Nanomaterials in Photocatalysis: An In-Depth Analysis of Their Role in Enhancing Indoor Air Quality
Abstract
:1. Introduction
2. Indoor Environments
3. Common Volatile Organic Compounds
4. Photocatalytic Oxidation
4.1. Mechanism
4.2. Thermodynamics and Kinetics
4.3. Important Factors Affecting Photo Oxidation
4.4. Humidity
4.5. Residence Time
4.6. Airflow Rate
4.7. Light Intensity
4.8. Concentration of Pollutants and Photocatalysts
5. Titanium-Based Nanomaterials
5.1. Nanoparticles and Microspheres
5.2. Nanotubes
5.3. Nanosheets
5.4. TiO2 Porous, Supported, and Interconnected Structures
5.5. Doping
6. Carbon-Based Nanomaterials
6.1. Activated Carbons
6.2. Activated Carbon Fibers
6.3. Carbon Nanotubes
6.4. Graphene
6.5. Graphitic Carbon Nitrides
6.6. Carbon Dots
7. Other Metal-Oxide Nanomaterials
7.1. ZnO-Based
7.2. MnO2-Based
7.3. WO3-Based
7.4. CeO2-Based
8. CdS-Based Nanomaterials
9. Metal-Organic Frameworks
10. Perovskite Nanomaterials
11. Transition Metal Dichalcogenides
12. Applications
13. By-Products and Degradation in Photocatalysis
14. Cost and Economic Feasibility
14.1. Material Costs: Sourcing and Synthesis of Nanomaterials
14.2. Manufacturing and Processing Costs
14.3. Operational and Maintenance Costs
14.4. Cost-Benefit Analysis: Health and Environmental Impact
14.5. Commercialization Challenges
15. Future Developments
16. Conclusions
17. Limitations of This Review
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | Activated Carbons |
ACF | Activated Carbon Fibers |
AOP | Advanced Oxidation Process |
CNQDs | Graphitic Carbon Nitride Quantum Dots |
CQDs | Carbon Quantum Dots |
GO | Graphene Oxide |
HVAC | Heating, Ventilation, and Air Conditioning |
IAQ | Indoor Air Quality |
IoT | Internet of Things |
IR | Infrared |
MOFs | Metal-Organic Frameworks |
PM | Particulate Matter |
PTFE | Polytetrafluoroethylene |
RE | Rare Earth |
ROI | Return of Investment |
ROS | Reactive Oxygen Species |
rGO | Reduced Graphene Oxide |
SBS | Sick Building Syndrome |
TMD | Transition Metal Dichalcogenides |
TNT | TiO2 Nanotubes |
USPNT | Uniformly Structured Photocatalytic Nanotubes |
UV | Ultraviolet |
VOCs | Volatile Organic Compounds |
References
- Farrow, A.; Taylor, H.; Golding, J. Time Spent in the Home by Different Family Members. Environ. Technol. 1997, 18, 605–613. [Google Scholar] [CrossRef]
- Tham, K.W. Indoor Air Quality and Its Effects on Humans—A Review of Challenges and Developments in the Last 30 Years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Brown, S.K.; Sim, M.R.; Abramson, M.J.; Gray, C.N. Concentrations of Volatile Organic Compounds in Indoor Air—A Review. Indoor Air 1994, 4, 123–134. [Google Scholar] [CrossRef]
- Salonen, H.; Salthammer, T.; Morawska, L. Human Exposure to NO2 in School and Office Indoor Environments. Environ. Int. 2019, 130, 104887. [Google Scholar] [CrossRef] [PubMed]
- Ramli, N.A.; Md Yusof, N.F.F.; Shith, S.; Suroto, A. Chemical and Biological Compositions Associated with Ambient Respirable Particulate Matter: A Review. Water Air Soil Pollut. 2020, 231, 120. [Google Scholar] [CrossRef]
- Guo, K.; Qian, H.; Zhao, D.; Ye, J.; Zhang, Y.; Kan, H.; Zhao, Z.; Deng, F.; Huang, C.; Zhao, B.; et al. Indoor Exposure Levels of Bacteria and Fungi in Residences, Schools, and Offices in China: A Systematic Review. Indoor Air 2020, 30, 1147–1165. [Google Scholar] [CrossRef]
- Yassin, M.F.; Almouqatea, S. Assessment of Airborne Bacteria and Fungi in an Indoor and Outdoor Environment. Int. J. Environ. Sci. Technol. 2010, 7, 535–544. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor Air Quality, Ventilation and Health Symptoms in Schools: An Analysis of Existing Information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor Air Quality in Schools and Its Relationship with Children’s Respiratory Symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef]
- de Magalhães Rios, J.L.; Boechat, J.L.; Gioda, A.; dos Santos, C.Y.; de Aquino Neto, F.R.; e Silva, J.R.L. Symptoms Prevalence among Office Workers of a Sealed versus a Non-Sealed Building: Associations to Indoor Air Quality. Environ. Int. 2009, 35, 1136–1141. [Google Scholar] [CrossRef]
- Saffell, J.; Nehr, S. Improving Indoor Air Quality through Standardization. Standards 2023, 3, 240–267. [Google Scholar] [CrossRef]
- Li, Y.-W.; Ma, W.-L. Photocatalytic Oxidation Technology for Indoor Air Pollutants Elimination: A Review. Chemosphere 2021, 280, 130667. [Google Scholar] [CrossRef] [PubMed]
- Maggos, T.; Bartzis, J.G.; Liakou, M.; Gobin, C. Photocatalytic Degradation of NOx Gases Using TiO2-Containing Paint: A Real Scale Study. J. Hazard. Mater. 2007, 146, 668–673. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, P.; Guo, L.; Chen, Z.; Wu, Q.; Ding, Y.; Zheng, W.; Cao, Y. The Design of TiO2 Nanostructures (Nanoparticle, Nanotube, and Nanosheet) and Their Photocatalytic Activity. J. Phys. Chem. C 2014, 118, 12727–12733. [Google Scholar] [CrossRef]
- Li, Z.; Li, K.; Du, P.; Mehmandoust, M.; Karimi, F.; Erk, N. Carbon-Based Photocatalysts for Hydrogen Production: A Review. Chemosphere 2022, 308, 135998. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Dutta, V.; Sharma, S.; Raizada, P.; Thakur, V.K.; Khan, A.A.P.; Saini, V.; Asiri, A.M.; Singh, P. An Overview on WO3 Based Photocatalyst for Environmental Remediation. J. Environ. Chem. Eng. 2021, 9, 105018. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; AlWaer, H.; Omrany, H.; Ghaffarianhoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick Building Syndrome: Are We Doing Enough? Archit. Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef]
- Redlich, C.A.; Sparer, J.; Cullen, M.R. Sick-Building Syndrome. Lancet 1997, 349, 1013–1016. [Google Scholar] [CrossRef]
- Burge, P.S. Sick Building Syndrome. Occup. Environ. Med. 2004, 61, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Apte, M.G.; Daisey, J.M. VOCs and “Sick Building Syndrome”: Application of a New Statistical Approach for SBS Research to US EPA BASE Study Data. Proc. Indoor Air 1999, 99, 1–141. [Google Scholar]
- Kemp, P.C.; Dingle, P.; Neumeister, H.G. Particulate Matter Intervention Study: A Causal Factor of Building-Related Symptoms in an Older Building. Indoor Air 1998, 8, 153–171. [Google Scholar] [CrossRef]
- Niza, I.L.; De Souza, M.P.; Da Luz, I.M.; Broday, E.E. Sick Building Syndrome and Its Impacts on Health, Well-Being and Productivity: A Systematic Literature Review. Indoor Built Environ. 2024, 33, 218–236. [Google Scholar] [CrossRef]
- Haghighat, F.; Huang, H. Integrated IAQ Model for Prediction of VOC Emissions from Building Material. Build. Environ. 2003, 38, 1007–1017. [Google Scholar] [CrossRef]
- Uhde, E.; Salthammer, T. Impact of Reaction Products from Building Materials and Furnishings on Indoor Air Quality—A Review of Recent Advances in Indoor Chemistry. Atmos. Environ. 2007, 41, 3111–3128. [Google Scholar] [CrossRef]
- Mjörnell, K.; Johansson, D.; Bagge, H. The Effect of High Occupancy Density on IAQ, Moisture Conditions and Energy Use in Apartments. Energies 2019, 12, 4454. [Google Scholar] [CrossRef]
- Kamaruzzaman, S.N.; Sabrani, N.A. The Effect of Indoor Air Quality (IAQ) towards Occupants’ Psychological Performance in Office Buildings. J. Des. Built 2011, 4, 49–61. [Google Scholar]
- Reynolds, S.J.; Black, D.W.; Borin, S.S.; Breuer, G.; Burmeister, L.F.; Fuortes, L.J.; Smith, T.F.; Stein, M.A.; Subramanian, P.; Thorne, P.S.; et al. Indoor Environmental Quality in Six Commercial Office Buildings in the Midwest United States. Appl. Occup. Environ. Hyg. 2001, 16, 1065–1077. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Liu, B.; Liu, J.; Yang, Y.; Yu, Q. An Evaluation Index for the Control Effect of the Local Ventilation Systems on Indoor Air Quality in Industrial Buildings. Build. Simul. 2016, 9, 669–676. [Google Scholar] [CrossRef]
- Schito, E.; Testi, D.; Grassi, W. A Proposal for New Microclimate Indexes for the Evaluation of Indoor Air Quality in Museums. Buildings 2016, 6, 41. [Google Scholar] [CrossRef]
- Al-Rajhi, S.; Ramaswamy, M.; Al-Jahwari, F. IAQ in Hospitals—Better Health through Indoor Air Quality Awareness. 2010. Available online: https://www.semanticscholar.org/paper/IAQ-in-Hospitals-Better-Health-through-Indoor-Air-Ramaswamy-Al-Jahwari/eaa33ee9711998cd83b25cf083546a120939a69a (accessed on 3 February 2025).
- Korsavi, S.S.; Montazami, A.; Mumovic, D. Indoor Air Quality (IAQ) in Naturally-Ventilated Primary Schools in the UK: Occupant-Related Factors. Build. Environ. 2020, 180, 106992. [Google Scholar] [CrossRef]
- Jeon, B.-I.; Kwak, M.-J.; Kang, S.-H.; Kim, J.-C.; Yun, H.-J.; Kim, H.-H. Development of IAQ Index for Indoor Air Quality in City Buses. J. Environ. Health Sci. 2020, 46, 444–456. [Google Scholar]
- Lenzuni, P.; del Gaudio, M.; Freda, D. Indoor Air Quality Aboard Italian High-Speed Trains. In Proceedings of the 7th International Ergonomics Conference—Ergonomics, Zadar, Croatia, 13–16 June 2018; pp. 13–16. [Google Scholar]
- Janczewski, J.N. IAQ on Passenger Planes. 1999. Available online: https://www.aivc.org/sites/default/files/airbase_12452.pdf (accessed on 3 February 2025).
