Infrared Image Detection and Recognition of Substation Electrical Equipment Based on Improved YOLOv8
Abstract
:1. Introduction
2. YOLOv8 Framework
3. YOLOv8_Adv Model
3.1. Replacing the C2f Module in the Backbone
3.2. Importation of the GSConv and VoVGSCSP Modules in Neck Section
3.3. Integrating the EMA Attention Mechanism
3.4. Integration of Small Target Detection Layer in Head Section
3.5. The Enhanced YOLOv8_Adv Model
4. Experimental Results and Discussion
4.1. Dataset Description
4.2. Experimental Setup and Comparative Metrics
4.3. Experimental Results and Comparative Evaluation
4.3.1. Performance of Device Identification
4.3.2. Comparison of Different Testing Methods
4.3.3. Ablation Experiment
4.3.4. Visual Comparison of Recognition Effects
4.3.5. Computational Efficiency Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, H.; Ding, J.; Dong, Y. Review of Big Data Analysis Technology for Power Equipment State. In Proceedings of the 2023 2nd Asian Conference on Frontiers of Power and Energy (ACFPE), Chengdu, China, 20–22 October 2023; pp. 89–93. [Google Scholar]
- Wang, Z.; Gao, Q.; Xu, J.; Li, D. A Review of UAV Power Line Inspection. In Advances in Guidance, Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, 23–25 October 2020; Yan, L., Duan, H., Yu, X., Eds.; Springer: Singapore, 2022; pp. 3147–3159. [Google Scholar]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A Review on State-of-the-Art Power Line Inspection Techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, H.; Su, C.; Yang, Q. Accurate Glass Insulators Defect Detection in Power Transmission Grids Using Aerial Image Augmentation. IEEE Trans. Power Deliv. 2023, 38, 956–965. [Google Scholar] [CrossRef]
- Tang, N.; Landas, N.; Rodrigues, Y.R.; Monteiro, M.R. Industry State-of-Art and Opportunities for the Use of Drones in Smart Grids Inspections. In Proceedings of the 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, Italy, 19–21 June 2024; pp. 327–331. [Google Scholar]
- Liu, Y.; Li, X.; Qiao, R.; Chen, Y.; Han, X.; Paul, A.; Wu, Z. Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8. Appl. Sci. 2024, 14, 8691. [Google Scholar] [CrossRef]
- Li, Y.; Feng, D.; Li, S. A Review of Transmission Line Defect Detection Based on Deep Learning Object Detection Techniques. In Proceedings of the 18th Annual Conference of China Electrotechnical Society, Beijing, China, 15–17 September 2024; Springer Nature: Singapore, 2024; pp. 295–309. [Google Scholar]
- Liu, Y.; Liu, D.; Huang, X.; Li, C. Insulator Defect Detection with Deep Learning: A Survey. IET Gener. Transm. Distrib. 2023, 17, 3541–3558. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, R.U.; Yang, F.; Wuttisittikulkij, L. Deep Learning Image-Based Defect Detection in High Voltage Electrical Equipment. Energies 2020, 13, 392. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Y.; He, X. Infrared Image Target Detection for Substation Electrical Equipment Based on Improved Faster Region-Based Convolutional Neural Network Algorithm. Rev. Sci. Instrum. 2024, 95, 043702. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Wang, J.; Xue, J.; Wang, J.; Zhou, X.; She, L.; Fan, Y. Infrared Image Target Detection of Substation Electrical Equipment Using an Improved Faster R-CNN. IEEE Trans. Power Deliv. 2023, 38, 387–396. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.; Wang, D.; Hu, F.; Yu, H.; Fan, J. A Defect Detection Method for Substation Equipment Based on Image Data Generation and Deep Learning. IEEE Access 2024, 12, 105042–105054. [Google Scholar] [CrossRef]
- Liu, T.; Li, G.; Gao, Y. Fault Diagnosis Method of Substation Equipment Based on You Only Look Once Algorithm and Infrared Imaging. Energy Rep. 2022, 8, 171–180. [Google Scholar] [CrossRef]
- Shan, D.; Yang, S.; Zhao, Z.; Gao, X.; Zhang, B.; Zhang, B. Lightweight Infrared Object Detection Network Based on Improved SSD. In Proceedings of the 2023 6th International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 24 December 2023; Association for Computing Machinery: New York, NY, USA, 2024; pp. 347–352. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9905, pp. 21–37. [Google Scholar]
