A Novel Robust Hybrid Control Strategy for a Quadrotor Trajectory Tracking Aided with Bioinspired Neural Dynamics
Abstract
:1. Introduction
2. Dynamical Model
2.1. Quadrotor Model
2.2. Control Problem Description
3. Quadrotor Control Design Aided with Bioinspired Neural Dynamics
3.1. Bioinspired Neural Dynamic Model
3.2. Bioinspired Backstepping Position Control System
3.3. Bioinspired Sliding Attitude Control System
3.4. Stability Analysis
4. Results
4.1. Undisturbed Trajectory Tracking
4.2. Disturbed Trajectory Tracking
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UAVs | Unmanned aerial vehicles |
VTOL | Vertical takeoff and landing |
CB | Conventional backstepping |
SMC | Conventional sliding mode |
SAT | Sliding mode with saturation |
BB | Bioinspired backstepping |
BSMC | Bioinspired sliding mode |
References
- Erginer, B.; Altug, E. Modeling and PD Control of a Quadrotor VTOL Vehicle. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Türkiye, 13–15 June 2007; pp. 894–899. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Yu, Y. Trajectory tracking control of a quadrotor UAV under external disturbances based on linear ADRC. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 1–13 November 2016; pp. 13–18. [Google Scholar] [CrossRef]
- Grzonka, S.; Giorgio, G.; Wolfram, B. A fully autonomous indoor quadrotor. IEEE Trans. Robot. 2011, 28, 90–100. [Google Scholar] [CrossRef]
- Ghadiok, V.; Jeremy, G.; Wei, R. On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor. Auton. Robot. 2012, 33, 41–68. [Google Scholar] [CrossRef]
- Basri, M.; Ariffanan, M.; Husain, A.R.; Danapalasingam, K.A. Enhanced backstepping controller design with application to autonomous quadrotor unmanned aerial vehicle. J. Intell. Robot. Syst. 2015, 79, 295–321. [Google Scholar] [CrossRef]
- Shauqee, M.N.; Rajendran, P.; Suhadis, N.M. An effective proportional-double derivative-linear quadratic regulator controller for quadcopter attitude and altitude control. J. Control Meas. Electron. Comput. Commun. 2021, 62, 415–433. [Google Scholar] [CrossRef]
- Dydek, Z.T.; Annaswamy, A.M.; Lavretsky, E. Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Trans. Control. Syst. Technol. 2012, 21, 1400–1406. [Google Scholar] [CrossRef]
- Koivo, A.; Guo, T.-H. Adaptive linear controller for robotic manipulators. IEEE Trans. Autom. Control 1983, 28, 162–171. [Google Scholar] [CrossRef]
- Mokhtari, A.; Benallegue, A.; Daachi, B. Robust feedback linearization and GH/sub/spl infin//controller for a quadrotor unmanned aerial vehicle. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 26 August 2005; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Chen, F.; Lei, W.; Zhang, K.; Tao, G.; Jiang, B. A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 2016, 85, 1281–1295. [Google Scholar] [CrossRef]
- Thanh, H.L.N.N.; Huynh, T.T.; Vu, M.T.; Mung, N.X.; Phi, N.N.; Hong, S.K.; Vu, T.N.L. Quadcopter UAVs Extended States/Disturbance Observer-Based Nonlinear Robust Backstepping Control. Sensors 2022, 22, 5082. [Google Scholar] [CrossRef]
- Weidong, Z.; Pengxiang, Z.; Changlong, W.; Min, C. Position and attitude tracking control for a quadrotor UAV based on terminal sliding mode control. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Noordin, A.; Basri, M.A.M.; Mohamed, Z.; Lazim, I.M. Adaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilization. Arab. J. Sci. Eng. 2021, 46, 963–981. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shahri, A.M. Adaptive nonlinear stabilization control for a quadrotor UAV: Theory, simulation and experimentation. J. Intell. Robot. Syst. 2013, 72, 105–122. [Google Scholar] [CrossRef]
- Isidori, A.; Marconi, L.; Serrani, A. Robust nonlinear motion control of a helicopter. In Robust Autonomous Guidance: An Internal Model Approach; Springer: Berlin/Heidelberg, Germany, 2003; pp. 149–192. [Google Scholar]
- Mistler, V.; Benallegue, A.; M’sirdi, N.K. Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In Proceedings of the 10th IEEE International Workshop on Robot and Human Interactive Communication, ROMAN 2001 (Cat. no. 01th8591). Paris, France, 18–21 September 2001; IEEE: Piscataway, NJ, USA, 2001. [Google Scholar]
- Zhang, Y.; Tao, G.; Chen, M. Relative degrees and adaptive feedback linearization control of T–S fuzzy systems. IEEE Trans. Fuzzy Syst. 2015, 23, 2215–2230. [Google Scholar] [CrossRef]
- Mian, A.A.; Daobo, W. Modeling and backstepping-based nonlinear control strategy for a 6 DOF quadrotor helicopter. Chin. J. Aeronaut. 2008, 21, 261–268. [Google Scholar] [CrossRef]