- Pandey, P.; Yadav, R. A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution. Int. J. Plant Environ. 2018, 4, 14–26. [Google Scholar] [CrossRef]
- Forbes, S.L.; Perrault, K.A.; Stefanuto, P.-H.; Nizio, K.D.; Focant, J.-F. Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-Latitude (Cfb) Climate. PLoS ONE 2014, 9, e113681. [Google Scholar] [CrossRef]
- Norbäck, D.; Björnsson, E.; Janson, C.; Widström, J.; Boman, G. Asthmatic Symptoms and Volatile Organic Compounds, Formaldehyde, and Carbon Dioxide in Dwellings. Occup. Environ. Med. 1995, 52, 388–395. [Google Scholar] [CrossRef]
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Vilahur, N.; Mattock, H.; Straif, K. Carcinogenicity of Benzene. Lancet Oncol. 2017, 18, 1574–1575. [Google Scholar] [CrossRef]
- Ross, D. Metabolic Basis of Benzene Toxicity. Eur. J. Haematol. 1996, 57, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.D. Benzene Toxicity. Occup. Med. 1988, 3, 541–554. [Google Scholar]
- Bove, K.E. Ethylene Glycol Toxicity. Am. J. Clin. Pathol. 1966, 45, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.D.; Phillips, W.J. Ethylene Glycol Toxicity. Mil. Med. 2004, 169, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Glagola, J.J.; Nappe, T.M. Ethylene Glycol Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Bernardini, L.; Barbosa, E.; Charão, M.F.; Brucker, N. Formaldehyde Toxicity Reports from in Vitro and in Vivo Studies: A Review and Updated Data. Drug Chem. Toxicol. 2022, 45, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Heck, D.A.; Casanova, M.; Starr, T.B. Formaldehyde Toxicity—New Understanding. Crit. Rev. Toxicol. 1990, 20, 397–426. [Google Scholar] [CrossRef] [PubMed]
- Loomis, T.A. Formaldehyde Toxicity. Arch. Pathol. Lab. Med. 1979, 103, 321–324. [Google Scholar] [PubMed]
- Lieber, C.S. Metabolic Effects of Acetaldehyde. Biochem. Soc. Trans. 1988, 16, 241–247. [Google Scholar] [CrossRef]
- Woutersen, R.A.; Appelman, L.M.; Van Garderen-Hoetmer, A.; Feron, V.J. Inhalation Toxicity of Acetaldehyde in Rats. III. Carcinogenicity Study. Toxicology 1986, 41, 213–231. [Google Scholar] [CrossRef]
- Brecher, A.S.; Hellman, K.; Basista, M.H. A Perspective on Acetaldehyde Concentrations and Toxicity in Man and Animals. Alcohol 1997, 14, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Burek, J.D.; Nitschke, K.D.; Bell, T.J.; Wackerle, D.L.; Childs, R.C.; Beyer, J.E.; Dittenber, D.A.; Rampy, L.W.; McKenna, M.J. Methylene Chloride: A Two-Year Inhalation Toxicity and Oncogenicity Study in Rats and Hamsters. Fundam. Appl. Toxicol. 1984, 4, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, K.D.; Burek, J.D.; Bell, T.J.; Kociba, R.J.; Rampy, L.W.; McKenna, M.J. Methylene Chloride: A 2-Year Inhalation Toxicity and Oncogenicity Study in Rats. Fundam. Appl. Toxicol. 1988, 11, 48–59. [Google Scholar] [CrossRef]
- Rioux, J.P.; Myers, R.A. Methylene Chloride Poisoning: A Paradigmatic Review. J. Emerg. Med. 1988, 6, 227–238. [Google Scholar] [CrossRef]
- Kobayashi, S.; Hutcheon, D.E.; Regan, J. Cardiopulmonary Toxicity of Tetrachloroethylene. J. Toxicol. Environ. Health 1982, 10, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Guyton, K.Z.; Hogan, K.A.; Scott, C.S.; Cooper, G.S.; Bale, A.S.; Kopylev, L.; Barone, S.; Makris, S.L.; Glenn, B.; Subramaniam, R.P.; et al. Human Health Effects of Tetrachloroethylene: Key Findings and Scientific Issues. Environ. Health Perspect. 2014, 122, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Seeber, A. Neurobehavioral Toxicity of Long-Term Exposure to Tetrachloroethylene. Neurotoxicology Teratol. 1989, 11, 579–583. [Google Scholar] [CrossRef] [PubMed]
- von Oettingen, W.F.; Neal, P.A.; Donahue, D.D. The Toxicity and Potential Dangers of Toluene: Preliminary Report. J. Am. Med. Assoc. 1942, 118, 579–584. [Google Scholar] [CrossRef]
- Demır, M.; Cicek, M.; Eser, N.; Yoldaş, A.; Sısman, T. Effects of Acute Toluene Toxicity on Different Regions of Rabbit Brain. Anal. Cell. Pathol. 2017, 2017, 2805370. [Google Scholar] [CrossRef] [PubMed]
- Cohr, K.-H.; Stokholm, J. Toluene: A Toxicologic Review. Scand. J. Work Environ. Health 1979, 5, 71–90. [Google Scholar] [CrossRef]
- Niaz, K.; Bahadar, H.; Maqbool, F.; Abdollahi, M. A Review of Environmental and Occupational Exposure to Xylene and Its Health Concerns. EXCLI J. 2015, 14, 1167. [Google Scholar] [PubMed]
- Langman, J.M. Xylene: Its Toxicity, Measurement of Exposure Levels, Absorption, Metabolism and Clearance. Pathology 1994, 26, 301–309. [Google Scholar] [CrossRef]
- Kandyala, R.; Raghavendra, S.P.C.; Rajasekharan, S.T. Xylene: An Overview of Its Health Hazards and Preventive Measures. J. Oral Maxillofac. Pathol. 2010, 14, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Melnick, R.L.; Huff, J. 1,3-Butadiene: Toxicity and Carcinogenicity in Laboratory Animals and in Humans. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 1992; Volume 124, pp. 111–144. ISBN 978-1-4612-7700-2. [Google Scholar]
- Christian, M.S. Review of Reproductive and Developmental Toxicity of 1, 3-Butadiene. Toxicology 1996, 113, 137–143. [Google Scholar] [CrossRef]
- Owen, P.E.; Glaister, J.R.; Gaunt, I.F.; Pullinger, D.H. Inhalation Toxicity Studies With 1,3-Butadiene 3 Two Year Toxicity/Carcinogenicity Study in Rats. Am. Ind. Hyg. Assoc. J. 1987, 48, 407–413. [Google Scholar] [CrossRef]
- Hardin, B.D. Reproductive Toxicity of the Glycol Ethers. Toxicology 1983, 27, 91–102. [Google Scholar] [CrossRef]
- Hardin, B.D.; Goad, P.T.; Burg, J.R. Developmental Toxicity of Four Glycol Ethers Applied Cutaneously to Rats. Environ. Health Perspect. 1984, 57, 69–74. [Google Scholar] [CrossRef]
- Staples, C.A.; Boatman, R.J.; Cano, M.L. Ethylene Glycol Ethers: An Environmental Risk Assessment. Chemosphere 1998, 36, 1585–1613. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Kim, M.J.; Chung, B.Y.; Bang, D.Y.; Lim, S.K.; Choi, S.M.; Lim, D.S.; Cho, M.C.; Yoon, K.; Kim, H.S.; et al. Safety Evaluation And Risk Assessment Of d-Limonene. J. Toxicol. Environ. Health Part B 2013, 16, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, C.; Badgujar, P.C.; Gundev, P.; Upadhyay, A. Review of Toxicological Assessment of D-Limonene, a Food and Cosmetics Additive. Food Chem. Toxicol. 2018, 120, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Bernson, V.S.; Pettersson, B. The Toxicity of Menthol in Short-Term Bioassays. Chem.-Biol. Interact. 1983, 46, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Morrow, P.E. An Evaluation of Recent NOx Toxicity Data and an Attempt to Derive an Ambient Air Standard for NOx by Established Toxicological Procedures. Environ. Res. 1975, 10, 92–112. [Google Scholar] [CrossRef]
- Tucki, K.; Mruk, R.; Orynycz, O.; Botwińska, K.; Gola, A.; Bączyk, A. Toxicity of Exhaust Fumes (CO, NOx) of the Compression-Ignition (Diesel) Engine with the Use of Simulation. Sustainability 2019, 11, 2188. [Google Scholar] [CrossRef]
- Allen, B.W.; Demchenko, I.T.; Piantadosi, C.A. Two Faces of Nitric Oxide: Implications for Cellular Mechanisms of Oxygen Toxicity. J. Appl. Physiol. 2009, 106, 662–667. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X. Photocatalytic Oxidation for Indoor Air Purification: A Literature Review. Build. Environ. 2003, 38, 645–654. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Photocatalytic Oxidation Technology for Indoor Environment Air Purification: The State-of-the-Art. Appl. Catal. B Environ. 2017, 203, 247–269. [Google Scholar] [CrossRef]
- Yu, Q.L.; Brouwers, H.J.H. Indoor Air Purification Using Heterogeneous Photocatalytic Oxidation. Part I: Experimental Study. Appl. Catal. B Environ. 2009, 92, 454–461. [Google Scholar] [CrossRef]
- Ameta, R.; Ameta, S.C. Photocatalysis: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Farhanian, D.; Haghighat, F. Photocatalytic Oxidation Air Cleaner: Identification and Quantification of by-Products. Build. Environ. 2014, 72, 34–43. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.-S.; Haghighat, F. TiO2 Photocatalyst for Removal of Volatile Organic Compounds in Gas Phase–A Review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Moser, J.; Grätzel, M.; Gallay, R. Inhibition of Electron-Hole Recombination in Substitutionally Doped Colloidal Semiconductor Crystallites. Helv. Chim. Acta 1987, 70, 1596–1604. [Google Scholar] [CrossRef]
- Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of Photoluminescence Performance of Nano-Sized Semiconductor Materials and Its Relationships with Photocatalytic Activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773–1787. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, W.; Wu, B.; Yang, J.; Jin, J.; Zhang, S. Excitonic Effect in MOFs-Mediated Photocatalysis: Phenomenon, Characterization Techniques and Regulation Strategies. Coord. Chem. Rev. 2023, 491, 215235. [Google Scholar] [CrossRef]
