, 43, 441–452. [Google Scholar] [CrossRef]
- Zimatore, G.; Serantoni, C.; Gallotta, M.C.; Guidetti, L.; Maulucci, G.; De Spirito, M. Automatic Detection of Aerobic Threshold through Recurrence Quantification Analysis of Heart Rate Time Series. Int. J. Environ. Res. Public Health 2023, 20, 1998. [Google Scholar] [CrossRef]
- Zimatore, G.; Gallotta, M.C.; Innocenti, L.; Bonavolontà, V.; Ciasca, G.; De Spirito, M.; Guidetti, L.; Baldari, C. Recurrence Quantification Analysis of Heart Rate Variability during Continuous Incremental Exercise Test in Obese Subjects. Chaos 2020, 30, 033135. [Google Scholar] [CrossRef]
- Mourot, L.; Tordi, N.; Bouhaddi, M.; Teffaha, D.; Monpere, C.; Regnard, J. Heart Rate Variability to Assess Ventilatory Thresholds: Reliable in Cardiac Disease? Eur. J. Prev. Cardiol. 2012, 19, 1272–1280. [Google Scholar] [CrossRef]
- Emerenziani, G.P.; Ferrari, D.; Vaccaro, M.G.; Gallotta, M.C.; Migliaccio, S.; Lenzi, A.; Baldari, C.; Guidetti, L. Prediction Equation to Estimate Heart Rate at Individual Ventilatory Threshold in Female and Male Obese Adults. PLoS ONE 2018, 13, e0197255. [Google Scholar] [CrossRef]
- Deboeck, G.; Vicenzi, M.; Faoro, V.; Lamotte, M. Aerobic exercise capacity is normal in obesity with or without metabolic syndrome. Respir. Med. 2023, 210, 107173. [Google Scholar] [CrossRef]
- Gouw, A.H.; Van Guilder, G.P.; Cullen, G.G.; Dalleck, L.C. Is the Tyme Wear Smart Shirt Reliable and Valid at Detecting Personalized Ventilatory Thresholds in Recreationally Active Individuals? Int. J. Environ. Res. Public Health 2022, 19, 1147. [Google Scholar] [CrossRef] [PubMed]
- Magal, M.; Franklin, B.A.; Dwyer, G.B.; Riebe, D. Back to Basics: A Critical Review of the Methodology Commonly Used to Estimate Cardiorespiratory Fitness. ACSM’s Health Fit. J. 2023, 27, 12–19. [Google Scholar] [CrossRef]
- Zimatore, G.; Gallotta, M.C.; Campanella, M.; Skarzynski, P.H.; Maulucci, G.; Serantoni, C.; De Spirito, M.; Curzi, D.; Guidetti, L.; Baldari, C.; et al. Detecting Metabolic Thresholds from Nonlinear Analysis of Heart Rate Time Series: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12719. [Google Scholar] [CrossRef] [PubMed]
- Zignoli, A.; Fornasiero, A.; Rota, P.; Muollo, V.; Peyré-Tartaruga, L.A.; Low, D.A.; Fontana, F.Y.; Besson, D.; Pühringer, M.; Ring-Dimitriou, S.; et al. Oxynet: A collective intelligence that detects ventilatory thresholds in cardiopulmonary exercise tests. EJSS 2022, 22, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, T.; Zhou, Y.; Lai, P.; Huang, Y. Wearable ultrasound bioelectronics for healthcare monitoring. Innov. 2023, 4, 100447. [Google Scholar] [CrossRef]
- You, C.Y.; Hu, B.F.; Xu, B.R.; Zhang, Z.Y.; Wu, B.M.; Huang, G.S.; Mei, Y.F. Foldable-circuit-enabled miniaturized multifunctional sensor for smart digital dust. Chip 2022, 1, 100034. [Google Scholar] [CrossRef]
- Meucci, M.; Nandagiri, V.; Kavirayuni, V.S.; Whang, A.; Collier, S.R. Correlation Between Heart Rate at Maximal Fat Oxidation and Aerobic Threshold in Healthy Adolescent Boys and Girls. Pediatr. Exerc. Sci. 2021, 33, 139–143. [Google Scholar] [CrossRef]
- Hagan, R.D.; Smith, M.G. Pulmonary Ventilation in Relation to Oxygen Uptake and Carbon Dioxide Production during Incremental Load Work. Int. J. Sports Med. 1984, 5, 193–197. [Google Scholar] [CrossRef]
- Hollmann, W. 42 Years Ago—Development of the Concepts of Ventilatory and Lactate Threshold. Sports Med. 2001, 31, 315–320. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Ludbrook, J. Linear Regression Analysis for Comparing Two Measurers or Methods of Measurement: But Which Regression? Clin. Exp. Pharmacol. Physiol. 2010, 37, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. MSSE 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Pühringer, M.; Ring-Dimitriou, S.; Iglseder, B.; Frey, V.; Trinka, E.; Paulweber, B. Sequencing Patterns of Ventilatory Indices in Less Trained Adults. Front. Sports Act Living 2023, 4, 1066131. [Google Scholar] [CrossRef]
