A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft
Abstract
:1. Introduction
2. The Personalized Diagnosis Methodology
2.1. The Basic Idea for the Personalized Diagnosis Methodology
2.2. The Personalized Diagnosis Method Using WPT and SVM
2.2.1. The Basic Principle of WPT
2.2.2. A Brief Review of SVM
2.2.3. The Proposed Method to Detect Faults in Shafts
3. Numerical Simulations
3.1. The Simulation Model for a Shaft with Different Faults
3.2. Case Investigations Using Numerical Simulation
3.2.1. Unbalance and Misalignment
3.2.2. Rub-Impact and the Combination of Rub-Impact and Unbalance
3.2.3. Fault Detection Using the Present Method
4. Experimental Investigations
4.1. Confirm the Stiffness and Damping Coefficients
4.2. Obtain the Measured Signals and Classification Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, R.; Seçkiner, S.U.; He, D.; Bechhoefer, E.; Menon, P. Gear Fault Location Detection for split torque gearbox using AE sensors. IEEE Trans. Syst. Man Cybern. Part C 2012, 42, 1308–1317. [Google Scholar] [CrossRef]
- Meng, L.; Xiang, J.; Wang, Y.; Jiang, Y.; Gao, H. A hybrid fault diagnosis method using morphological filter-translation invariant wavelet and improved ensemble empirical mode decomposition. Mech. Syst. Signal Process. 2015, 50, 101–115. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Meng, L.; Xiang, J.; Zhong, Y.; Song, W. Fault diagnosis of rolling bearing based on second generation wavelet denoising and morphological filter. J. Mech. Sci. Technol. 2015, 29, 3121–3129. [Google Scholar] [CrossRef]
- Jiang, B.Z.; Xiang, J.W.; Wang, Y.X. Rolling bearing fault diagnosis approach using probabilistic principal component analysis denoising and cyclic bispectrum. J. Vib. Control 2016, 22, 2420–2433. [Google Scholar] [CrossRef]
- Xiang, J.W.; Zhong, Y.T.; Gao, H.F. Rolling element bearing fault detection using PPCA and spectral kurtosis. Measurement 2015, 75, 180–191. [Google Scholar] [CrossRef]
- Xiang, J.; Lei, Y.; Wang, Y.; He, Y.; Zheng, C.; Gao, H. Structural dynamical monitoring and fault diagnosis. Shock Vib. 2015. [Google Scholar] [CrossRef]
- Yang, Z.B.; Chen, X.F.; Xie, Y.; Zhang, X.W. The hybrid multivariate analysis method for damage detection. Struct. Control Health Monit. 2016, 23, 123–143. [Google Scholar] [CrossRef]
- Yang, Z.B.; Chen, X.F.; Xie, Y.; Miao, H.H.; Gao, J.J.; Qi, K.Z. Hybrid two-step method of damage detection for plate-like structures. Struct. Control Health Monit. 2016, 23, 267–285. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Gao, R.X.; Yan, R.; Chen, X.; Wang, S. A novel hybrid error criterion-based active control method for on-line milling vibration suppression with piezoelectric actuators and sensors. Sensors 2016. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Li, R.; Zhu, J.; Zade, M. Data mining based full ceramic bearing fault diagnostic system using AE sensors. IEEE T. Neural Netw. 2011, 22, 2022–2203. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Li, R.Y.; Zhu, J.D. Plastic bearing fault diagnosis based on a two-step data mining approach. IEEE Trans. Ind. Electron. 2013, 60, 3429–3440. [Google Scholar] [CrossRef]