- Li, Q.; Anpo, M.; Wang, X. Application of Photoluminescence Spectroscopy to Elucidate Photocatalytic Reactions at the Molecular Level. Res. Chem. Intermed. 2020, 46, 4325–4344. [Google Scholar] [CrossRef]
- Parasuraman, V.; Sekar, P.P.; Lee, H.; Sheraz, M.; Ly, H.N.; Azizar, G.A.B.; Hong, J.W.; Lee, W.R.; Kim, S. Photocatalytic Self-Cleaning Eco-Friendly Paint: A Unique Approach for Efficient Indoor Air Pollutant Removal and Surface Disinfection. Constr. Build. Mater. 2024, 412, 134671. [Google Scholar] [CrossRef]
- Yu, J.; Yue, L.; Liu, S.; Huang, B.; Zhang, X. Hydrothermal Preparation and Photocatalytic Activity of Mesoporous Au–TiO2 Nanocomposite Microspheres. J. Colloid Interface Sci. 2009, 334, 58–64. [Google Scholar] [CrossRef]
- Yu, Z.; Li, F.; Xiang, Q. Carbon Dots-Based Nanocomposites for Heterogeneous Photocatalysis. J. Mater. Sci. Technol. 2024, 175, 244–257. [Google Scholar] [CrossRef]
- Karafas, E.S.; Romanias, M.N.; Stefanopoulos, V.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Papagiannakopoulos, P. Effect of Metal Doped and Co-Doped TiO2 Photocatalysts Oriented to Degrade Indoor/Outdoor Pollutants for Air Quality Improvement. A Kinetic and Product Study Using Acetaldehyde as Probe Molecule. J. Photochem. Photobiol. A Chem. 2019, 371, 255–263. [Google Scholar] [CrossRef]
- Lyu, J.; Zhu, L.; Burda, C. Considerations to Improve Adsorption and Photocatalysis of Low Concentration Air Pollutants on TiO2. Catal. Today 2014, 225, 24–33. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.; Sun, X.; Ye, D. Enhanced Photocatalytic Activity of rGO/TiO2 for the Decomposition of Formaldehyde under Visible Light Irradiation. J. Environ. Sci. 2018, 73, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Korologos, C.A.; Philippopoulos, C.J.; Poulopoulos, S.G. The Effect of Water Presence on the Photocatalytic Oxidation of Benzene, Toluene, Ethylbenzene and m-Xylene in the Gas-Phase. Atmos. Environ. 2011, 45, 7089–7095. [Google Scholar] [CrossRef]
- Takeuchi, M.; Deguchi, J.; Sakai, S.; Anpo, M. Effect of H2O Vapor Addition on the Photocatalytic Oxidation of Ethanol, Acetaldehyde and Acetic Acid in the Gas Phase on TiO2 Semiconductor Powders. Appl. Catal. B Environ. 2010, 96, 218–223. [Google Scholar] [CrossRef]
- Kotzias, D.; Binas, V.; Kiriakidis, G. Smart Surfaces: Heterogeneous Photo-Catalysis on TiO2 Based Coatings for De-Pollution Purposes in Indoor and Outdoor Environments. Top Catal 2020, 63, 875–881. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Zhang, J.; Xie, S.; Wang, X.; Ji, Z. Honeycomb-like Micro-Mesoporous Structure TiO2/Sepiolite Composite for Combined Chemisorption and Photocatalytic Elimination of Formaldehyde. Microporous Mesoporous Mater. 2017, 248, 234–245. [Google Scholar] [CrossRef]
- Liu, S.-H.; Lin, W.-X. A Simple Method to Prepare G-C3N4-TiO2/Waste Zeolites as Visible-Light-Responsive Photocatalytic Coatings for Degradation of Indoor Formaldehyde. J. Hazard. Mater. 2019, 368, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Russo, N.; Saracco, G. Photocatalytic Abatement of VOCs by Novel Optimized TiO2 Nanoparticles. Chem. Eng. J. 2011, 166, 138–149. [Google Scholar] [CrossRef]
- Li, J.-J.; Cai, S.-C.; Yu, E.-Q.; Weng, B.; Chen, X.; Chen, J.; Jia, H.-P.; Xu, Y.-J. Efficient Infrared Light Promoted Degradation of Volatile Organic Compounds over Photo-Thermal Responsive Pt-rGO-TiO2 Composites. Appl. Catal. B Environ. 2018, 233, 260–271. [Google Scholar] [CrossRef]
- Ollis, D.F.; Pelizzetti, E.; Serpone, N. Photocatalyzed Destruction of Water Contaminants. Environ. Sci. Technol. 1991, 25, 1522–1529. [Google Scholar] [CrossRef]
- Yaghoubi, H.; Li, Z.; Chen, Y.; Ngo, H.T.; Bhethanabotla, V.R.; Joseph, B.; Ma, S.; Schlaf, R.; Takshi, A. Toward a Visible Light-Driven Photocatalyst: The Effect of Midgap-States-Induced Energy Gap of Undoped TiO2 Nanoparticles. ACS Catal. 2015, 5, 327–335. [Google Scholar] [CrossRef]
- Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. A Review of Photocatalysis Using Self-organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures. Small 2012, 8, 3073–3103. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Sun, W.; Miao, W.; Yuan, Z.; Yang, G.; Kong, F.; Yan, T.; Chen, J.; Huang, B.; An, C.; et al. Living Atomically Dispersed Cu Ultrathin TiO2 Nanosheet CO2 Reduction Photocatalyst. Adv. Sci. 2019, 6, 1900289. [Google Scholar] [CrossRef] [PubMed]
- Samsudin, E.M.; Abd Hamid, S.B. Effect of Band Gap Engineering in Anionic-Doped TiO2 Photocatalyst. Appl. Surf. Sci. 2017, 391, 326–336. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A Review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Jimmy, C.Y.; Yu, J.; Ho, W.; Zhao, J. Light-Induced Super-Hydrophilicity and Photocatalytic Activity of Mesoporous TiO2 Thin Films. J. Photochem. Photobiol. A Chem. 2002, 148, 331–339. [Google Scholar]
- Bersch, J.D.; Flores-Colen, I.; Masuero, A.B.; Dal Molin, D.C. Photocatalytic TiO2-Based Coatings for Mortars on Facades: A Review of Efficiency, Durability, and Sustainability. Buildings 2023, 13, 186. [Google Scholar] [CrossRef]
- Ayati, A.; Ahmadpour, A.; Bamoharram, F.F.; Tanhaei, B.; Mänttäri, M.; Sillanpää, M. A Review on Catalytic Applications of Au/TiO2 Nanoparticles in the Removal of Water Pollutant. Chemosphere 2014, 107, 163–174. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Yu, B.; Zhou, F.; Liu, W. TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chem. Mater. 2009, 21, 1198–1206. [Google Scholar] [CrossRef]
- Wan, J.; Chen, W.; Jia, C.; Zheng, L.; Dong, J.; Zheng, X.; Wang, Y.; Yan, W.; Chen, C.; Peng, Q.; et al. Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Adv. Mater. 2018, 30, 1705369. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Zhai, J.; He, J.; Jiang, L.; Liu, Z.; Nishimoto, S.; Murakami, T.; Fujishima, A.; Zhu, D. Enhanced Photocatalytic Activity of Hierarchically Micro-/Nano-Porous TiO2 Films. Appl. Catal. B Environ. 2008, 83, 24–29. [Google Scholar] [CrossRef]
- Padayachee, D.; Mahomed, A.S.; Singh, S.; Friedrich, H.B. Effect of the TiO2 Anatase/Rutile Ratio and Interface for the Oxidative Activation of n-Octane. ACS Catal. 2020, 10, 2211–2220. [Google Scholar] [CrossRef]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Raj, K.; Viswanathan, B. Effect of Surface Area, Pore Volume and Particle Size of P25 Titania on the Phase Transformation of Anatase to Rutile. 2009. Available online: https://nopr.niscpr.res.in/handle/123456789/6124 (accessed on 3 February 2025).
- Verbruggen, S.W. TiO2 Photocatalysis for the Degradation of Pollutants in Gas Phase: From Morphological Design to Plasmonic Enhancement. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 64–82. [Google Scholar] [CrossRef]
- Wu, A.; Wang, D.; Wei, C.; Zhang, X.; Liu, Z.; Feng, P.; Ou, X.; Qiang, Y.; Garcia, H.; Niu, J. A Comparative Photocatalytic Study of TiO2 Loaded on Three Natural Clays with Different Morphologies. Appl. Clay Sci. 2019, 183, 105352. [Google Scholar] [CrossRef]
- Mavrikos, A.; Papoulis, D.; Todorova, N.; Papailias, I.; Trapalis, C.; Panagiotaras, D.; Chalkias, D.A.; Stathatos, E.; Gianni, E.; Somalakidi, K. Synthesis of Zn/Cu Metal Ion Modified Natural Palygorskite Clay–TiO2 Nanocomposites for the Photocatalytic Outdoor and Indoor Air Purification. J. Photochem. Photobiol. A Chem. 2022, 423, 113568. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J.Y. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878. [Google Scholar] [CrossRef]
- Xiao, J.; Peng, T.; Li, R.; Peng, Z.; Yan, C. Preparation, Phase Transformation and Photocatalytic Activities of Cerium-Doped Mesoporous Titania Nanoparticles. J. Solid State Chem. 2006, 179, 1161–1170. [Google Scholar] [CrossRef]
- Antonio, J.T.; Cortes-Jacome, M.A.; Orozco-Cerros, S.L.; Montiel-Palacios, E.; Suarez-Parra, R.; Angeles-Chavez, C.; Navarete, J.; López-Salinas, E. Assessing Optimal Photoactivity on Titania Nanotubes Using Different Annealing Temperatures. Appl. Catal. B Environ. 2010, 100, 47–54. [Google Scholar] [CrossRef]
- Weon, S.; Choi, E.; Kim, H.; Kim, J.Y.; Park, H.-J.; Kim, S.; Kim, W.; Choi, W. Active {001} Facet Exposed TiO2 Nanotubes Photocatalyst Filter for Volatile Organic Compounds Removal: From Material Development to Commercial Indoor Air Cleaner Application. Environ. Sci. Technol. 2018, 52, 9330–9340. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Jo, W.-K. Heterojunction-Based Two-Dimensional N-Doped TiO2/WO3 Composite Architectures for Photocatalytic Treatment of Hazardous Organic Vapor. J. Hazard. Mater. 2016, 314, 22–31. [Google Scholar] [CrossRef]