- Ding, L.; Xu, X.; Cao, Y.; Zhai, G.; Yang, F.; Qian, L. Detection and Tracking of Infrared Small Target by Jointly Using SSD and Pipeline Filter. Digit. Signal Process. 2021, 110, 102949. [Google Scholar] [CrossRef]
- Zhai, X.; Huang, Z.; Li, T.; Liu, H.; Wang, S. YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection. Electronics 2023, 12, 3664. [Google Scholar] [CrossRef]
- Huangfu, Z.; Li, S. Lightweight You Only Look Once v8: An Upgraded You Only Look Once v8 Algorithm for Small Object Identification in Unmanned Aerial Vehicle Images. Appl. Sci. 2023, 13, 12369. [Google Scholar] [CrossRef]
- Senussi, M.F.; Kang, H.-S. Occlusion Removal in Light-Field Images Using CSPDarknet53 and Bidirectional Feature Pyramid Network: A Multi-Scale Fusion-Based Approach. Appl. Sci. 2024, 14, 9332. [Google Scholar] [CrossRef]
- Yang, S.; Wang, W.; Gao, S.; Deng, Z. Strawberry Ripeness Detection Based on YOLOv8 Algorithm Fused with LW-Swin Transformer. Comput. Electron. Agric. 2023, 215, 108360. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L.; Li, P. A Lightweight Model of Underwater Object Detection Based on YOLOv8n for an Edge Computing Platform. J. Mar. Sci. Eng. 2024, 12, 697. [Google Scholar] [CrossRef]
- Wang, A.; Yuan, P.; Wu, H.; Iwahori, Y.; Liu, Y. Improved YOLOv8 for Dangerous Goods Detection in X-Ray Security Images. Electronics 2024, 13, 3238. [Google Scholar] [CrossRef]
- Kumar, D.; Muhammad, N. Object Detection in Adverse Weather for Autonomous Driving through Data Merging and YOLOv8. Sensors 2023, 23, 8471. [Google Scholar] [CrossRef]
- Sharma, P.; Saurav, S.; Singh, S. Object Detection in Power Line Infrastructure: A Review of the Challenges and Solutions. Eng. Appl. Artif. Intell. 2024, 130, 107781. [Google Scholar] [CrossRef]
- Li, D.; Han, T.; Zhou, H.; Chai, H. Lightweight Siamese Network for Visual Tracking via FasterNet and Feature Adaptive Fusion. In Proceedings of the 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Nanjing, China, 22–24 March 2024; pp. 1–5. [Google Scholar]
- Xia, C.; Ren, M.; Wang, B.; Dong, M.; Xu, G.; Xie, J.; Zhang, C. Infrared Thermography-Based Diagnostics on Power Equipment: State-of-the-Art. High Volt. 2021, 6, 387–407. [Google Scholar] [CrossRef]
- Shi, Z.; Zhao, Q.; Su, L.; Su, Y.; Yan, N. Equipment Anomaly Detection in Power Grids Using Deep Learning. In Proceedings of the 2021 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 29–31 December 2021; pp. 271–275. [Google Scholar]
- Hoang, V.-T.; Jo, K.-H. Practical Analysis on Architecture of EfficientNet. In Proceedings of the 2021 14th International Conference on Human System Interaction (HSI), Gdansk, Poland, 8–10 July 2021; pp. 1–4. [Google Scholar]
- Chiu, Y.-C.; Tsai, C.-Y.; Ruan, M.-D.; Shen, G.-Y.; Lee, T.-T. Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems. In Proceedings of the 2020 International Conference on System Science and Engineering (ICSSE), Kagawa, Japan, 31 August–3 September 2020; pp. 1–5. [Google Scholar]
- Sun, J.; Ge, H.; Zhang, Z. AS-YOLO: An Improved YOLOv4 Based on Attention Mechanism and SqueezeNet for Person Detection. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing China, 12–14 March 2021; Volume 5, pp. 1451–1456. [Google Scholar]
- Lee, Y.; Hwang, J.; Lee, S.; Bae, Y.; Park, J. An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 752–760. [Google Scholar]
- Wang, C.-Y.; Mark Liao, H.-Y.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. [Google Scholar]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient Multi-Scale Attention Module with Cross-Spatial Learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Roboflow: Computer Vision Tools for Developers and Enterprises. Available online: https://roboflow.com/ (accessed on 3 November 2024).
- Model & API. Available online: https://universe.roboflow.com/shanghai-jiao-tong-university-xwhvl/infraredimage3/model/6 (accessed on 23 December 2024).