- Zignoli, A. Machine Learning Models for the Automatic Detection of Exercise Thresholds in Cardiopulmonary Exercising Tests: From Regression to Generation to Explanation. Sensors 2023, 23, 826. [Google Scholar] [CrossRef]
- Ferretti, G.; Fagoni, N.; Taboni, A.; Vinetti, G.; di Prampero, P.E. A Century of Exercise Physiology: Key Concepts on Coupling Respiratory Oxygen Flow to Muscle Energy Demand during Exercise. Eur. J. Appl. Physiol. 2022, 122, 1317–1365. [Google Scholar] [CrossRef]
- Ortega, F.B.; Leskošek, B.; Blagus, R.; Gil-Cosano, J.J.; Mäestu, J.; Tomkinson, G.R.; Ruiz, J.R.; Mäestu, E.; Starc, G.; Milanovic, I.; et al. European Fitness Landscape for Children and Adolescents: Updated Reference Values, Fitness Maps and Country Rankings Based on Nearly 8 Million Test Results from 34 Countries Gathered by the FitBack Network. Br. J. Sports Med. 2023, 57, 299–310. [Google Scholar] [CrossRef]
- Kaufmann, S.; Gronwald, T.; Herold, F.; Hoos, O. Heart Rate Variability-Derived Thresholds for Exercise Intensity Prescription in Endurance Sports: A Systematic Review of Interrelations and Agreement with Different Ventilatory and Blood Lactate Thresholds. Sports Med. Open 2023, 9, 59. [Google Scholar] [CrossRef]
- Schaffarczyk, M.; Rogers, B.; Reer, R.; Gronwald, T. Validation of a Non-Linear Index of Heart Rate Variability to Determine Aerobic and Anaerobic Thresholds during Incremental Cycling Exercise in Women. Eur. J. Appl. Physiol. 2023, 123, 299–309. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Balady, G.J.; Amsterdam, E.A.; Chaitman, B.; Eckel, R.; Fleg, J.; Froelicher, V.F.; Leon, A.S.; Piña, I.L.; Rodney, R.; et al. Exercise standards for testing and training: A statement for healthcare professionals from the American Heart Association. Circulation 2001, 104, 1694–1740. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Shaper, A.G. Physical Activity in the Prevention of Cardiovascular Disease: An Epidemiological Perspective. Sports Med. 2001, 31, 101–114. [Google Scholar] [CrossRef]
- Giuliani, A.; Piccirillo, G.; Marigliano, V.; Colosimo, A. A Nonlinear Explanation of Aging-Induced Changes in Heartbeat Dynamics. Am. J. Physiol. Heart Circ. Physiol. 1998, 275, H1455–H1461. [Google Scholar] [CrossRef] [PubMed]
- Marwan, N.; Carmen Romano, M.; Thiel, M.; Kurths, J. Recurrence Plots for the Analysis of Complex Systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Addo, P.M.; Billio, M.; Guégan, D. Nonlinear Dynamics and Recurrence Plots for Detecting Financial Crisis. N. Am. J. Econ. Financ. 2013, 26, 416–435. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart Rate Variability: A Review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Censi, F.; Calcagnini, G.; Cerutti, S. Coupling Patterns between Spontaneous Rhythms and Respiration in Cardiovascular Variability Signals. Comput. Methods Programs Biomed. 2002, 68, 37–47. [Google Scholar] [CrossRef]
- Pitsik, E.; Frolov, N.; Hauke Kraemer, K.; Grubov, V.; Maksimenko, V.; Kurths, J.; Hramov, A. Motor Execution Reduces EEG Signals Complexity: Recurrence Quantification Analysis Study. Chaos 2020, 30, 023111. [Google Scholar] [CrossRef]
- Webber, C.L., Jr.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Phisiol. 1994, 76, 965–973. [Google Scholar] [CrossRef]
- Wright, S.E.; Palmer, C. (03 May): Cardiac Dynamics in Auditory-Motor Synchronization: Roles of Short-Term Training and Rhythm Complexity. Audit. Percept. Cogn. 2024, 7, 86–109. [Google Scholar] [CrossRef]
- Lin, M.; Zhao, G.; Wang, G. Recurrence Quantification Analysis for Detecting Dynamical Changes in Earthquake Magnitude Time Series. Int. J. Mod. Phys. C 2015, 26, 1550077. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T. Dynamical Patterns in Seismology. In Recurrence Quantification Analysis: Theory and Best Practices; Webber, C.L., Jr., Marwan, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 291–334. ISBN 978-3-319-07155-8. [Google Scholar]
