Assessment of Dental Arch Width Expansion Effectiveness Using a Novel Hybrid Aligner with Virtual Brackets and Nickel–Titanium Archwires: A Prospective Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.1.1. GT Group
2.1.2. Clear Aligner Group
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics (Table 1)
Outcome | GT | CA | Mean | 95%CI | p (sig) | |||
---|---|---|---|---|---|---|---|---|
Mean GT | SD GT | Mean CA | SD CA | Diff | Upper | Lower | ||
AGE (Years) | 31.30 | 5.51 | 38.45 | 8.77 | 7.15 | 11.84 | 2.46 | <0.001 |
Tx Duration (months) | 4.25 | 0.72 | 9.42 | 2.17 | 5.16 | 6.56 | 4.44 | <0.001 |
Number Aligners | 4.25 | 0.72 | 28.25 | 10.20 | 24.00 | 28.78 | 19.22 | <0.001 |
T0_13_23_cusp (mm) | 33.10 | 2.98 | 31.77 | 2.01 | −1.33 | 0.29 | −2.96 | 0.105 |
T0_14_24_cusp (mm) | 38.74 | 2.69 | 37.60 | 2.70 | −1.14 | 0.61 | −2.90 | 0.194 |
T0_15_25_cusp (mm) | 43.73 | 3.01 | 42.97 | 3.11 | −0.76 | 1.22 | −2.75 | 0.440 |
T0_13_23_cerv (mm) | 23.27 | 2.01 | 2.01 | 2.01 | −0.87 | 0.39 | −2.13 | 0.169 |
T0_14_24_cerv (mm) | 25.42 | 1.95 | 24.69 | 2.09 | −0.73 | 0.58 | −2.04 | 0.266 |
T0_15_25_cerv (mm) | 30.44 | 2.36 | 29.79 | 2.50 | −0.66 | 0.92 | −2.23 | 0.405 |
T0_33_43_cusp (mm) | 23.55 | 6.76 | 25.21 | 1.49 | 1.76 | 4.81 | −1.50 | 0.293 |
T0_34_44_cusp (mm) | 32.25 | 3.07 | 30.97 | 2.47 | −1.28 | 0.63 | −3.18 | 0.182 |
T0_35_45_cusp (mm) | 36.85 | 2.93 | 36.14 | 3.49 | −0.71 | 1.56 | −2.98 | 0.531 |
T0_33_43_cerv (mm) | 18.98 | 2.26 | 18.34 | 1.58 | −0.64 | 0.77 | −2.05 | 0.358 |
T0_34_44_cerv (mm) | 24.32 | 2.00 | 23.48 | 1.75 | −0.84 | 0.45 | −2.13 | 0.196 |
T0_35_45_cerv (mm) | 27.93 | 2.09 | 27.48 | 2.78 | −0.45 | 1.29 | −2.20 | 0.601 |
3.2. Comparison of Dentoalveolar Width Changes Between the Two Groups
3.3. Comparison of Percentage Increase in Initial Width at Cusps and Cervical Points Between GT and CA Groups
3.4. Comparison of Predicted and Achieved Expansion Accuracy Between GT and CA Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weir, T. Clear aligners in orthodontic treatment. Aust. Dent. J. 2017, 62 (Suppl. S1), 58–62. [Google Scholar] [CrossRef] [PubMed]
- Buschang, P.H.; Shaw, S.G.; Ross, M.; Crosby, D.; Campbell, P.M. Comparative time efficiency of aligner therapy and conventional edgewise braces. Angle Orthod. 2014, 84, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Chieng, J.; Wong, C.; Benic, G.; Farella, M. Factors affecting dental biofilm in patients wearing fixed orthodontic appliances. Prog. Orthod. 2017, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Nemec, M.; Bartholomaeus, H.M.; H. Bertl, M.; Behm, C.; Ali Shokoohi-Tabrizi, H.; Jonke, E.; Andrukhov, O.; Rausch-Fan, X. Behaviour of Human Oral Epithelial Cells Grown on Invisalign® SmartTrack® Material. Materials 2020, 13, 5311. [Google Scholar] [CrossRef]
- Azaripour, A.; Weusmann, J.; Mahmoodi, B.; Peppas, D.; Gerhold-Ay, A.; Van Noorden, C.J.F.; Willershausen, B. Braces versus Invisalign®: Gingival parameters and patients’ satisfaction during treatment: A cross-sectional study. BMC Oral Health 2015, 15, 69. [Google Scholar] [CrossRef]