- Qu, Y.Z.; He, D.; Yoon, J. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors—A comparative study. Sensors 2014, 14, 1372–1393. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; He, D. Planetary gearbox fault diagnostic method using acoustic emission sensors. IET Sci. Meas. Technol. 2015, 9, 936–944. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Neilson, R.D. Crack detection in a rotating shaft using artificial neural networks and PSD characterization. Meccanica 2014, 49, 255–266. [Google Scholar] [CrossRef]
- Torkaman, H.; Moradi, R.; Hajihosseinlu, A. A comprehensive power loss evaluation for switched reluctance motor in presence of rotor asymmetry rotation: Theory, numerical analysis and experiments. Energy Convers. Manag. 2014, 77, 773–783. [Google Scholar] [CrossRef]
- Bregon, A.; Alonso-González, C.J.; Pulido, B. Integration of simulation and state observers for online fault detection of nonlinear continuous systems. IEEE Trans. Syst. Man Cybern. 2014, 44, 1553–1568. [Google Scholar] [CrossRef]
- Gong, R.Z.; Wang, H.J.; Liu, Q.Z.; Shu, L.F.; Li, F.C. Numerical simulation and rotor dynamic stability analysis on a large hydraulic turbine. Comput. Fluids 2013, 88, 11–18. [Google Scholar] [CrossRef]
- Xiang, J.W.; Jiang, Z.S.; Chen, X.F. A class of wavelet-based Rayleigh-Euler beam element for analyzing rotating shafts. Shock Vib. 2011, 18, 447–458. [Google Scholar] [CrossRef]
- Xiang, J.W.; Long, J.Q.; Jiang, Z.S. A numerical study using Hermitian cubic spline wavelets for the analysis of shafts. Proc. Inst. Mech. Eng. Part C 2010, 224, 1843–1851. [Google Scholar] [CrossRef]
- Tannous, M.; Cartraud, P.; Torkhani, M.; Dureisseix, D. Assessment of 3D modeling for rotor-stator contact simulations. J. Sound Vib. 2015, 353, 327–343. [Google Scholar] [CrossRef]
- Baccarini, L.M.R.; Caminhas, W.M. Fault induction dynamic model, suitable for computer simulation: Simulation results and experimental validation. Mech. Syst. Signal Process. 2010, 24, 300–311. [Google Scholar] [CrossRef]
- Chen, F.F.; Tang, B.P.; Song, T. Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization. Measurement 2014, 47, 576–590. [Google Scholar] [CrossRef]
- Liu, W.Y.; Han, J.G.; Lu, X.N. A new gear fault feature extraction method based on hybrid time–frequency analysis. Neural Comput. Appl. 2014, 25, 387–392. [Google Scholar] [CrossRef]
- Li, N.; Zhou, R.; Hu, Q.; Liu, X. Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine. Mech. Syst. Signal Process. 2012, 28, 608–621. [Google Scholar] [CrossRef]
- Xiang, J.; Matsumoto, T.; Wang, Y.; Jiang, Z. Detect damages in conical shells using curvature mode shape and wavelet finite element method. Int. J. Mech. Sci. 2013, 66, 83–93. [Google Scholar] [CrossRef]
- Diego, R.I.; Barros, J. Global methods for time-frequency analysis of harmonic distortion in power systems using the wavelet packet transform. Electr. Power Syst. Res. 2009, 79, 1226–1239. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Guo, L. Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description. Mech. Syst. Signal Process. 2009, 23, 669–681. [Google Scholar] [CrossRef]
- Vong, C.M.; Wong, P.K. Engine ignition signal diagnosis with wavelet packet transform and multi-class least squares support vector machines. Expert Syst. Appl. 2011, 38, 8563–8570. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, H.; Chen, X. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing 2013, 99, 399–410. [Google Scholar] [CrossRef]