- Araújo, N.S.; Reyes-Garcia, S.Z.; Brogin, J.A.F.; Bueno, D.D.; Cavalheiro, E.A.; Scorza, C.A.; Faber, J. Chaotic and Stochastic Dynamics of Epileptiform-like Activities in Sclerotic Hippocampus Resected from Patients with Pharmacoresistant Epilepsy. PLoS Comput. Biol. 2022, 18, e1010027. [Google Scholar] [CrossRef] [PubMed]
- Chatain, C.; Ramdani, S.; Vallier, J.M.; Gruet, M. Recurrence quantification analysis of force signals to assess neuromuscular fatigue in men and women. Biomed. Signal Process. Control 2021, 68, 102593. [Google Scholar] [CrossRef]
Group A | Group O | Group C | Group Y | All | |
---|---|---|---|---|---|
Name | Athletes | Obese | Cardiac Patients | Young athletes | Athlete, obese |
Young athletes | |||||
cardiac patients | |||||
n | 27 | 19 | 16 | 49 | 111 |
Age(years) | 15.30 ± 1.87 | 42.90 ± 12.67 | 52.80 ± 10.09 | 15.20 ± 2.02 | 25.35 ±16.62 |
BMI (kg/m2) | 22.06 ± 3.28 | 39.98 ± 4.95 | 25.92 ± 4.29 | 22.65 ± 4.97 | 25.78 ± 7.60 |
Range (years) | 14–20 | 19–63 | 35–70 | 11–17 | 11–70 |
Gender | 25/2 | 6/13 | 16/0 | 26/23 | 73/38 |
(M/F) | |||||
Wstatus (NW/OW) | 27/0 | 0/19 | 13/3 | 32/17 | 72 NW/39 OW |
Hstatus | Healthy (H) | Disease (D) | Disease (D) | Healthy (H) | 76 H/35 D |
Incremental | 20 or | 1 km/h every | 10 (Watts/min) | 10 (Watts/min) | 10, 15, 20 |
protocol | 15(Watts/min) | 3 min | (Watts/min) | ||
1 km/h /3 min | |||||
Type | Cycle-ergometer (C) | Treadmill (T) | Cycle-ergometer (C) | Cycle-ergometer (C) | 90 C/19 T |
Group | HR_RQA (bpm) | HR_Gex (bpm) | VO2_RQA (mL/Min) | VO2_Gex (mL/Min) |
---|---|---|---|---|
A (27) | 136.81 ± 15.46 | 137.34 ± 15.26 | 1776.56 ± 445.95 | 1767.57 ± 335.89 |
O (19) | 110.22 ± 14.06 | 112.37 ± 14.09 | 1379.28 ± 335.19 | 1359.12 ± 316.4 |
C (16) | 87.31 ± 12.53 | 84.69 ± 13.01 | 1051.09 ± 462.49 | 902.79 ± 242.67 |
Y (49) | 126.36 ± 14.13 | 121.16 ± 14.18 | 1134.54 ± 343.67 | 1056.57 ± 260.37 |
All (111) | 120.5 ± 21.36 | 118.62 ± 21.44 | 1320.57 ± 472.98 | 1263.70 ± 427.71 |
p method * | 0.50 | 0.10 | ||
p method X group | 0.04 | 0.38 | ||
p method X protocol | 0.03 | 0.33 | ||
p method X Wstatus * | 0.97 | 0.62 | ||
p method X Hstatus * | 0.87 | 0.86 | ||
p method X gender * | 0.98 | 0.61 |
Parameters | R2 | Slope | Intercept | Meandiff (%) | p | TE (%) |
---|---|---|---|---|---|---|
HR | 0.68 | 1.0 (0.57 to 1.75) | 2.31 (−86.77 to 53.11) | 2.23 | 0.121 | 7.71 |
VO2 | 0.60 | 1.11 (0.72 to 1.69) | −76.86 (−815.94 to 406.55) | 6.51 | 0.053 | 17.54 |
Parameters | r Pearson | ICC | Effect Size (d) |
---|---|---|---|
HR (bpm) | 0.82 ** | 0.90 (0.86 to 0.93) | 0.10 * |
VO2 (mL/min) | 0.77 ** | 0.87 (0.81 to 0.91) | 0.14 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimatore, G.; Serantoni, C.; Gallotta, M.C.; Meucci, M.; Mourot, L.; Ferrari, D.; Baldari, C.; De Spirito, M.; Maulucci, G.; Guidetti, L. Recurrence Quantification Analysis Based Methodology in Automatic Aerobic Threshold Detection: Applicability and Accuracy across Age Groups, Exercise Protocols and Health Conditions. Appl. Sci. 2024, 14, 9216. https://doi.org/10.3390/app14209216
Zimatore G, Serantoni C, Gallotta MC, Meucci M, Mourot L, Ferrari D, Baldari C, De Spirito M, Maulucci G, Guidetti L. Recurrence Quantification Analysis Based Methodology in Automatic Aerobic Threshold Detection: Applicability and Accuracy across Age Groups, Exercise Protocols and Health Conditions. Applied Sciences. 2024; 14(20):9216. https://doi.org/10.3390/app14209216
Chicago/Turabian StyleZimatore, Giovanna, Cassandra Serantoni, Maria Chiara Gallotta, Marco Meucci, Laurent Mourot, Dafne Ferrari, Carlo Baldari, Marco De Spirito, Giuseppe Maulucci, and Laura Guidetti. 2024. "Recurrence Quantification Analysis Based Methodology in Automatic Aerobic Threshold Detection: Applicability and Accuracy across Age Groups, Exercise Protocols and Health Conditions" Applied Sciences 14, no. 20: 9216. https://doi.org/10.3390/app14209216