- Shalish, M.; Cooper-Kazaz, R.; Ivgi, I.; Canetti, L.; Tsur, B.; Bachar, E.; Chaushu, S. Adult patients’ adjustability to orthodontic appliances. Part I: A comparison between Labial, Lingual, and Invisalign. Eur. J. Orthod. 2012, 34, 724–730. [Google Scholar] [CrossRef]
- Papadimitriou, A.; Mousoulea, S.; Gkantidis, N.; Kloukos, D. Clinical effectiveness of Invisalign® orthodontic treatment: A systematic review. Prog. Orthod. 2018, 19, 37. [Google Scholar] [CrossRef]
- Muro, M.P.; Caracciolo, A.C.A.; Patel, M.P.; Feres, M.F.N.; Roscoe, M.G. Effectiveness and predictability of treatment with clear orthodontic aligners: A scoping review. Int. Orthod. 2023, 21, 100755. [Google Scholar] [CrossRef]
- Haouili, N.; Kravitz, N.D.; Vaid, N.R.; Ferguson, D.J.; Makki, L. Has Invisalign improved? A prospective follow-up study on the efficacy of tooth movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 420–425. [Google Scholar] [CrossRef]
- Morales-Burruezo, I.; Gandia-Franco, J.L.; Cobo, J.; Vela-Hernandez, A.; Bellot-Arcis, C. Arch expansion with the Invisalign system: Efficacy and predictability. PLoS ONE 2020, 15, e0242979. [Google Scholar] [CrossRef]
- Zhou, N.; Guo, J. Efficiency of upper arch expansion with the Invisalign system. Angle Orthod. 2020, 90, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Houle, J.P.; Piedade, L.; Todescan, R., Jr.; Pinheiro, F.H. The predictability of transverse changes with Invisalign. Angle Orthod. 2017, 87, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Nogal-Coloma, A.; Yeste-Ojeda, F.; Rivero-Lesmes, J.C.; Martin, C. Predictability of Maxillary Dentoalveolar Expansion Using Clear Aligners in Different Types of Crossbites. Appl. Sci. 2023, 13, 2963. [Google Scholar] [CrossRef]
- Galluccio, G.; De Stefano, A.A.; Horodynski, M.; Impellizzeri, A.; Guarnieri, R.; Barbato, E.; Di Carlo, S.; De Angelis, F. Efficacy and Accuracy of Maxillary Arch Expansion with Clear Aligner Treatment. Int. J. Environ. Res. Public Health 2023, 20, 4634. [Google Scholar] [CrossRef]
- Lione, R.; Paoloni, V.; Bartolommei, L.; Gazzani, F.; Meuli, S.; Pavoni, C.; Cozza, P. Maxillary arch development with Invisalign system. Angle Orthod. 2021, 91, 433–440. [Google Scholar] [CrossRef]
- Solano-Mendoza, B.; Sonnemberg, B.; Solano-Reina, E.; Iglesias-Linares, A. How effective is the Invisalign® system in expansion movement with Ex30’ aligners? Clin. Oral Investig. 2017, 21, 1475–1484. [Google Scholar] [CrossRef]
- Krishnan, V.; Daniel, S.T.; Lazar, D.; Asok, A. Characterization of posed smile by using visual analog scale, smile arc, buccal corridor measures, and modified smile index. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 515–523. [Google Scholar] [CrossRef]
- Womack, W.R.; Ahn, J.H.; Ammari, Z.; Castillo, A. A new approach to correction of crowding. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 310–316. [Google Scholar] [CrossRef]
- Giancotti, A.; Mampieri, G. Unilateral canine crossbite correction in adults using the Invisalign method: A case report. Orthodontics (Chic.) 2012, 13, 122–127. [Google Scholar]