- Perkel, J.M. Life science technologies: Molecular diagnostics: Personalizing personalized medicine. Science 2009. [Google Scholar] [CrossRef]
- Ledford, H. Personalized medicine takes hit. Nature 2016, 536, 382. [Google Scholar] [CrossRef] [PubMed]
- Haines, J.L. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005, 308, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.G.; Zuo, M.J.; He, Z.J. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Syst. Appl. 2010, 37, 1419–1430. [Google Scholar] [CrossRef]
- Friswell, M.I.; Mottershead, J.E. Finite Element Model Updating in Structural Dynamics; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Xiang, J.W.; Liang, M.; He, Y.M. Experimental investigation of frequency-based multi-damagedetection for beams using support vector regression. Eng. Fract. Mech. 2014, 131, 257–268. [Google Scholar] [CrossRef]
- Kheir, N.A.; Holmes, W.M. Modeling and credibility of random ensembles. Simulation 1982, 38, 93–103. [Google Scholar] [CrossRef]
- Jalan, A.K.; Mohanty, A.R. Model based fault diagnosis of a rotor–bearing system for misalignment and unbalance under steady-state condition. J. Sound Vib. 2009, 327, 604–622. [Google Scholar] [CrossRef]
- Cao, H.R.; Niu, L.K.; He, Z.J. Method for vibration response simulation and sensor placement optimization of a machine tool spindle system with a bearing defect. Sensors 2012, 12, 8732–8754. [Google Scholar] [CrossRef] [PubMed]
- Franc, V.; Hlavác, V. Statistical Pattern Recognition Toolbox for Matlab; Center for Machine Perception, Czech Technical University: Prague, Czech Republic, 2004. [Google Scholar]
- Li, P.F.; Jiang, Y.Y.; Xiang, J.W. Experimental investigation for fault diagnosis based on a hybrid approach using wavelet packet and support vector classification. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
Feature | Equation |
---|---|
Standard deviation | |
Peak | |
Kurtosis | |
Clearance factor | |
Impulse factor |
Unbalance | The Calculated Results in 8 Frequency Bands of Unbalance Fault | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 6.74 × 10−6 | 1.16 × 10−5 | 6.48 × 10−6 | 1.08 × 10−5 | 5.07 × 10−6 | 5.41 × 10−6 | 5.05 × 10−6 | 5.59 × 10−6 |
Peak | 2.04 × 10−5 | 3.06 × 10−5 | 2.06 × 10−5 | 3.07 × 10−5 | 1.27 × 10−5 | 1.70 × 10−5 | 2.04 × 10−5 | 1.89 × 10−5 |
Kurtosis | 2.6652 | 2.4406 | 3.1223 | 2.9342 | 2.5410 | 2.8829 | 4.2142 | 3.9455 |
CLF | 4.2875 | 3.6660 | 4.6801 | 4.1462 | 3.5915 | 4.5466 | 6.2779 | 5.5409 |
IF | 3.7053 | 3.1932 | 3.9891 | 3.5342 | 3.0803 | 3.8888 | 5.2489 | 4.5311 |
Misalignment | The Calculated Results in 8 Frequency Bands of Misalignment Fault | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 5.91 × 10−6 | 7.51 × 10−6 | 6.35 × 10−6 | 6.26 × 10−6 | 6.53 × 10−6 | 6.75 × 10−6 | 8.08 × 10−6 | 5.61 × 10−6 |
Peak | 2.10 × 10−5 | 1.86 × 10−5 | 2.11 × 10−5 | 1.67 × 10−5 | 2.02 × 10−5 | 2.58 × 10−5 | 2.26 × 10−5 | 1.81 × 10−5 |
Kurtosis | 3.2595 | 2.4692 | 3.5937 | 2.5028 | 2.9993 | 3.8173 | 2.7204 | 2.9021 |
CLF | 5.2483 | 3.5136 | 5.3666 | 3.9021 | 4.4516 | 5.6814 | 4.1518 | 4.5716 |
IF | 4.4209 | 3.0262 | 4.3949 | 3.3024 | 3.8290 | 4.8527 | 3.5028 | 3.9603 |
Rub-impact | The Calculated Results in 8 Frequency Bands of Rub-Impact Fault | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 7.96 × 10−6 | 8.59 × 10−6 | 2.16 × 10−5 | 7.83 × 10−6 | 6.76 × 10−6 | 5.84 × 10−6 | 7.70 × 10−6 | 6.98 × 10−6 |