- Abro, G.E.M.; Zulkifli, S.A.B.M.; Ali, Z.A.; Asirvadam, V.S.; Chowdhry, B.S. Fuzzy Based Backstepping Control Design for Stabilizing an Underactuated Quadrotor Craft under Unmodelled Dynamic Factors. Electronics 2022, 11, 999. [Google Scholar] [CrossRef]
- Alattas, K.A.; Vu, M.T.; Mofid, O.; El-Sousy, F.F.M.; Fekih, A.; Mobayen, S. Barrier Function-Based Nonsingular Finite-Time Tracker for Quadrotor UAVs Subject to Uncertainties and Input Constraints. Mathematics 2022, 10, 1659. [Google Scholar] [CrossRef]
- Najafi, A.; Vu, M.T.; Mobayen, S.; Asad, J.H.; Fekih, A. Adaptive Barrier Fast Terminal Sliding Mode Actuator Fault Tolerant Control Approach for Quadrotor UAVs. Mathematics 2022, 10, 3009. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, L.; Chen, Z. An improved sliding mode control method to increase the speed stability of permanent magnet synchronous motors. Energies 2022, 15, 6313. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500. [Google Scholar] [CrossRef]
- Yang, S.X.; Max, M. An efficient neural network approach to dynamic robot motion planning. Neural Netw. 2000, 13, 143–148. [Google Scholar] [CrossRef]
- Zhu, D.; Sun, B. The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles. Eng. Appl. Artif. Intell. 2013, 26, 2260–2269. [Google Scholar] [CrossRef]
- Mu, B.; Pei, Y.; Shi, Y. Integral sliding mode control for a quadrotor in the presence of model uncertainties and external disturbances. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Xiong, J.-J.; Zheng, E.-H. Position and attitude tracking control for a quadrotor UAV. ISA Trans. 2014, 53, 725–731. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, T.; Yang, S.X.; Gadsden, S.A. A hybrid tracking control strategy for an unmanned underwater vehicle aided with bioinspired neural dynamics. IET Cyber-Syst. Robot. 2022, 4, 153–162. [Google Scholar] [CrossRef]
- Almakhles, D.J. Robust backstepping sliding mode control for a quadrotor trajectory tracking application. IEEE Access 2019, 8, 5515–5525. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, H.; Wang, X. Robust visual servoing control for quadrotors landing on a moving target. J. Frankl. Inst. 2021, 358, 2301–2319. [Google Scholar] [CrossRef]
- Grossberg, S. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Netw. 1988, 1, 17–61. [Google Scholar] [CrossRef]
- Abro, G.E.M.; Asirvadam, V.S.; Zulkifli, S.A.B.; Raza, S.A. Review of hybrid control designs for underactuated quadrotor with unmodelled dynamic factors. In Emerging Technologies in Computing: Proceedings of the Third EAI International Conference, iCETiC 2020, London, UK, 19–20 August 2020, Proceedings 3; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Wang, N.; Deng, Q.; Xie, G.; Pan, X. Hybrid finite-time trajectory tracking control of a quadrotor. ISA Trans. 2019, 90, 278–286. [Google Scholar] [CrossRef]
- Maaruf, M.; Hamanah, W.M.; Abido, M.A. Hybrid Backstepping Control of a Quadrotor Using a Radial Basis Function Neural Network. Mathematics 2023, 11, 991. [Google Scholar] [CrossRef]
- Raffo, G.V.; Ortega, M.G.; Rubio, F.R. Robust nonlinear control for path tracking of a quad-rotor helicopter. Asian J. Control 2015, 17, 142–156. [Google Scholar] [CrossRef]
- Jia, Z.; Yu, J.; Mei, Y.; Chen, Y.; Shen, Y.; Ai, X. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp. Sci. Technol. 2017, 68, 299–307. [Google Scholar] [CrossRef]
Symbol | Value |
---|---|
m | 0.18 kg |
g | |
0.225 m | |
b | |
Symbol | Value |
---|---|
0.6 | |
Disturbance Occurrence Time (s) | CB&SMC | CB&SAT | BB&BSMC | |||||||
---|---|---|---|---|---|---|---|---|---|---|
x | y | z | x | y | z | x | y | z | ||
0 | 85.06 | 0.15 | 40.56 | 82.52 | 0.01 | 41.96 | 16.17 | −0.01 | 21.80 | |
10 | −6.95 | −10.19 | −3.60 | −6.15 | −3.91 | 5.57 | −5.34 | 0.90 | 2.16 | |
30 | −6.82 | −5.20 | −1.26 | −3.13 | −2.98 | 1.89 | 4.43 | 0.18 | 2.25 | |
40 | −5.88 | −3.90 | −1.78 | −3.38 | −2.44 | 1.89 | 1.03 | 1.75 | 1.79 | |
60 | −4.69 | −5.50 | −1.72 | −2.02 | −3.35 | 1.88 | −1.35 | 0.16 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, X.; Lu, J.; Cao, B.; Sun, J. A Novel Robust Hybrid Control Strategy for a Quadrotor Trajectory Tracking Aided with Bioinspired Neural Dynamics. Appl. Sci. 2024, 14, 9592. https://doi.org/10.3390/app14209592
Li J, Li X, Lu J, Cao B, Sun J. A Novel Robust Hybrid Control Strategy for a Quadrotor Trajectory Tracking Aided with Bioinspired Neural Dynamics. Applied Sciences. 2024; 14(20):9592. https://doi.org/10.3390/app14209592
Chicago/Turabian StyleLi, Jianqi, Xin Li, Jianquan Lu, Binfang Cao, and Jian Sun. 2024. "A Novel Robust Hybrid Control Strategy for a Quadrotor Trajectory Tracking Aided with Bioinspired Neural Dynamics" Applied Sciences 14, no. 20: 9592. https://doi.org/10.3390/app14209592