The Development of a Converter Transformer Fire Model Based on the Fire Dynamics Simulator and the Analysis of Cooling Mechanisms of Spraying and Coating
Abstract
:1. Introduction
2. Converter Transformer Fire Calculation Model and Operating Condition Settings
2.1. Introduction of Software
2.2. Model Configuration
2.3. Fire Scene Simulation
3. Validation of the Numerical Model
3.1. Validation of Pool Fire Mass Burning Rate
3.2. Validation of Temperature Field
3.3. Validation of Thermal Radiation
3.4. Validation of Heat Transfer Calculations
4. Results and Discussion
4.1. Influence of Coating on the Refractory Properties of Converter Transformers
4.2. Effect of Different Particle Sizes on the Refractory Properties of Converter Transformers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Liu, X.; Wu, Z.; Zhao, Y.; Zhang, Q.; Tang, H. Novel heat pipe current-carrying tube of RIP valve-side bushing in converter transformer. Electr. Power Syst. Res. 2020, 184, 106344. [Google Scholar] [CrossRef]
- Ngo, M.; Cao, Y.; Dong, D.; Burgos, R.; Nguyen, K.; Ismail, A. Forced Air-Cooling Thermal Design Methodology for High-Density, High-Frequency, and High-Power Planar Transformers in 1U Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2015–2028. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, J.; Huang, Y.; Guo, Y.; Shang, F. Experiment and strategy research on combined use of water spray and compressed air foam fire extinguishing system for UHV converter transformer. In Proceedings of the 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), Tianjin, China, 14–16 April 2023; pp. 2672–2677. [Google Scholar] [CrossRef]
- Li, Y.; Cui, J.; Yang, R.; Huang, P.; Chen, B.; Wang, J.; Gan, Z. Research on over-voltage characteristics of ultra high-voltage direct current transmission system. Energy Rep. 2022, 8 (Suppl. S4), 804–811. [Google Scholar] [CrossRef]
- Shiling, Z.; Yongliang, J. Study on Electrical Insulation Structure Optimization Design of Converter Transformer Bushing. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020; pp. 1292–1299. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Qiu, X.; Zhu, T. A Review on Fire Research of Electric Power Grids of China: State-of-The-Art and New Insights. Fire Technol. 2024, 60, 1027–1076. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J.; Zhang, Q.; Zhang, J.; Jiang, H. Experimental study and numerical analysis of thermal hazard for fire accident in converter transformers. Therm. Sci. Eng. Prog. 2023, 45, 102108. [Google Scholar] [CrossRef]
- Feng, J.R.; Zhao, M.; Yu, G.; Kang, N.; Zhang, J.; Guo, Y.; Lu, S. Dynamic risk assessment framework for fire of power critical infrastructure: The case study of UHV converter transformer. Qual. Reliab. Eng. Int. 2024, 1–27. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Wu, C.; Chen, B. Effectiveness test and evaluation of transformer fire extinguishing system. Fire Technol. 2022, 58, 3167–3190. [Google Scholar] [CrossRef]
- Chen, X.; Gao, X. Study on Full-Size Fire Extinguishing Experimental Conditions of Main Transformer in UHV Substation. In Proceedings of the 2023 6th International Conference on Power and Energy Applications (ICPEA), Weihai, China, 24–26 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 96–100. [Google Scholar]
- Zhou, T.; Wu, C.; Liu, M.; Chen, B.; Wang, X. Numerical study on the fire propagation and suppression of valve hall for UHV converter station. Case Stud. Therm. Eng. 2024, 55, 104128. [Google Scholar] [CrossRef]
- Li, L.; Guo, X.; Lu, R.; Chen, P.; Shi, C. Experimental study on horizontal fire spread characteristics of transformer oil. J. Energy Resour. Technol. 2022, 144, 012107. [Google Scholar] [CrossRef]
- Kong, D.P.; Yang, H.B.; He, X. Impact of wind on in-situ burning behavior of spilled oil on open water. J. Loss Prev. Process Ind. 2020, 65, 104147. [Google Scholar] [CrossRef]
- Salvagni, R.G.; Centeno, F.R.; Sperb, M.L. Burning rate, flame geometry and temperature of convection-controlled circular diesel oil pool fire under air crossflow conditions. J. Hazard. Mater. 2019, 368, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, T.; Chen, Q.; He, J.; Zhang, Z.; Wang, J. Experimental study on combustion characteristics of blended fuel pool fires. J. Fire Sci. 2019, 37, 236–256. [Google Scholar] [CrossRef]
- Wu, C.P.; Zhou, T.N.; Chen, B.H.; Liu, Y.; Liang, P. Experimental Study on Burning Characteristics of the Large-Scale Transformer Oil Pool Fire with Different Extinguishing Methods. Fire Technol. 2021, 57, 461–481. [Google Scholar] [CrossRef]
- Zhao, J.L.; Wang, S.S.; Zhang, J.P. Experimental Study on the Burning Characteristics of Transformer Oil Pool Fires. Energy Fuels 2020, 34, 4967–4976. [Google Scholar] [CrossRef]