- Xu, F. Review of Analytical Studies on TiO2 Nanoparticles and Particle Aggregation, Coagulation, Flocculation, Sedimentation, Stabilization. Chemosphere 2018, 212, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Reddy, E.P.; Davydov, L.; Smirniotis, P. TiO2-Loaded Zeolites and Mesoporous Materials in the Sonophotocatalytic Decomposition of Aqueous Organic Pollutants: The Role of the Support. Appl. Catal. B Environ. 2003, 42, 1–11. [Google Scholar] [CrossRef]
- Xia, X.-H.; Jia, Z.-J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L.-L. Preparation of Multi-Walled Carbon Nanotube Supported TiO2 and Its Photocatalytic Activity in the Reduction of CO2 with H2O. carbon 2007, 45, 717–721. [Google Scholar] [CrossRef]
- Guirado-López, R.A.; Sánchez, M.; Rincón, M.E. Interaction of Acetone Molecules with Carbon-Nanotube-Supported TiO2 Nanoparticles: Possible Applications as Room Temperature Molecular Sensitive Coatings. J. Phys. Chem. C 2007, 111, 57–65. [Google Scholar] [CrossRef]
- Poolwong, J.; Kiatboonyarit, T.; Achiwawanich, S.; Butburee, T.; Khemthong, P.; Kityakarn, S. Three-Dimensional Hierarchical Porous TiO2 for Enhanced Adsorption and Photocatalytic Degradation of Remazol Dye. Nanomaterials 2021, 11, 1715. [Google Scholar] [CrossRef]
- Greco, E.; Ciliberto, E.; Cirino, A.M.E.; Capitani, D.; Di Tullio, V. A New Preparation of Doped Photocatalytic TiO2 Anatase Nanoparticles: A Preliminary Study for the Removal of Pollutants in Confined Museum Areas. Appl. Phys. A 2016, 122, 530. [Google Scholar] [CrossRef]
- Shon, H.; Phuntsho, S.; Okour, Y.; Cho, D.-L.; Kim, K.S.; Li, H.-J.; Na, S.; Kim, J.B.; Kim, J.-H. Visible Light Responsive Titanium Dioxide (TiO2). Appl. Chem. Eng. 2008, 19, 1–16. [Google Scholar]
- Sun, S.; Ding, J.; Bao, J.; Gao, C.; Qi, Z.; Yang, X.; He, B.; Li, C. Photocatalytic Degradation of Gaseous Toluene on Fe-TiO2 under Visible Light Irradiation: A Study on the Structure, Activity and Deactivation Mechanism. Appl. Surf. Sci. 2012, 258, 5031–5037. [Google Scholar] [CrossRef]
- Huang, H.; Huang, H.; Zhang, L.; Hu, P.; Ye, X.; Leung, D.Y. Enhanced Degradation of Gaseous Benzene under Vacuum Ultraviolet (VUV) Irradiation over TiO2 Modified by Transition Metals. Chem. Eng. J. 2015, 259, 534–541. [Google Scholar] [CrossRef]
- Tan, Y.N.; Wong, C.L.; Mohamed, A.R. An Overview on the Photocatalytic Activity of Nano-Doped-TiO2 in the Degradation of Organic Pollutants. ISRN Mater. Sci. 2011, 2011, 261219. [Google Scholar] [CrossRef]
- Devi, L.G.; Kavitha, R. A Review on Plasmonic Metal TiO2 Composite for Generation, Trapping, Storing and Dynamic Vectorial Transfer of Photogenerated Electrons across the Schottky Junction in a Photocatalytic System. Appl. Surf. Sci. 2016, 360, 601–622. [Google Scholar] [CrossRef]
- Hernández, J.V.; Coste, S.; Murillo, A.G.; Romo, F.C.; Kassiba, A. Effects of Metal Doping (Cu, Ag, Eu) on the Electronic and Optical Behavior of Nanostructured TiO2. J. Alloys Compd. 2017, 710, 355–363. [Google Scholar] [CrossRef]
- Janisch, R.; Gopal, P.; Spaldin, N.A. Transition Metal-Doped TiO2 and ZnO—Present Status of the Field. J. Phys. Condens. Matter 2005, 17, R657. [Google Scholar] [CrossRef]
- Campet, G.; Verniolle, J.; Doumerc, J.-P.; Claverie, J. Photoelectronic Processes in Transition-Element Doped n-Type TiO2 Electrodes. Mater. Res. Bull. 1980, 15, 1135–1141. [Google Scholar] [CrossRef]
- Das, S.; Liu, D.; Park, J.B.; Hahn, Y.-B. Metal-Ion Doped p-Type TiO2 Thin Films and Their Applications for Heterojunction Devices. J. Alloys Compd. 2013, 553, 188–193. [Google Scholar] [CrossRef]
- Su, Y.; Deng, Y. Effect of Structure on the Photocatalytic Activity of Pt-Doped TiO2 Nanotubes. Appl. Surf. Sci. 2011, 257, 9791–9795. [Google Scholar] [CrossRef]
- Rusinque, B.; Escobedo, S.; de Lasa, H. Photoreduction of a Pd-Doped Mesoporous TiO2 Photocatalyst for Hydrogen Production under Visible Light. Catalysts 2020, 10, 74. [Google Scholar] [CrossRef]
- Ali, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced Photocatalytic and Antibacterial Activities of Ag-Doped TiO2 Nanoparticles under Visible Light. Mater. Chem. Phys. 2018, 212, 325–335. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H.; Chang, M.; Chen, D.; Zhang, M.; Wu, L.; Li, X. Non-Uniform Doping Outperforms Uniform Doping for Enhancing the Photocatalytic Efficiency of Au-Doped TiO2 Nanotubes in Organic Dye Degradation. Ceram. Int. 2017, 43, 9053–9059. [Google Scholar] [CrossRef]
- Greco, E.; Balsamo, S.A.; Maccarrone, G.; Mello, D.; Ciliberto, E.; Shang, J.; Zhu, T. Gold-Core Lithium-Doped Titania Shell Nanostructures for Plasmon-Enhanced Visible Light Harvesting with Photocatalytic Activity. J. Nanopart. Res. 2020, 22, 164. [Google Scholar] [CrossRef]
- Som, I.; Roy, M. Recent Development on Titania-Based Nanomaterial for Photocatalytic CO2 Reduction: A Review. J. Alloys Compd. 2022, 918, 165533. [Google Scholar] [CrossRef]
- Li, X.; Zou, X.; Qu, Z.; Zhao, Q.; Wang, L. Photocatalytic Degradation of Gaseous Toluene over Ag-Doping TiO2 Nanotube Powder Prepared by Anodization Coupled with Impregnation Method. Chemosphere 2011, 83, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Vikrant, K.; Weon, S.; Kim, K.-H.; Sillanpää, M. Platinized Titanium Dioxide (Pt/TiO2) as a Multi-Functional Catalyst for Thermocatalysis, Photocatalysis, and Photothermal Catalysis for Removing Air Pollutants. Appl. Mater. Today 2021, 23, 100993. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Vaiano, V.; Ciambelli, P.; Sannino, D. Ethanol Partial Photoxidation on Pt/TiO2 Catalysts as Green Route for Acetaldehyde Synthesis. Catal. Today 2012, 196, 101–109. [Google Scholar] [CrossRef]
- Yurtsever, H.A.; Çiftçioğlu, M. The Effect of Rare Earth Element Doping on the Microstructural Evolution of Sol-Gel Titania Powders. J. Alloys Compd. 2017, 695, 1336–1353. [Google Scholar] [CrossRef]
- Korologos, C.A.; Nikolaki, M.D.; Zerva, C.N.; Philippopoulos, C.J.; Poulopoulos, S.G. Photocatalytic Oxidation of Benzene, Toluene, Ethylbenzene and m-Xylene in the Gas-Phase over TiO2-Based Catalysts. J. Photochem. Photobiol. A Chem. 2012, 244, 24–31. [Google Scholar] [CrossRef]
- Tobaldi, D.M.; Pullar, R.C.; Škapin, A.S.; Seabra, M.P.; Labrincha, J.A. Visible Light Activated Photocatalytic Behaviour of Rare Earth Modified Commercial TiO2. Mater. Res. Bull. 2014, 50, 183–190. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, Z.; Geng, J.; Wang, Q.; Yang, D. Carbon and Nitrogen Co-Doped TiO2 with Enhanced Visible-Light Photocatalytic Activity. Ind. Eng. Chem. Res. 2007, 46, 2741–2746. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Zhou, L.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Recent Advances in MOF-Derived Carbon-Based Nanomaterials for Environmental Applications in Adsorption and Catalytic Degradation. Chem. Eng. J. 2022, 427, 131503. [Google Scholar] [CrossRef]
- Nawaz, F.; Ali, M.; Ahmad, S.; Yong, Y.; Rahman, S.; Naseem, M.; Hussain, S.; Razzaq, A.; Khan, A.; Ali, F. Carbon Based Nanocomposites, Surface Functionalization as a Promising Material for VOCs (Volatile Organic Compounds) Treatment. Chemosphere 2024, 364, 143014. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.A.; Ikreedeegh, R.R.; Abd Aziz, A.; Zerga, A.Y.; Tahir, M. Carbon-Based Nanomaterials (CNMs) Modified TiO2 Nanotubes (TNTs) Photo-Driven Catalysts for Sustainable Energy and Environmental Applications: A Comprehensive Review. J. Environ. Chem. Eng. 2024, 364, 114088. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, J.; Sun, P.; Liu, J.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y. Nanomaterials for Treating Emerging Contaminants in Water by Adsorption and Photocatalysis: Systematic Review and Bibliometric Analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J. Activated Carbon as Photocatalyst of Reactions in Aqueous Phase. Appl. Catal. B Environ. 2013, 142, 694–704. [Google Scholar] [CrossRef]
- Zanella, O.; Tessaro, I.C.; Féris, L.A. Desorption- and Decomposition-Based Techniques for the Regeneration of Activated Carbon. Chem. Eng. Technol. 2014, 37, 1447–1459. [Google Scholar] [CrossRef]
- Ahmad, A.; Ali, M.; Al-Sehemi, A.G.; Al-Ghamdi, A.A.; Park, J.-W.; Algarni, H.; Anwer, H. Carbon-Integrated Semiconductor Photocatalysts for Removal of Volatile Organic Compounds in Indoor Environments. Chem. Eng. J. 2023, 452, 139436. [Google Scholar] [CrossRef]