- Malik, O.H.; McMullin, A.; Waring, D.T. Invisible orthodontics part 1: Invisalign. Dent. Update 2013, 40, 203–204, 207–210, 213–215. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Y. Clinical outcomes of arch expansion with Invisalign: A systematic review. BMC Oral Health 2023, 23, 587. [Google Scholar] [CrossRef] [PubMed]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Efficacy of clear aligners in controlling orthodontic tooth movement: A systematic review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, C.; Lione, R.; Lagana, G.; Cozza, P. Self-ligating versus Invisalign: Analysis of dento-alveolar effects. Ann. Stomatol. (Roma.) 2011, 2, 23–27. [Google Scholar] [PubMed]
- Ke, Y.; Zhu, Y.; Zhu, M. A comparison of treatment effectiveness between clear aligner and fixed appliance therapies. BMC Oral Health 2019, 19, 24. [Google Scholar] [CrossRef]
- Kassam, S.K.; Stoops, F.R. Are clear aligners as effective as conventional fixed appliances? Evid. Based Dent. 2020, 21, 30–31. [Google Scholar] [CrossRef]
- Jabs, D.A. Improving the reporting of clinical case series. Am. J. Ophthalmol. 2005, 139, 900–905. [Google Scholar] [CrossRef]
- Choi, D.S.; Jeong, Y.M.; Jang, I.; Jost-Brinkmann, P.G.; Cha, B.K. Accuracy and reliability of palatal superimposition of three-dimensional digital models. Angle Orthod. 2010, 80, 497–503. [Google Scholar] [CrossRef]
- Cha, B.K.; Lee, J.Y.; Jost-Brinkmann, P.G.; Yoshida, N. Analysis of tooth movement in extraction cases using three-dimensional reverse engineering technology. Eur. J. Orthod. 2007, 29, 325–331. [Google Scholar] [CrossRef]
- Tien, R.; Patel, V.; Chen, T.; Lavrin, I.; Naoum, S.; Lee, R.J.; Goonewardene, M.S. The predictability of expansion with Invisalign: A retrospective cohort study. Am. J. Orthod. Dentofac. Orthop. 2023, 163, 47–53. [Google Scholar] [CrossRef]
- Bouchant, M.; Saade, A.; El Helou, M. Is maxillary arch expansion with Invisalign® efficient and predictable? A systematic review. Int. Orthod. 2023, 21, 100750. [Google Scholar] [CrossRef]
- D’Anto, V.; Valletta, R.; Di Mauro, L.; Riccitiello, F.; Kirlis, R.; Rongo, R. The Predictability of Transverse Changes in Patients Treated with Clear Aligners. Materials 2023, 16, 1910. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Bernardez, M.L.; Vilches-Arenas, A.; Sonnemberg, B.; Solano-Reina, E.; Solano-Mendoza, B. Efficacy and predictability of maxillary and mandibular expansion with the Invisalign® system. J. Clin. Exp. Dent. 2021, 13, e669–e677. [Google Scholar] [CrossRef] [PubMed]
- Aragon, M.L.S.C.; Mendes Ribeiro, S.M.; Fernandes Fagundes, N.C.; Normando, D. Effectiveness of dental arch expansion in the orthodontic treatment with clear aligners: A scoping review. Eur. J. Orthod. 2024, 46, cjae059. [Google Scholar] [CrossRef]
- Bortolotti, F.; Solidoro, L.; Bartolucci, M.L.; Incerti Parenti, S.; Paganelli, C.; Alessandri-Bonetti, G. Skeletal and dental effects of surgically assisted rapid palatal expansion: A systematic review of randomized controlled trials. Eur. J. Orthod. 2020, 42, 434–440. [Google Scholar] [CrossRef]