- Gelderen, V.; Jomaas, L. Experimental Procedure for Laboratory Studies of In Situ Burning: Flammability and Burning Efficiency of Crude Oil. Jove-J. Vis. Exp. 2018, 135, 57307. [Google Scholar] [CrossRef]
- Folch, J.; Chatris, J.M.; Quintela, J. Experimental Study of Burning Rate in Hydrocarbon Pool Fires. Combust. Flame 2001, 126, 1373–1383. [Google Scholar]
- Tao, Z.; Yang, W.; Sun, Z.; Chen, M.; Wang, J.; Yang, R.; Zhang, H. Experimental study of oil pool shape and environment pressure on the wall fire behavior in an airplane cargo compartment. Int. J. Therm. Sci. 2022, 174, 107440. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Wang, Y.; Shi, L.; Zhang, S.; Liu, J. Experimental study on combustion characteristics of pool fires in a sealed environment. Energy 2023, 283, 128497. [Google Scholar] [CrossRef]
- Fukuchi, N.; Takao, J.; Hu, C.H. Thermal Properties and Smoke Diffusion of Oil Pool Fires in Engine Room. In Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France, 23–28 May 2004; pp. 491–496. [Google Scholar]
- Ghosh, S.; Suryawanshi, P. Enhancing Grid Resiliency in High Fire or Flood Risk Areas: Integrating Protective Relay Settings, Broken Conductor Detection, and Grid Hardening for Climate-Induced Event Preparedness. J. Inst. Eng. India Ser. B 2024. [Google Scholar] [CrossRef]
- Li, W.; Shang, F.; Zhang, J.; Zhu, S.; Guo, Y.; Huang, Y.; Su, W. Experimental Study on Effects of Nozzle Explosion Damage on Performance of Water Spray Fire Protection System of Ultra-high Voltage Transformer. In Proceedings of the 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 8–11 April 2021; pp. 1200–1206. [Google Scholar] [CrossRef]
- Xiong, W.; Xiong, X.; Luo, B.; Lu, G.; Yuan, Z.; Leng, D. Research on Emergency Oil Drainage and Fire Extinguishing Technology for Extra High Voltage Transformers. In Proceedings of the 2024 9th Asia Conference on Power and Electrical Engineering (ACPEE), Shanghai, China, 11–13 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 2612–2616. [Google Scholar]
- Rui, L.; Jiaqing, Z.; Yang, H. Dehazing Model of Extra-High Voltage Converter Station Based on Two-Stage Attention. IEEE Access 2023, 11, 133246–133254. [Google Scholar] [CrossRef]
- Takagi, I. Development of extra-high voltage large capacity nonflammable transformers. Chokoatsu daiyoryo funen hen prime atsuki no kaihatsu. Chubu Denryoku KK Kenkyu Shiryo (Mem. Chubu Electr. Power Co., Ltd.) 1990, 84, 52–59. [Google Scholar]
- He, J.; Yu, Z.; Zeng, R.; Zhang, B.; Chen, S.; Hu, J. Power-frequency voltage withstand characteristics of insulations of substation secondary systems. IEEE Trans. Power Deliv. 2010, 25, 734–746. [Google Scholar] [CrossRef]
- Ala, G.; Favuzza, S.; Mitolo, M.; Musca, R.; Zizzo, G. Forensic analysis of fire in a substation of a commercial center. IEEE Trans. Ind. Appl. 2020, 56, 3218–3223. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, J.; Bai, Y.; Wang, D.; Zhang, J. Integrating FBN and FDS for quantitative risk assessment of cable fire in utility tunnel. J. Loss Prev. Process Ind. 2024, 88, 105266. [Google Scholar] [CrossRef]
- Kotsovinos, P.; Atalioti, A.; McSwiney, N.; Lugaresi, F.; Rein, G.; Sadowski, A.J. Analysis of the Thermomechanical Response of Structural Cables Subject to Fire. Fire Technol. 2020, 56, 515–543. [Google Scholar] [CrossRef]
- Yu, F.; Wang, S.; Tang, K.; Lin, Y.; Wang, S.; Zhang, Y. Research Progress on the Fire Characteristics of Electric Cables and Wires. Fire 2024, 7, 186. [Google Scholar] [CrossRef]
- Zhu, H.; Ji, J.; Nie, J. Early fire evolution and alarm characteristics of cable fires in long and narrow spaces. Fire Saf. J. 2022, 131, 103627. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Z.; Jiao, Z. Characteristics of fire and smoke in the natural gas cabin of urban underground utility tunnels based on CFD simulations. Tunn. Undergr. Space Technol. 2021, 109, 103748. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; Jia, B. Experimental investigation on extinguishing characteristics of liquid nitrogen in underground long and narrow space. Tunn. Undergr. Space Technol. 2021, 114, 104009. [Google Scholar] [CrossRef]
- Shi, J.; Sun, X.; Liu, W.; Li, Y. Study of performance-based fire resistance design methodology for large space structures. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2011, 44, 69–78. [Google Scholar]
- McGrattan, K.; Hostikka, S.; Floyd, J.; Baum, H.; Rehm, R.; Mell, W.; McDermott, R. Fire Dynamics Simulator (Version 6)—Technical Reference Guide; Nist Special Publication; NIST: Gaithersburg, MD, USA, 2020.