- Muzarpar, M.S.; Leman, A.M.; Maghpor, N.; Hassan, N.N.M.; Misdana, N. The Adsorption Mechanism of Activated Carbon and Its Application-A Review. Int. J. Adv. Technol. Mech. Mechatron. Mater. 2020, 1, 118–124. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, H.; Niu, Q.; Fu, M.; Huang, H.; Ye, D. Microbial Targeted Degradation Pretreatment: A Novel Approach to Preparation of Activated Carbon with Specific Hierarchical Porous Structures, High Surface Areas, and Satisfactory Toluene Adsorption Performance. Environ. Sci. Technol. 2019, 53, 7632–7640. [Google Scholar] [CrossRef]
- Yang, X.; Yi, H.; Tang, X.; Zhao, S.; Yang, Z.; Ma, Y.; Feng, T.; Cui, X. Behaviors and Kinetics of Toluene Adsorption-Desorption on Activated Carbons with Varying Pore Structure. J. Environ. Sci. 2018, 67, 104–114. [Google Scholar] [CrossRef]
- Suresh, S.; Bandosz, T.J. Removal of Formaldehyde on Carbon-Based Materials: A Review of the Recent Approaches and Findings. Carbon 2018, 137, 207–221. [Google Scholar] [CrossRef]
- Hassan, M.F.; Sabri, M.A.; Fazal, H.; Hafeez, A.; Shezad, N.; Hussain, M. Recent Trends in Activated Carbon Fibers Production from Various Precursors and Applications—A Comparative Review. J. Anal. Appl. Pyrolysis 2020, 145, 104715. [Google Scholar] [CrossRef]
- Mangun, C.L.; Yue, Z.; Economy, J.; Maloney, S.; Kemme, P.; Cropek, D. Adsorption of Organic Contaminants from Water Using Tailored ACFs. Chem. Mater. 2001, 13, 2356–2360. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.-S. Effect of Titanium Dioxide Properties and Support Material on Photocatalytic Oxidation of Indoor Air Pollutants. Build. Environ. 2021, 189, 107518. [Google Scholar] [CrossRef]
- Yu, Y.; Jimmy, C.Y.; Yu, J.-G.; Kwok, Y.-C.; Che, Y.-K.; Zhao, J.-C.; Ding, L.; Ge, W.-K.; Wong, P.-K. Enhancement of Photocatalytic Activity of Mesoporous TiO2 by Using Carbon Nanotubes. Appl. Catal. A Gen. 2005, 289, 186–196. [Google Scholar] [CrossRef]
- Gao, E.; Wang, W.; Shang, M.; Xu, J. Synthesis and Enhanced Photocatalytic Performance of Graphene-Bi2WO6 Composite. Phys. Chem. Chem. Phys. 2011, 13, 2887–2893. [Google Scholar] [CrossRef]
- Buron, J.D.; Pizzocchero, F.; Jepsen, P.U.; Petersen, D.H.; Caridad, J.M.; Jessen, B.S.; Booth, T.J.; Bøggild, P. Graphene Mobility Mapping. Sci. Rep. 2015, 5, 12305. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Yuan, X.; Guo, J.; Tang, N.; Ye, S.; Liang, J.; Jiang, L. Selective Graphene-like Metal-Free 2D Nanomaterials and Their Composites for Photocatalysis. Chemosphere 2021, 284, 131254. [Google Scholar] [CrossRef] [PubMed]
- Compton, O.C.; Nguyen, S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced Graphene Oxide Today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Greco, E.; Shang, J.; Zhu, J.; Zhu, T. Synthesis of Polyacetylene-like Modified Graphene Oxide Aerogel and Its Enhanced Electrical Properties. ACS Omega 2019, 4, 20948–20954. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Garaj, S.; Bianco, A.; Ménard-Moyon, C. Controlling Covalent Chemistry on Graphene Oxide. Nat. Rev. Phys. 2022, 4, 247–262. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on G-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Patnaik, S.; Sahoo, D.P.; Parida, K. Recent Advances in Anion Doped G-C3N4 Photocatalysts: A Review. Carbon 2021, 172, 682–711. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, G.; Dang, M.; Dong, S.; Liu, Y.; Liu, T.; Ren, H.; Xia, A.; Lv, L. Study on Surface Modification of G-C3N4 Photocatalyst. J. Alloys Compd. 2022, 908, 164507. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. Recent Advances in G-C3N4-Based Heterojunction Photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17. [Google Scholar] [CrossRef]
- Han, M.; Zhu, S.; Lu, S.; Song, Y.; Feng, T.; Tao, S.; Liu, J.; Yang, B. Recent Progress on the Photocatalysis of Carbon Dots: Classification, Mechanism and Applications. Nano Today 2018, 19, 201–218. [Google Scholar] [CrossRef]
- Domingo-Tafalla, B.; Martínez-Ferrero, E.; Franco, F.; Palomares-Gil, E. Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO2. Molecules 2022, 27, 1081. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, C.; Du, X.; Zhu, Y.; Li, S.; Liu, X.; Liang, C.; Yu, Q.; Huang, L.; Yang, K. Recent Progress of Carbon Dots for Air Pollutants Detection and Photocatalytic Removal: Synthesis, Modifications, and Applications. Small 2022, 18, 2200744. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Sargin, I.; Yanalak, G.; Arslan, G.; Patir, I.H. Green Synthesized Carbon Quantum Dots as TiO2 Sensitizers for Photocatalytic Hydrogen Evolution. Int. J. Hydrog. Energy 2019, 44, 21781–21789. [Google Scholar] [CrossRef]
- Jia, J.; Jiang, C.; Zhang, X.; Li, P.; Xiong, J.; Zhang, Z.; Wu, T.; Wang, Y. Urea-Modified Carbon Quantum Dots as Electron Mediator Decorated g-C3N4/WO3 with Enhanced Visible-Light Photocatalytic Activity and Mechanism Insight. Appl. Surf. Sci. 2019, 495, 143524. [Google Scholar] [CrossRef]
- Dimos, K. Carbon Quantum Dots: Surface Passivation and Functionalization. Curr. Org. Chem. 2016, 20, 682–695. [Google Scholar] [CrossRef]
- Yu, J.; Caravaca, A.; Guillard, C.; Vernoux, P.; Zhou, L.; Wang, L.; Lei, J.; Zhang, J.; Liu, Y. Carbon Nitride Quantum Dots Modified TiO2 Inverse Opal Photonic Crystal for Solving Indoor Vocs Pollution. Catalysts 2021, 11, 464. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Res Lett 2017, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Szilágyi, I.M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K. WO3 Photocatalysts: Influence of Structure and Composition. J. Catal. 2012, 294, 119–127. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Abdullah, C.A.C.; Chung, E.L.T.; Andou, Y. Recent Progress in Visible Light-Doped ZnO Photocatalyst for Pollution Control. Int. J. Environ. Sci. Technol. 2023, 20, 5753–5772. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent Progress on Doped ZnO Nanostructures for Visible-Light Photocatalysis. Thin Solid Film. 2016, 605, 2–19. [Google Scholar] [CrossRef]
- Qin, R.; Meng, F.; Khan, M.W.; Yu, B.; Li, H.; Fan, Z.; Gong, J. Fabrication and Enhanced Photocatalytic Property of TiO2-ZnO Composite Photocatalysts. Mater. Lett. 2019, 240, 84–87. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Z.; Ren, T.; Ding, H.; Yao, W.; Zong, R.; Zhu, Y. Influence of Defects on the Photocatalytic Activity of ZnO. J. Phys. Chem. C 2014, 118, 15300–15307. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Li, Z.; Shiue, A.; Chao, Y.-H.; Leggett, G. Evaluation of Foamed Nickel Photocatalytic Filters for an Air Cleaner on Removal of Formaldehyde in the Indoor Environment. Optik 2021, 244, 167550. [Google Scholar] [CrossRef]
- Feng, S.; Li, D.; Low, Z.; Liu, Z.; Zhong, Z.; Hu, Y.; Wang, Y.; Xing, W. ALD-Seeded Hydrothermally-Grown Ag/ZnO Nanorod PTFE Membrane as Efficient Indoor Air Filter. J. Membr. Sci. 2017, 531, 86–93. [Google Scholar] [CrossRef]
- Wu, C. Facile One-Step Synthesis of N-Doped ZnO Micropolyhedrons for Efficient Photocatalytic Degradation of Formaldehyde under Visible-Light Irradiation. Appl. Surf. Sci. 2014, 319, 237–243. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Zhang, P. Graphene-Assisted Photothermal Effect on Promoting Catalytic Activity of Layered MnO2 for Gaseous Formaldehyde Oxidation. Appl. Catal. B Environ. 2018, 239, 77–85. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Li, J.; Jiang, C.; Yunus, R.; Kim, J. Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water. Environ. Sci. Technol. 2015, 49, 12372–12379. [Google Scholar] [CrossRef] [PubMed]
- Luévano-Hipólito, E.; Martínez-De La Cruz, A.; López-Cuellar, E.; Yu, Q.L.; Brouwers, H.J.H. Synthesis, Characterization and Photocatalytic Activity of WO3/TiO2 for NO Removal under UV and Visible Light Irradiation. Mater. Chem. Phys. 2014, 148, 208–213. [Google Scholar] [CrossRef]
- Huang, Y.; Long, B.; Tang, M.; Rui, Z.; Balogun, M.-S.; Tong, Y.; Ji, H. Bifunctional Catalytic Material: An Ultrastable and High-Performance Surface Defect CeO2 Nanosheets for Formaldehyde Thermal Oxidation and Photocatalytic Oxidation. Appl. Catal. B Environ. 2016, 181, 779–787. [Google Scholar] [CrossRef]
- Lu, C.-C.; Alshahrani, T.; Wu, R.-J.; Fegade, U.; Jethave, G.; Al-Ahmed, A.; Khan, F.; Kolate, S. Synthesis of CeO2–BiVO4 Nano Photocatalyst Material and Used for the Degradation of Gaseous Formaldehyde. Opt. Mater. 2023, 144, 114310. [Google Scholar] [CrossRef]
- Kumar, S.; Bhattacharya, B. Variation of Band Gap in CdPbS with Composition Prepared by a Precipitation Technique. 2005. Available online: https://nopr.niscpr.res.in/handle/123456789/8844 (accessed on 3 February 2025).