- Chun, J.H.; de Castro, A.C.R.; Oh, S.; Kim, K.H.; Choi, S.H.; Nojima, L.I.; Nojima, M.D.C.G.; Lee, K.J. Skeletal and alveolar changes in conventional rapid palatal expansion (RPE) and miniscrew-assisted RPE (MARPE): A prospective randomized clinical trial using low-dose CBCT. BMC Oral Health 2022, 22, 114. [Google Scholar] [CrossRef]
- Handelman, C.S.; Wang, L.; BeGole, E.A.; Haas, A.J. Nonsurgical rapid maxillary expansion in adults: Report on 47 cases using the Haas expander. Angle Orthod. 2000, 70, 129–144. [Google Scholar]
- Schmid, J.Q.; Gerberding, E.; Hohoff, A.; Kleinheinz, J.; Stamm, T.; Middelberg, C. Non-Surgical Transversal Dentoalveolar Compensation with Completely Customized Lingual Appliances versus Surgically Assisted Rapid Palatal Expansion in Adults-The Amount of Posterior Crossbite Correction. J. Pers. Med. 2022, 12, 1893. [Google Scholar] [CrossRef]
- Riede, U.; Wai, S.; Neururer, S.; Reistenhofer, B.; Riede, G.; Besser, K.; Crismani, A. Maxillary expansion or contraction and occlusal contact adjustment: Effectiveness of current aligner treatment. Clin. Oral Investig. 2021, 25, 4671–4679. [Google Scholar] [CrossRef]
- Deregibus, A.; Tallone, L.; Rossini, G.; Parrini, S.; Piancino, M.; Castroflorio, T. Morphometric analysis of dental arch form changes in class II patients treated with clear aligners. J. Orofac. Orthop. 2020, 81, 229–238. [Google Scholar] [CrossRef]
Outcome | GT | CA | Mean Diff | 95%CI | p (sig) | |||
---|---|---|---|---|---|---|---|---|
Mean GT | SD GT | Mean CA | SD CA | Upper | Lower | |||
Real_13_23_cusp | 1.60 | 2.20 | 1.02 | 1.09 | −0.58 | 0.54 | −1.70 | 0.298 |
Real_14_24_cusp | 2.78 | 2.03 | 2.44 | 1.40 | −0.35 | 0.77 | −1.46 | 0.533 |
Real_15_25_cusp | 2.45 | 1.71 | 2.42 | 1.81 | −0.03 | 1.09 | −1.16 | 0.950 |
Real_13_23_cerv | 0.88 | 1.25 | 0.96 | 0.82 | 0.08 | 0.75 | −0.60 | 0.820 |
Real_14_24_cerv | 1.66 | 1.28 | 1.67 | 0.91 | 0.01 | 0.73 | −0.70 | 0.966 |
Real_15_25_cerv | 1.37 | 1.13 | 1.50 | 1.34 | 0.13 | 0.92 | −0.66 | 0.740 |
Real_33_43_cusp | 0.81 | 1.41 | 0.18 | 1.33 | −0.64 | 0.24 | −1.52 | 0.150 |
Real_34_44_cusp | 1.26 | 1.88 | 2.34 | 1.64 | 1.07 | 2.20 | −0.06 | 0.062 |
Real_35_45_cusp | 1.44 | 1.60 | 2.94 | 2.14 | 1.50 | 2.71 | 0.29 | 0.016 |
Real_33_43_cerv | 0.28 | 0.79 | 0.62 | 0.99 | 0.34 | 0.91 | −0.23 | 0.235 |
Real_34_44_cerv | 0.83 | 1.09 | 1.83 | 1.17 | 1.00 | 1.72 | 0.27 | 0.008 |
Real_35_45_cerv | 0.80 | 0.99 | 1.93 | 1.59 | 1.13 | 1.98 | 0.28 | 0.010 |
Outcome | GT | CA | Mean Diff | 95%CI | p (sig) | |||
---|---|---|---|---|---|---|---|---|
Mean GT | SD GT | Mean CA | SD CA | Upper | Lower | |||
T0%_13_23_cusp | 5.19 | 7.34 | 3.32 | 3.54 | −1.88 | 1.86 | −5.61 | 0.312 |
T0%_14_24_cusp | 7.39 | 5.64 | 6.93 | 3.72 | −0.46 | 2.66 | −3.58 | 0.766 |
T0%_15_25_cusp | 5.79 | 4.23 | 6.07 | 4.27 | 0.28 | 3.04 | −2.48 | 0.839 |
T0%_13_23_cerv | 4.05 | 5.80 | 4.45 | 3.84 | 0.40 | 3.55 | −2.75 | 0.801 |