- Chaudhari, D.M. Application of Computational Fluid Dynamics (CFD) to Study Liquefied Natural Gas (LNG) Pool Fires. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2016. [Google Scholar]
- Babrauskas, V. Estimating large pool fire burning rates. Fire Technol. 1983, 19, 251–261. [Google Scholar] [CrossRef]
- McGrattan, K.B.; Forney, G.P.; Floyd, J.E.; Hostikka, S.A. Fire Dynamics Simulator (Version 3): User’s Guide; NIST: Gaithersburg, MD, USA, 2001.
- Chou, C.C.; Tsai, C.C.; Huang, C.C.; Ou, Y.J. Study on the Relevance of Lightweight Steel Structures and Thermal Hazard During Fires. IOP Conf. Ser. Mater. Sci. Eng. 2019, 473, 012043. [Google Scholar] [CrossRef]
- GB/T 37243-2019; National Standards of the People’s Republic of China. Determination Method of External Safety Distance for Hazardous Chemicals Production Units and Storage Installations. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=84E3679357575CFFE05397BE0A0A9A86 (accessed on 2 December 2024).
Year | Location | Consequence |
---|---|---|
2019 | Yinan, China | The Yinan Converter Station, Pole II, low-end Y/Y-C phase converter transformer experienced a sudden fault and caught fire, with no casualties reported. |
2020 | Jinan, China | The converter transformer burst into flames and later caused a fire. The accident has resulted in one death and two injuries. |
2022 | Nevada, USA | The converter transformer exploded and caught fire at the Hoover Dam hydroelectric plant. There were no injuries or fatalities as a result of the incident. |
2024 | Ishikawa, Japan | The converter transformer exploded and burned, causing a loss of 500,000 volts of power and shutting down the nuclear reaction. |
Coating Area | Type | Density [kg/m3] | Specific Heat Capacity [J/(kg·°C)] | Thermal Conductivity [W/(m·°C)] | Thickness [mm] |
---|---|---|---|---|---|
Transformer Surface | Tick Coating | 500 | 1000 | 0.102 | 7 |
Parameter | Value | Unit |
---|---|---|
Density | 675 | kg/m3 |
Specific Heat | 2.24 | kJ/(kg·K) |
Thermal Conductivity | 0.14 | W/(m·K) |
Evaporation Heat | 317 | kJ/kg |
Boiling Point | 98.35 | °C |
Mesh Size | Experimental Value [kg/(m2·s)] | Analog Value [kg/(m2·s)] | Inaccuracies |
---|---|---|---|
0.20 m | 0.067 | 0.088 | 31.0% |
0.10 m | 0.067 | 0.074 | 10.0% |
0.05 m | 0.067 | 0.068 | 1.5% |
Measuring Point | Experimental Value [kW/m2] | Simulation Value [kW/m2] |
---|---|---|
Point 1 | 3.6 | 1.95 |
Point 2 | 3.3 | 2.09 |
Point 3 | 2.7 | 1.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Wang, Y.; Zhang, Y.; Yu, L.; Zhang, D.; Wang, Z. The Development of a Converter Transformer Fire Model Based on the Fire Dynamics Simulator and the Analysis of Cooling Mechanisms of Spraying and Coating. Appl. Sci. 2024, 14, 11337. https://doi.org/10.3390/app142311337
Qiao X, Wang Y, Zhang Y, Yu L, Zhang D, Wang Z. The Development of a Converter Transformer Fire Model Based on the Fire Dynamics Simulator and the Analysis of Cooling Mechanisms of Spraying and Coating. Applied Sciences. 2024; 14(23):11337. https://doi.org/10.3390/app142311337
Chicago/Turabian StyleQiao, Xinhan, Yijiao Wang, Yuchang Zhang, Le Yu, Dongdong Zhang, and Zhi Wang. 2024. "The Development of a Converter Transformer Fire Model Based on the Fire Dynamics Simulator and the Analysis of Cooling Mechanisms of Spraying and Coating" Applied Sciences 14, no. 23: 11337. https://doi.org/10.3390/app142311337
APA StyleQiao, X., Wang, Y., Zhang, Y., Yu, L., Zhang, D., & Wang, Z. (2024). The Development of a Converter Transformer Fire Model Based on the Fire Dynamics Simulator and the Analysis of Cooling Mechanisms of Spraying and Coating. Applied Sciences, 14(23), 11337. https://doi.org/10.3390/app142311337