- Varghese, R.; Sambath, M. YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 18–19 April 2024; pp. 1–6. [Google Scholar]
- Liu, H.; Zhang, Y.; Liu, S.; Zhao, M.; Sun, L. UAV Wheat Rust Detection Based on FasterNet-YOLOv8. In Proceedings of the 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), Samui, Thailand, 4–9 December 2023; pp. 1–6. [Google Scholar]
- Li, Z.; Wang, J. Multi-Person Gesture Recognition for Complex Environmental Based on Improved Yolov8 Algorithm. In Proceedings of the 2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 8–10 December 2023; pp. 614–619. [Google Scholar]
- Hu, T.; Zhuang, D.; Qiu, J.; Zheng, L. Improved YOLOv8 Algorithm with C2f-DCNv3 and Shuffle Attention for Detection of Coal Shearer Drum Teeth. In Proceedings of the 2024 4th International Conference on Neural Networks, Information and Communication Engineering (NNICE), Guangzhou, China, 19–21 January 2024; pp. 1019–1022. [Google Scholar]
- Zhang, Y.; Wu, Z.; Wang, X.; Fu, W.; Ma, J.; Wang, G. Improved YOLOv8 Insulator Fault Detection Algorithm Based on BiFormer. In Proceedings of the 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 14–16 July 2023; pp. 962–965. [Google Scholar]
Models | Pixels | P/% | R/% | [email protected]/% | GFLOPs/G |
---|---|---|---|---|---|
YOLOv8n [37] | 640 × 640 | 92.3 | 91.4 | 94.8 | 12.4 |
YOLOv8_FasterNet [38] | 640 × 640 | 94.5 | 93.4 | 95.3 | 9.2 |
YOLOv8_Gsconv [39] | 640 × 640 | 96.6 | 94.0 | 97.9 | 11.6 |
YOLOv8_fastC2f [40] | 640 × 640 | 97.0 | 93.5 | 96.2 | 11.1 |
YOLOv8_Biformer [41] | 640 × 640 | 94.4 | 96.7 | 98.4 | 12.7 |
YOLOv8_Adv | 640 × 640 | 97.3 | 96.6 | 98.7 | 10.1 |
Models | C2f-fast | GSconv | VoVGSCSP | EMA | P/% | R/% | mAP@50/% | GFLOPs/G |
---|---|---|---|---|---|---|---|---|
YOLOv8n | × | × | × | × | 92.3 | 91.4 | 94.8 | 12.4 |
YOLOv8n-C | √ | × | × | × | 95.2 | 94.0 | 96.8 | 11.3 |
YOLOv8n-CG | √ | √ | × | × | 96.3 | 95.7 | 97.4 | 10.7 |
YOLOv8n-CGV | √ | √ | √ | × | 96.8 | 96.0 | 98.1 | 10.1 |
YOLOv8_Adv | √ | √ | √ | √ | 97.3 | 96.6 | 98.7 | 10.1 |
Models | Layers | Parameters | FPS | GFLOPs/G |
---|---|---|---|---|
YOLOv8n | 207 | 2,921,964 | 175.4 | 12.4 |
YOLOv8_FasterNet | 218 | 1,717,396 | 137.0 | 9.2 |
YOLOv8_Gsconv | 231 | 2,638,140 | 192.3 | 11.6 |
YOLOv8_fastC2f | 225 | 2,560,764 | 181.8 | 11.1 |
YOLOv8_Biformer | 215 | 2,932,140 | 172.4 | 12.7 |
YOLOv8_Adv | 344 | 2,341,644 | 163.9 | 10.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Paul, A.; Wu, Z. Infrared Image Detection and Recognition of Substation Electrical Equipment Based on Improved YOLOv8. Appl. Sci. 2025, 15, 328. https://doi.org/10.3390/app15010328
Tao H, Paul A, Wu Z. Infrared Image Detection and Recognition of Substation Electrical Equipment Based on Improved YOLOv8. Applied Sciences. 2025; 15(1):328. https://doi.org/10.3390/app15010328
Chicago/Turabian StyleTao, Haotian, Agyemang Paul, and Zhefu Wu. 2025. "Infrared Image Detection and Recognition of Substation Electrical Equipment Based on Improved YOLOv8" Applied Sciences 15, no. 1: 328. https://doi.org/10.3390/app15010328
APA StyleTao, H., Paul, A., & Wu, Z. (2025). Infrared Image Detection and Recognition of Substation Electrical Equipment Based on Improved YOLOv8. Applied Sciences, 15(1), 328. https://doi.org/10.3390/app15010328