T0%_14_24_cerv | 6.68 | 5.38 | 7.30 | 3.76 | 0.62 | 3.64 | −2.41 | 0.682 |
T0%_15_25_cerv | 4.63 | 3.92 | 5.44 | 4.49 | 0.81 | 3.54 | −1.92 | 0.553 |
T0%_33_43_cusp | 4.81 | 6.63 | 0.87 | 5.29 | −3.93 | 0.16 | −8.03 | 0.059 |
T0%_34_44_cusp | 5.79 | 7.38 | 7.83 | 5.95 | 2.04 | 6.62 | −2.54 | 0.372 |
T0%_35_45_cusp | 5.44 | 4.81 | 8.56 | 6.65 | 3.12 | 7.25 | −1.01 | 0.133 |
T0%_33_43_cerv | 2.45 | 5.26 | 3.63 | 5.61 | 1.18 | 4.98 | −2.61 | 0.530 |
T0%_34_44_cerv | 4.94 | 5.47 | 7.93 | 5.31 | 2.99 | 6.73 | −0.75 | 0.113 |
T0%_35_45_cerv | 4.02 | 4.10 | 7.43 | 6.53 | 3.41 | 7.32 | −0.50 | 0.085 |
Outcome | GT | CA | Mean Dif | 95%CI | p (sig) | |||
---|---|---|---|---|---|---|---|---|
Mean GT | SD GT | Mean CA | SD CA | Lower | Upper | |||
PredicAccur%_13_23_cusp | 82.02 | 15.28 | 60.59 | 15.95 | 21.43 | −23.28 | 66.14 | 0.338 |
PredicAccur%_14_24_cusp | 84.13 | 14.57 | 58.04 | 5.72 | 26.10 | −6.17 | 58.37 | 0.108 |
PredicAccur%_15_25_cusp | 91.08 | 23.12 | 55.89 | 7.92 | 35.19 | −15.32 | 85.71 | 0.163 |
PredicAccur%_13_23_cerv | 95.99 | 32.36 | 43.43 | 5.63 | 52.55 | −15.92 | 121.02 | 0.125 |
PredicAccur%_14_24_cerv | 74.91 | 13.40 | 58.27 | 9.85 | 16.64 | −17.34 | 50.63 | 0.327 |
PredicAccur%_15_25_cerv | 77.49 | 21.06 | 49.29 | 6.91 | 28.20 | −17.65 | 74.05 | 0.216 |
PredicAccur%_33_43_cusp | 49.19 | 35.36 | 61.32 | 10.10 | −12.14 | −89.97 | 65.70 | 0.746 |
PredicAccur%_34_44_cusp | 61.26 | 17.80 | 78.05 | 8.67 | −16.78 | −54.10 | 20.53 | 0.367 |
PredicAccur%_35_45_cusp | 85.64 | 28.37 | 76.75 | 9.11 | 8.89 | −54.37 | 72.15 | 0.735 |
PredicAccur%_33_43_cerv | 42.41 | 26.49 | 46.87 | 12.85 | −4.46 | −60.50 | 51.59 | 0.872 |
PredicAccur%_34_44_cerv | 77.41 | 11.95 | 83.64 | 9.07 | −6.23 | −36.25 | 23.80 | 0.676 |
PredicAccur%_35_45_cerv | 56.58 | 24.14 | 78.33 | 23.73 | −21.75 | −91.90 | 48.40 | 0.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon-Valencia, J.; Alarcon, J.A.; Martin, C. Assessment of Dental Arch Width Expansion Effectiveness Using a Novel Hybrid Aligner with Virtual Brackets and Nickel–Titanium Archwires: A Prospective Clinical Study. Appl. Sci. 2025, 15, 39. https://doi.org/10.3390/app15010039
Leon-Valencia J, Alarcon JA, Martin C. Assessment of Dental Arch Width Expansion Effectiveness Using a Novel Hybrid Aligner with Virtual Brackets and Nickel–Titanium Archwires: A Prospective Clinical Study. Applied Sciences. 2025; 15(1):39. https://doi.org/10.3390/app15010039
Chicago/Turabian StyleLeon-Valencia, Jhonny, Jose Antonio Alarcon, and Conchita Martin. 2025. "Assessment of Dental Arch Width Expansion Effectiveness Using a Novel Hybrid Aligner with Virtual Brackets and Nickel–Titanium Archwires: A Prospective Clinical Study" Applied Sciences 15, no. 1: 39. https://doi.org/10.3390/app15010039
APA StyleLeon-Valencia, J., Alarcon, J. A., & Martin, C. (2025). Assessment of Dental Arch Width Expansion Effectiveness Using a Novel Hybrid Aligner with Virtual Brackets and Nickel–Titanium Archwires: A Prospective Clinical Study. Applied Sciences, 15(1), 39. https://doi.org/10.3390/app15010039