- Fermín, D.J.; Ponomarev, E.A.; Peter, L.M. A Kinetic Study of CdS Photocorrosion by Intensity Modulated Photocurrent and Photoelectrochemical Impedance Spectroscopy. J. Electroanal. Chem. 1999, 473, 192–203. [Google Scholar] [CrossRef]
- Hernández-Torres, M.; Ojeda-Carrera, M.; Sánchez-Cantú, M.; Silva-González, N.; Gracia-Jiménez, J. CdS/TiO2 Composite Films for Methylene Blue Photodecomposition under Visible Light Irradiation and Non-Photocorrosion of Cadmium Sulfide. Chem. Pap. 2014, 68, 1257–1264. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, P.; Wang, S.; Gao, Y.; Chen, F.; Zheng, F.; Liu, Y.; Dai, Y. Photocatalytic Degradation of Gaseous Benzene with CdS-Sensitized TiO2 Film Coated on Fiberglass Cloth. J. Mol. Catal. A Chem. 2012, 363, 159–165. [Google Scholar] [CrossRef]
- Dong, W.; Pan, F.; Xu, L.; Zheng, M.; Sow, C.H.; Wu, K.; Xu, G.Q.; Chen, W. Facile Synthesis of CdS@ TiO2 Core–Shell Nanorods with Controllable Shell Thickness and Enhanced Photocatalytic Activity under Visible Light Irradiation. Appl. Surf. Sci. 2015, 349, 279–286. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, Q.; Al-Enizi, A.M.; Nafady, A.; Ma, S. Recent Advances in MOF-Based Photocatalysis: Environmental Remediation under Visible Light. Inorg. Chem. Front. 2020, 7, 300–339. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, F.; Luo, D.; Huang, J.; Ouyang, J.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Peng, Y. Recent Advances in Ti-Based MOFs in Biomedical Applications. Dalton Trans. 2022, 51, 14817–14832. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-Based Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhang, Y.; Zhang, Z.; Zhou, L.; Yu, G.; Wen, X.; Chi, T.; Wang, G.; Su, Y.; Deng, F. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Organic Pollutants Removal via Photo-Fenton: A Review. Chem. Eng. J. 2022, 431, 133932. [Google Scholar] [CrossRef]
- Kong, L.; Chen, Q.; Shen, X.; Xu, Z.; Xu, C.; Ji, Z.; Zhu, J. MOF Derived Nitrogen-Doped Carbon Polyhedrons Decorated on Graphitic Carbon Nitride Sheets with Enhanced Electrochemical Capacitive Energy Storage Performance. Electrochim. Acta 2018, 265, 651–661. [Google Scholar] [CrossRef]
- Wang, C.-C.; Wang, X.; Liu, W. The Synthesis Strategies and Photocatalytic Performances of TiO2/MOFs Composites: A State-of-the-Art Review. Chem. Eng. J. 2020, 391, 123601. [Google Scholar] [CrossRef]
- Gupta, N.K.; Bae, J.; Kim, S.; Kim, K.S. Fabrication of Zn-MOF/ZnO Nanocomposites for Room Temperature H2S Removal: Adsorption, Regeneration, and Mechanism. Chemosphere 2021, 274, 129789. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Li, Z.; García, H. Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chem. A Eur. J. 2017, 23, 11189–11209. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Lin, Y.; Li, W.; Ju, M. Photocatalytic Degradation of Organic Pollutants by MOFs Based Materials: A Review. Chin. Chem. Lett. 2021, 32, 2975–2984. [Google Scholar] [CrossRef]
- Wen, M.; Mori, K.; Kuwahara, Y.; An, T.; Yamashita, H. Design and Architecture of Metal Organic Frameworks for Visible Light Enhanced Hydrogen Production. Appl. Catal. B Environ. 2017, 218, 555–569. [Google Scholar] [CrossRef]
- Yao, T.; Tan, Y.; Zhou, Y.; Chen, Y.; Xiang, M. Preparation of Core-Shell MOF-5/Bi2WO6 Composite for the Enhanced Photocatalytic Degradation of Pollutants. J. Solid State Chem. 2022, 308, 122882. [Google Scholar] [CrossRef]
- Dai, H.; Yuan, X.; Jiang, L.; Wang, H.; Zhang, J.; Zhang, J.; Xiong, T. Recent Advances on ZIF-8 Composites for Adsorption and Photocatalytic Wastewater Pollutant Removal: Fabrication, Applications and Perspective. Coord. Chem. Rev. 2021, 441, 213985. [Google Scholar] [CrossRef]
- Zhang, Z.; Xian, S.; Xi, H.; Wang, H.; Li, Z. Improvement of CO2 Adsorption on ZIF-8 Crystals Modified by Enhancing Basicity of Surface. Chem. Eng. Sci. 2011, 66, 4878–4888. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Zeolitic Imidazolate Frameworks (ZIF-8, ZIF-67, and ZIF-L) for Hydrogen Production. Appl. Organom Chemis 2021, 35, e6319. [Google Scholar] [CrossRef]
- Rahmani, A.; Emrooz, H.B.M.; Abedi, S.; Morsali, A. Synthesis and Characterization of CdS/MIL-125 (Ti) as a Photocatalyst for Water Splitting. Mater. Sci. Semicond. Process. 2018, 80, 44–51. [Google Scholar] [CrossRef]
- Kampouri, S.; Nguyen, T.N.; Spodaryk, M.; Palgrave, R.G.; Züttel, A.; Smit, B.; Stylianou, K.C. Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MIL-125-NH 2 under Visible Light Irradiation. Adv. Funct. Mater. 2018, 28, 1806368. [Google Scholar] [CrossRef]
- Gul Zaman, H.; Baloo, L.; Kutty, S.R.; Aziz, K.; Altaf, M.; Ashraf, A.; Aziz, F. Insight into Microwave-Assisted Synthesis of the Chitosan-MOF Composite: Pb(II) Adsorption. Environ. Sci. Pollut. Res. 2023, 30, 6216–6233. [Google Scholar] [CrossRef]
- Ao, D.; Zhang, J.; Liu, H. Visible-Light-Driven Photocatalytic Degradation of Pollutants over Cu-Doped NH2-MIL-125 (Ti). J. Photochem. Photobiol. A Chem. 2018, 364, 524–533. [Google Scholar] [CrossRef]
- Solís, R.R.; Gómez-Avilés, A.; Belver, C.; Rodriguez, J.J.; Bedia, J. Microwave-Assisted Synthesis of NH2-MIL-125 (Ti) for the Solar Photocatalytic Degradation of Aqueous Emerging Pollutants in Batch and Continuous Tests. J. Environ. Chem. Eng. 2021, 9, 106230. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, H.-S.; Lin, W.-Y.; Chen, Y.-W.; Teng, D.; Cong, X.-S. Enhanced Adsorption–Photocatalytic Degradation of Organic Pollutants via a ZIF-67-Derived Co–N Codoped Carbon Matrix Catalyst. ACS Omega 2022, 7, 40882–40891. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, Z.; Zhao, T. Performance of ZIF-67–Derived Fold Polyhedrons for Enhanced Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2020, 382, 123051. [Google Scholar] [CrossRef]
- Karmakar, S.; Barman, S.; Rahimi, F.A.; Maji, T.K. Covalent Grafting of Molecular Photosensitizer and Catalyst on MOF-808: Effect of Pore Confinement toward Visible Light-Driven CO2 Reduction in Water. Energy Environ. Sci. 2021, 14, 2429–2440. [Google Scholar] [CrossRef]
- Luo, H.; Feng, M.; Wang, W.; Li, X.; Li, X.; Yang, S. CdS QDs Interspersed onto MOF-808 as Adsorptive Photocatalyst for Efficient Visible-Light Driven Degradation of Ciprofloxacin. J. Alloys Compd. 2024, 988, 174247. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Z.; Ma, Y.; Zhou, G.; Wang, S.; Lu, G. The Studies on Gas Adsorption Properties of MIL-53 Series MOFs Materials. AIP Adv. 2017, 7, 085009. [Google Scholar] [CrossRef]
- Du, J.-J.; Yuan, Y.-P.; Sun, J.-X.; Peng, F.-M.; Jiang, X.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. New Photocatalysts Based on MIL-53 Metal–Organic Frameworks for the Decolorization of Methylene Blue Dye. J. Hazard. Mater. 2011, 190, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, S.; Li, Y.; Yao, L.; Zhang, H. Accelerated Photocatalytic Degradation of Organic Pollutant over Metal-Organic Framework MIL-53 (Fe) under Visible LED Light Mediated by Persulfate. Appl. Catal. B Environ. 2017, 202, 165–174. [Google Scholar] [CrossRef]
- He, H.; Li, R.; Yang, Z.; Chai, L.; Jin, L.; Alhassan, S.I.; Ren, L.; Wang, H.; Huang, L. Preparation of MOFs and MOFs Derived Materials and Their Catalytic Application in Air Pollution: A Review. Catal. Today 2021, 375, 10–29. [Google Scholar] [CrossRef]
- Mosconi, E.; Umari, P.; De Angelis, F. Electronic and Optical Properties of MAPbX 3 Perovskites (X= I, Br, Cl): A Unified DFT and GW Theoretical Analysis. Phys. Chem. Chem. Phys. 2016, 18, 27158–27164. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.K.; Cho, J.; Hur, J. A Critical Review on Strategies for Improving Efficiency of BaTiO3-Based Photocatalysts for Wastewater Treatment. J. Environ. Manag. 2021, 290, 112679. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhou, Y.; Hosono, H.; Kamiya, T.; Padture, N.P. Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications. Chem. A Eur. J. 2018, 24, 2305–2316. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lin, Y.; Ma, M.; Wang, Q.; Zhang, M.; Li, J.; Maheskumar, V.; Wang, Z.; Jiang, Z.; Zhang, R. Effect of Pressure on Photocatalytic Water Splitting Performance of Z-Scheme RP/CH3NH3PbI3 Perovskite Heterostructure. Int. J. Hydrog. Energy 2022, 47, 8091–8104. [Google Scholar] [CrossRef]
- Bresolin, B.M. Synthesis and Performance of Metal-Halide Perovskites as New Visible Light Photocatalysts. 2021. Available online: https://lutpub.lut.fi/handle/10024/162090 (accessed on 3 February 2025).
- Zhao, Y.; Wang, Y.; Liang, X.; Shi, H.; Wang, C.; Fan, J.; Hu, X.; Liu, E. Enhanced Photocatalytic Activity of Ag-CsPbBr3/CN Composite for Broad Spectrum Photocatalytic Degradation of Cephalosporin Antibiotics 7-ACA. Appl. Catal. B Environ. 2019, 247, 57–69. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Jiang, Y.; Xu, J. Step-Scheme Photocatalyst of CsPbBr 3 Quantum Dots/BiOBr Nanosheets for Efficient CO2 Photoreduction. Inorg. Chem. 2022, 61, 3351–3360. [Google Scholar] [CrossRef]
- Zhou, D.-Y.; Su, W.-T.; Li, X.-Y.; Hong, T.; Pan, G.-Y.; Xu, M.-L.; Liu, F.-T.; Li, K. Self-Assembly of MAPbBr3/Pb-MOF Heterostructures with Enhanced Photocatalytic CO2 Reduction Performance and Stability. J. Mater. Chem. C 2023, 11, 15700–15705. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, J.; Liu, Y.; Wei, C.; Zhang, H.; Wang, Q. Zn-Alloyed MAPbBr3 Crystals with Improved Thermoelectric and Photocatalytic Properties. Mater. Chem. Front. 2021, 5, 8319–8332. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, J.; Zheng, Y.-Z.; Li, N.; Li, X.; Ye, Z.; Lu, S.; Tao, X.; Chen, C. Stable Hybrid Perovskite MAPb (I1−xBrx)3 for Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2019, 253, 41–48. [Google Scholar] [CrossRef]
- He, Z.; Tang, Q.; Liu, X.; Yan, X.; Li, K.; Yue, D. Lead-Free Cs2AgBiBr6 Perovskite with Enriched Surface Defects for Efficient Photocatalytic Hydrogen Evolution. Energy Fuels 2021, 35, 15005–15009. [Google Scholar] [CrossRef]
- Wang, B.; Yao, S.; Peng, Y.; Xu, Y. Toluene Removal over TiO2-BaTiO3 Catalysts in an Atmospheric Dielectric Barrier Discharge. J. Environ. Chem. Eng. 2018, 6, 3819–3826. [Google Scholar] [CrossRef]
- Dasireddy, V.D.; Likozar, B. Photocatalytic CO2 Reduction to Methanol over Bismuth Promoted BaTiO3 Perovskite Nanoparticle Catalysts. Renew. Energy 2022, 195, 885–895. [Google Scholar] [CrossRef]
- Shan, J.; Raziq, F.; Humayun, M.; Zhou, W.; Qu, Y.; Wang, G.; Li, Y. Improved Charge Separation and Surface Activation via Boron-Doped Layered Polyhedron SrTiO3 for Co-Catalyst Free Photocatalytic CO2 Conversion. Appl. Catal. B Environ. 2017, 219, 10–17. [Google Scholar] [CrossRef]
- Mai, X.T.; Bui, D.N.; Pham, V.K.; Nguyen, T.H.L.; Nguyen, T.T.L.; Chau, H.D.; Tran, T.K.N. Effect of CuO Loading on the Photocatalytic Activity of SrTiO3 for Hydrogen Evolution. Inorganics 2022, 10, 130. [Google Scholar] [CrossRef]
- Chang, C.-W.; Hu, C. Graphene Oxide-Derived Carbon-Doped SrTiO3 for Highly Efficient Photocatalytic Degradation of Organic Pollutants under Visible Light Irradiation. Chem. Eng. J. 2020, 383, 123116. [Google Scholar] [CrossRef]
- Krukowska, A.; Trykowski, G.; Lisowski, W.; Klimczuk, T.; Winiarski, M.J.; Zaleska-Medynska, A. Monometallic Nanoparticles Decorated and Rare Earth Ions Doped KTaO3/K2Ta2O6 Photocatalysts with Enhanced Pollutant Decomposition and Improved H2 Generation. J. Catal. 2018, 364, 371–381. [Google Scholar] [CrossRef]
- Sasahara, A.; Kimura, K.; Sudrajat, H.; Happo, N.; Hayashi, K.; Onishi, H. KTaO3 Wafers Doped with Sr or La Cations for Modeling Water-Splitting Photocatalysts: 3D Atom Imaging around Doping Cations. J. Phys. Chem. C 2022, 126, 19745–19755. [Google Scholar] [CrossRef]
- Różańska, A.; Namieśnik, J. KTaO3 a Perovskite for Water and Air Treatment. World Sci. News 2017, 75, 73–80. [Google Scholar]
- Dias, J.A.; Andrade, M.A.S.; Santos, H.L.S.; Morelli, M.R.; Mascaro, L.H. Lanthanum-Based Perovskites for Catalytic Oxygen Evolution Reaction. ChemElectroChem 2020, 7, 3173–3192. [Google Scholar] [CrossRef]
- Zhang, L.; Nie, Y.; Hu, C.; Qu, J. Enhanced Fenton Degradation of Rhodamine B over Nanoscaled Cu-Doped LaTiO3 Perovskite. Appl. Catal. B Environ. 2012, 125, 418–424. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, M.; Wu, X.; Qin, W. Comparison of Carrier Dynamic Behavior and Photocatalytic Molecular Oxygen Activation of Optimized MAPbX3 (X = I, Br). J. Environ. Chem. Eng. 2020, 8, 104241. [Google Scholar] [CrossRef]
- Yang, R.; Fan, Y.; Zhang, Y.; Mei, L.; Zhu, R.; Qin, J.; Hu, J.; Chen, Z.; Hau Ng, Y.; Voiry, D.; et al. 2D Transition Metal Dichalcogenides for Photocatalysis. Angew. Chem. 2023, 135, e202218016. [Google Scholar] [CrossRef]
- Cao, Y. Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts. ACS Nano 2021, 15, 11014–11039. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Modak, A.; Pant, K.K.; Sinhamahapatra, A.; Biswas, P. MoS2–Nanosheets-Based Catalysts for Photocatalytic CO2 Reduction: A Review. ACS Appl. Nano Mater. 2021, 4, 8644–8667. [Google Scholar] [CrossRef]
- Amaral, L.O.; Daniel-da-Silva, A.L. MoS2 and MoS2 Nanocomposites for Adsorption and Photodegradation of Water Pollutants: A Review. Molecules 2022, 27, 6782. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Zhou, Q.; Hu, X. WS2 Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. Environ. Sci. Technol. 2020, 54, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Ismail, P.M.; Ali, S.; Raziq, F.; Bououdina, M.; Abu-Farsakh, H.; Xia, P.; Wu, X.; Xiao, H.; Ali, S.; Qiao, L. Stable and Robust Single Transition Metal Atom Catalyst for CO2 Reduction Supported on Defective WS2. Appl. Surf. Sci. 2023, 624, 157073. [Google Scholar] [CrossRef]
- Cheng, L.; Huang, W.; Gong, Q.; Liu, C.; Liu, Z.; Li, Y.; Dai, H. Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 7860–7863. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Choi, S.; Jeon, J.-M.; Kwon, K.C.; Jang, H.W.; Kim, S.Y. Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2016, 120, 3929–3935. [Google Scholar] [CrossRef]
- Telkhozhayeva, M.; Hirsch, B.; Konar, R.; Teblum, E.; Lavi, R.; Weitman, M.; Malik, B.; Moretti, E.; Nessim, G.D. 2D TiS2 Flakes for Tetracycline Hydrochloride Photodegradation under Solar Light. Appl. Catal. B Environ. 2022, 318, 121872. [Google Scholar] [CrossRef]
- Yang, S.; Shao, C.; Zhou, X.; Li, X.; Tao, R.; Li, X.; Liu, S.; Liu, Y. MoSe2/TiO2 Nanofibers for Cycling Photocatalytic Removing Water Pollutants under UV–Vis–NIR Light. ACS Appl. Nano Mater. 2020, 3, 2278–2287. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Gao, T.; Yao, T.; Zhang, X.; Han, J.; Wang, X.; Zhang, Z.; Xu, P.; Zhang, P.; et al. Synergistic Phase and Disorder Engineering in 1T-MoSe2 Nanosheets for Enhanced Hydrogen-Evolution Reaction. Adv. Mater. 2017, 29, 1700311. [Google Scholar] [CrossRef]
- Singh, A.; Rohilla, J.; Hassan, M.S.; Ingole, P.P.; Santra, P.K.; Ghosh, D.; Sapra, S. MoSe2/SnS Nanoheterostructures for Water Splitting. ACS Appl. Nano Mater. 2022, 5, 4293–4304. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Wang, Y.; Laleyan, D.A.; Wu, Y.; Ouyang, B.; Ou, P.; Song, J.; Mi, Z. Wafer-Scale Synthesis of Monolayer WSe2: A Multi-Functional Photocatalyst for Efficient Overall Pure Water Splitting. Nano Energy 2018, 51, 54–60. [Google Scholar] [CrossRef]
- Madkhali, O. WSe2–PPy-Based Type-II Heterostructure for Efficient Photocatalytic Removal of Nitrofurazone. Langmuir 2024, 40, 18525–18534. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Davey, K.; Qiao, S. Advent of 2D Rhenium Disulfide (ReS2): Fundamentals to Applications. Adv Funct Mater. 2017, 27, 1606129. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Imae, T.; Miras, J.; Esquena, J. Synthesis and Azo Dye Photodegradation Activity of ZrS2–ZnO Nano-Composites. Sep. Purif. Technol. 2014, 132, 281–288. [Google Scholar] [CrossRef]
- Som, N.N.; Jha, P.K. Hydrogen Evolution Reaction of Metal Di-Chalcogenides: ZrS2, ZrSe2 and Janus ZrSSe. Int. J. Hydrog. Energy 2020, 45, 23920–23927. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, S.K.; Sonvane, Y.; Kumar, A.; Ahuja, R. 2D-HfS2 as an Efficient Photocatalyst for Water Splitting. Catal. Sci. Technol. 2016, 6, 6605–6614. [Google Scholar] [CrossRef]
- Cheng, J.; Jiang, H.; Cai, L.; Pan, F.; Shi, Y.; Wang, X.; Zhang, X.; Lu, S.; Yang, Y.; Li, L. Porous N-Doped C/VB-Group VS2 Composites Derived from Perishable Garbage to Synergistically Solve the Environmental and Electromagnetic Pollution. Chem. Eng. J. 2023, 457, 141208. [Google Scholar] [CrossRef]
- Zhong, X.; Tang, J.; Wang, J.; Shao, M.; Chai, J.; Wang, S.; Yang, M.; Yang, Y.; Wang, N.; Wang, S. 3D Heterostructured Pure and N-Doped Ni3S2/VS2 Nanosheets for High Efficient Overall Water Splitting. Electrochim. Acta 2018, 269, 55–61. [Google Scholar] [CrossRef]
- Kovacic, M.; Papac, J.; Kusic, H.; Karamanis, P.; Bozic, A.L. Degradation of Polar and Non-Polar Pharmaceutical Pollutants in Water by Solar Assisted Photocatalysis Using Hydrothermal TiO2-SnS2. Chem. Eng. J. 2020, 382, 122826. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Zhao, L.; Guo, L.-H.; Zhang, H.; Chen, F.-J.; Yu, W.-C. Roles of Reactive Oxygen Species (ROS) in the Photocatalytic Degradation of Pentachlorophenol and Its Main Toxic Intermediates by TiO2/UV. J. Hazard. Mater. 2019, 369, 719–726. [Google Scholar] [CrossRef]
- Wang, W.-L.; Wu, Q.-Y.; Huang, N.; Xu, Z.-B.; Lee, M.-Y.; Hu, H.-Y. Potential Risks from UV/H2O2 Oxidation and UV Photocatalysis: A Review of Toxic, Assimilable, and Sensory-Unpleasant Transformation Products. Water Res. 2018, 141, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Fukuzumi, S.; Ohkubo, K. Selective Photocatalytic Reactions with Organic Photocatalysts. Chem. Sci. 2013, 4, 561–574. [Google Scholar] [CrossRef]
- Lazar, M.A.; Daoud, W.A. Achieving Selectivity in TiO 2-Based Photocatalysis. RSC Adv. 2013, 3, 4130–4140. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, A.R.; Hernández-Rodríguez, Y.M.; Cigarroa-Mayorga, O.E. Degradation of ZnO Nanostructures Interface by Effect of Photocatalytic Activity in Methylene Blue. In Proceedings of the 2021 IEEE International Summer Power Meeting/International Meeting on Communications and Computing (RVP-AI/ROC&C), Acapulco, Mexico, 14–18 November 2021; pp. 1–5. [Google Scholar]
- Abela, S.; Farrugia, C.; Xuereb, R.; Lia, F.; Zammit, E.; Rizzo, A.; Refalo, P.; Grech, M. Photocatalytic Activity of Titanium Dioxide Nanotubes Following Long-Term Aging. Nanomaterials 2021, 11, 2823. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Relinque, E.; Grande, M.; Duran, T.; Castillo, Á.; Castellote, M. Environmental Impact of Nano-Functionalized Construction Materials: Leaching of Titanium and Nitrates from Photocatalytic Pavements under Outdoor Conditions. Sci. Total Environ. 2020, 744, 140817. [Google Scholar] [CrossRef]
- Brovelli, C.; Crispino, M. Photocatalytic Suspension for Road Pavements: Investigation on Wearing and Contaminant Effects. J. Mater. Civ. Eng. 2013, 25, 548–554. [Google Scholar] [CrossRef]
- Hassan, M.M.; Dylla, H.; Mohammad, L.N.; Rupnow, T. Evaluation of the Durability of Titanium Dioxide Photocatalyst Coating for Concrete Pavement. Constr. Build. Mater. 2010, 24, 1456–1461. [Google Scholar] [CrossRef]
- Wei, Y.; Meng, H.; Wu, Q.; Bai, X.; Zhang, Y. TiO2-Based Photocatalytic Building Material for Air Purification in Sustainable and Low-Carbon Cities: A Review. Catalysts 2023, 13, 1466. [Google Scholar] [CrossRef]
- Sukawaputri, A.M.; Fauziah, I.A.N.; Lestari, I.P.; Arindita, N.P.Y.; Pratiwi, R.N.; Hofifah, S.N.; Nandiyanto, A.B.D. Economic Evaluation of the Production of Titanium Dioxide (TiO2) Nanoparticles Using the Simple Aqueous Peroxo Route Method. Int. J. Energetica 2020, 5, 12–17. [Google Scholar]
- Nandiyanto, A.B.D.; Ragadhita, H.N.P.R.; Soegoto, S.W. Cost Analysis and Economic Evaluation for TiO2 Synthesis Using Sol-Gel Method. Moroc. J. Chem. 2022, 10, 13–21. [Google Scholar]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Michałek, T.; Hessel, V.; Wojnicki, M. Production, Recycling and Economy of Palladium: A Critical Review. Materials 2023, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- da Costa, G.M.; Hussain, C.M. Ethical, Legal, Social and Economics Issues of Graphene. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 91, pp. 263–279. [Google Scholar]
- Reches, Y. Nanoparticles as Concrete Additives: Review and Perspectives. Constr. Build. Mater. 2018, 175, 483–495. [Google Scholar] [CrossRef]
- Seremak, W.; Jasiorski, M.; Baszczuk, A.; Winnicki, M. Durability Assessment of Low-Pressure Cold-Sprayed TiO2 Photocatalytic Coatings: Photocatalytic and Mechanical Stability. Surf. Coat. Technol. 2025, 497, 131740. [Google Scholar] [CrossRef]
Category | Key Points | Ref. |
---|---|---|
Residential | Key factors include heating systems, building materials, age of buildings, and ventilation systems. | [24,36,37,38,39,40,41,42,43] |
Urban homes are prone to outdoor pollutants (e.g., NOx, SO2, PM) infiltrating indoor spaces. | ||
Poor Indoor Air Quality (IAQ) results from both indoor and outdoor pollutants, including vehicle emissions, dust, and combustion fumes. | ||
COVID-19 lockdowns increased indoor pollutant exposure (e.g., VOCs, particulate matter, microbes). | ||
Prolonged confinement and remote work highlighted the need for healthy IAQ and pollutant control in homes | ||
Offices and commercial settings | Like for residential buildings, IAQ in offices affects health and well-being, but also productivity. | [44,45,46,47,48,49,50,51] |
Common pollutants include VOCs from office equipment (e.g., printers, copiers), PM, CO2, and biological contaminants. | ||
Pollutant sources include furnishings, cleaning agents, air fresheners, and external urban pollutants. | ||
Poorly maintained HVAC systems, more common in commercial settings, exacerbate IAQ issues. | ||
Good IAQ improves cognitive function, reduces absenteeism, and aligns with corporate social responsibility goals. | ||
Investment in IAQ offers health and economic benefits | ||
Industrial Environments | High pollutant concentrations due to manufacturing, machinery, and chemical use. | [52,53,54,55,56,57] |
Key pollutants: PM, VOCs, heavy metals, CO, SO2, NOx, and biological contaminants. | ||
PM originates from material handling, grinding, cutting, and welding. | ||
VOCs are released during painting, coating, and solvent use. | ||
Combustion processes emit CO and NOx, posing severe health risks. | ||
Strategies include compliance with occupational health standards and improved air quality management. | ||
Publication transportation | IAQ in public transport depends on factors like vehicle type (e.g., buses, trains, subways), ventilation, passenger density, and outdoor pollution exposure. | [58,59,60,61,62,63] |
Pollutants: PM, CO2, VOCs, NOx, and biological contaminants. | ||
Subways in particular have higher levels of PM due to friction from brakes, wheels, and rails. | ||
Buses and trains are exposed to outdoor pollution often allow infiltration of vehicle emissions. | ||
Crowded conditions increase bioaerosol concentrations (e.g., bacteria, viruses). | ||
Solutions include effective ventilation, air purification systems, and regular cleaning. |
Substance | Found in | Effects | References |
---|---|---|---|
Benzene | Cigarette smoke, cleaning products, building materials, furniture, heating systems | Headaches, insomnia, nausea, fatigue, acute myeloid leukemia and genotoxic effects. Chronic exposure can be fatal | [39,40,41] |
Ethylene glycol | Antifreeze and de-icing solutions, paints, cleaning agents | Headaches, dizziness, metabolic acidosis, kidney damage. Chronic exposure can lead to respiratory issues and central nervous system effects | [42,43,44] |
Formaldehyde | Combustion, wooden furniture, textiles, insulating materials, paints, wallpapers, and adhesives | Headaches, dizziness, nausea, eye and skin irritation, nasal tumors, chronic bronchitis | [45,46,47] |
Acetaldehyde | silvering of mirrors, chemical in the paper industry, fuel mixtures, glue production and denaturant for alcohol | Irritation of eyes, nose, throat and respiratory tract, drunkenness, chronic respiratory irritation, upper respiratory tract cancer, chemical burns | [48,49,50] |
Methylene chloride | Paint strippers, adhesives, and aerosol products | Dizziness, headaches, nausea, central nervous system depression and cancer | [51,52,53] |
Tetrachloroethylene | Solvent in dry cleaning and degreasing | Dizziness, headaches, nausea respiratory problems, kidney damage and cancer | [54,55,56] |
Toluene | Solvent in coatings and paints | Nausea, headache, vertigo, detrimental effects on the nervous system, kidney and liver | [57,58,59] |
Xylene | solvent used in the printing, rubber, and leather industries, paints, varnishes, and cleaning agents | Headaches, dizziness, and respiratory issues upon exposure. May affect the central nervous system, liver and kidney damage | [60,61,62] |
1,3-Butadiene | used in the production of synthetic rubber and plastics | respiratory irritation and headaches, increased risk of cancer | [63,64,65] |
Glycol Ethers | solvents commonly found in paints, cleaning agents, and coatings | respiratory irritation and reproductive toxicity | [66,67,68] |
Limonene and other “green” products | fragrances, cleaning products, solvents | Respiratory irritation, allergic reactions | [69,70,71] |
NOx | combustion of fossil fuels | Respiratory irritation, decreased lung function, increase susceptibility to infections, chronic respiratory diseases, cardiovascular problems | [72,73,74] |
Reaction Type | Reaction |
---|---|
Photoexcitation | |
Oxidation reaction | |
Reduction reaction | |
Ionization of water | |
Protonation of superoxide | |
Formation of H2O2 |
MOF Name | Structure | Applications | References |
---|---|---|---|
MOF-5 | Composed of zinc oxide clusters and terephthalate linkers | Photocatalytic degradation of organic pollutants | [213] |
ZIF-8 | Zinc imidazolate framework with a sodalite topology | CO2 conversion, degradation of pollutants | [214,215,216] |
MIL-125 | Titanium-based framework with a paddle-wheel structure | Photocatalytic degradation of dyes and pollutants | [217,218] |
UiO-66 | Zirconium-based with a octahedral topology | Photocatalytic degradation of dyes and pollutants | [219] |
NH2-MIL-125 | Amino-functionalized variant of MIL-125 | Photocatalytic degradation of dyes and pollutants | [220,221] |
ZIF-67 | Cobalt imidazolate framework | Photocatalytic degradation of dyes and pollutants | [222,223] |
MOF-808 | Zirconium-based with a fcu topology | Photocatalytic CO2 reduction, degradation of pollutants | [224,225] |
MIL-53 | The MIL-53 structure consists of inorganic [M-OH] chains, which are connected to four neighboring inorganic chains by therephthalate-based linker molecules | Photocatalytic degradation of dyes and pollutants | [226,227,228] |
Cu-BTC | Copper-based with a three-dimensional structure | Photocatalytic degradation of pollutants | [229] |
Perovskite Material | Structure | Applications | References |
---|---|---|---|
CH3NH3PbI3 | Organometal halide perovskite with a cubic structure | CO2 reduction | [233,234] |
CsPbBr3 | Inorganic perovskite with a cubic lattice | Photocatalytic degradation of organic pollutants, CO2 reduction | [235,236] |
MAPbBr3 | Methylammonium lead bromide with a tetragonal structure | Photocatalytic CO2 reduction, dye degradation | [237,238,239] |
Cs2AgBiBr6 | Layered perovskite structure | Photocatalytic hydrogen production | [240] |
BaTiO3 | Classic perovskite structure | Photocatalytic degradation of pollutants, CO2 reduction | [241,242] |
SrTiO3 | Titanium-based perovskite | CO2 reduction, degradation of pollutants | [243,244,245] |
KTaO3 | Potassium tantalate perovskite | Photocatalytic degradation of pollutants | [246,247,248] |
LaTiO3 | Lanthanum titanate perovskite | Photocatalytic degradation of pollutants | [249,250] |
MAPbI3 | Doped organometal halide perovskite | Photocatalytic degradation of pollutants | [239,251] |
TMD Material | Structure | Applications | References |
---|---|---|---|
MoS2 | Layered structure with a hexagonal crystal lattice | CO2 reduction, degradation of pollutants | [252,253,254,255] |
WS2 | Layered structure similar to MoS2 | CO2 reduction, degradation of pollutants | [256,257,258] |
TiS2 | Layered structure with a distorted octahedral coordination | Photocatalytic degradation of pollutants | [259,260] |
MoSe2 | Layered structure with hexagonal symmetry | CO2 reduction, degradation of pollutants | [261,262,263] |
WSe2 | Layered structure with hexagonal lattice | CO2 reduction, degradation of pollutants | [264,265] |
ReS2 | Layered structure with hexagonal symmetry | CO2 reduction, degradation of pollutants | [266] |
ZrS2 | Layered structure with hexagonal symmetry | Organic pollutant degradation | [267,268,269] |
VS2 | Layered structure with a distorted octahedral coordination | Dye degradation | [270,271] |
SnS2 | Layered structure with hexagonal symmetry | Photocatalytic degradation of pollutants | [271,272] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, E.; De Spirt, A.; Miani, A.; Piscitelli, P.; Trombin, R.; Barbieri, P.; Marin, E. Nanomaterials in Photocatalysis: An In-Depth Analysis of Their Role in Enhancing Indoor Air Quality. Appl. Sci. 2025, 15, 1629. https://doi.org/10.3390/app15031629
Greco E, De Spirt A, Miani A, Piscitelli P, Trombin R, Barbieri P, Marin E. Nanomaterials in Photocatalysis: An In-Depth Analysis of Their Role in Enhancing Indoor Air Quality. Applied Sciences. 2025; 15(3):1629. https://doi.org/10.3390/app15031629
Chicago/Turabian StyleGreco, Enrico, Alessia De Spirt, Alessandro Miani, Prisco Piscitelli, Rita Trombin, Pierluigi Barbieri, and Elia Marin. 2025. "Nanomaterials in Photocatalysis: An In-Depth Analysis of Their Role in Enhancing Indoor Air Quality" Applied Sciences 15, no. 3: 1629. https://doi.org/10.3390/app15031629
APA StyleGreco, E., De Spirt, A., Miani, A., Piscitelli, P., Trombin, R., Barbieri, P., & Marin, E. (2025). Nanomaterials in Photocatalysis: An In-Depth Analysis of Their Role in Enhancing Indoor Air Quality. Applied Sciences, 15(3), 1629. https://doi.org/10.3390/app15031629