Peak | 3.51 × 10−5 | 2.21 × 10−5 | 5.19 × 10−5 | 2.54 × 10−5 | 1.60 × 10−5 | 1.64 × 10−5 | 2.62 × 10−5 | 2.23 × 10−5 |
Kurtosis | 3.9118 | 2.5518 | 1.9241 | 3.3305 | 2.4872 | 2.5953 | 3.4198 | 3.1596 |
CLF | 6.2487 | 3.5767 | 3.0532 | 4.7481 | 3.3391 | 4.0926 | 5.0772 | 4.8506 |
IF | 5.2888 | 3.1152 | 2.7540 | 4.0653 | 2.8855 | 3.4762 | 4.3101 | 4.0673 |
Combination of Rub-Impact and Unbalance | The Calculated Results in 8 Frequency Bands of Compound Faults | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 6.92 × 10−6 | 1.26 × 10−5 | 2.07 × 10−5 | 1.07 × 10−5 | 6.32 × 10−6 | 6.35 × 10−6 | 6.82 × 10−6 | 6.90 × 10−6 |
Peak | 2.62 × 10−5 | 3.62 × 10−5 | 4.53 × 10−5 | 2.83 × 10−5 | 1.60 × 10−5 | 2.14 × 10−5 | 2.57 × 10−5 | 1.64 × 10−5 |
Kurtosis | 2.9022 | 2.6928 | 1.8459 | 2.5480 | 2.6841 | 3.2508 | 4.3081 | 2.3564 |
CLF | 5.1588 | 4.0875 | 2.7786 | 3.6970 | 3.6611 | 5.0668 | 6.3595 | 3.3053 |
IF | 4.3855 | 3.5314 | 2.5087 | 3.2173 | 3.1303 | 4.2820 | 5.1272 | 2.8730 |
Different Types Faults | Training Samples | Testing Samples | Faults Labels | Classification Accuracy |
---|---|---|---|---|
Unbalance | 20 | 20 | 1 | 93% |
Misalignment | 20 | 20 | 2 | 95% |
Rub-impact | 20 | 20 | 3 | 89% |
combination of rub-impact and unbalance | 20 | 20 | 4 | 91% |
Combinations Number | x+ | x− | y+ | y− | |
---|---|---|---|---|---|
A | K: 16.3 × 107 | K: 26.5 × 107 | K: 15.3 × 107 | K: 25.5 × 107 | 0.3586 |
C: 1400 | C: 1000 | C: 1500 | C: 900 | ||
B | K: 17.3 × 107 | K: 27.5 × 107 | K: 16.3 × 107 | K: 26.5 × 107 | 0.3403 |
C: 1400 | C: 1000 | C: 1500 | C: 900 | ||
C | K: 18.3 × 107 | K: 28.5 × 107 | K: 17.3 × 107 | K: 27.5 × 107 | 0.2617 |
C: 1400 | C: 1000 | C: 1500 | C: 900 | ||
D | K: 16.3 × 107 | K: 26.5 × 107 | K: 15.3 × 107 | K: 25.5 × 107 | 0.1821 |
C: 1500 | C: 1100 | C: 1600 | C: 1000 | ||
E | K: 17.3 × 107 | K: 27.5 × 107 | K: 16.3 × 107 | K: 26.5 × 107 | 0.2412 |
C: 1500 | C: 1100 | C: 1600 | C: 1000 | ||
F | K: 18.3 × 107 | K: 28.5 × 107 | K: 17.3 × 107 | K: 27.5 × 107 | 0.2740 |
C: 1500 | C: 1100 | C: 1600 | C: 1000 | ||
G | K: 16.3 × 107 | K: 26.5 × 107 | K: 15.3 × 107 | K: 25.5 × 107 | 0.2421 |
C: 1600 | C: 1200 | C: 1700 | C: 1100 | ||
H | K: 17.3 × 107 | K: 27.5 × 107 | K: 16.3 × 107 | K: 26.5 × 107 | 0.2549 |
C: 1600 | C: 1200 | C: 1700 | C: 1100 | ||
I | K: 18.3 × 107 | K: 28.5 × 107 | K: 17.3 × 107 | K: 27.5 × 107 | 0.2421 |
C: 1600 | C: 1200 | C: 1700 | C: 1100 |
Unbalance | The Calculated Results in 8 Frequency Bands of Unbalance Fault | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 1.17 × 10−2 | 2.12 × 10−4 | 1.30 × 10−4 | 1.4 × 10−4 | 1.10 × 10−5 | 1.20 × 10−5 | 1.2 × 10−4 | 1.10 × 10−5 |
Peak | 2.15 × 10−2 | 5.4 × 10−4 | 3.80 × 10−4 | 5.20 × 10−4 | 3.40 × 10−4 | 3.10 × 10−4 | 3.9 × 10−4 | 2.80 × 10−4 |
Kurtosis | 1.88 | 2.70 | 3.45 | 3.27 | 2.91 | 2.66 | 3.29 | 2.89 |
CLF | 2.41 | 3.87 | 4.75 | 5.88 | 4.39 | 3.78 | 4.73 | 4.14 |
IF | 2.14 | 3.30 | 3.91 | 4.98 | 3.70 | 3.20 | 3.99 | 3.46 |
Misalignment | The Calculated Results in 8 Frequency Bands of Misalignment Fault | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 1.05 × 10−2 | 4.80 × 10−4 | 1.30 × 10−4 | 1.10 × 10−4 | 1.10 × 10−4 | 1.20 × 10−4 | 1.20 × 10−4 | 1.30 × 10−4 |
Peak | 2.01 × 10−2 | 1.64 × 10−3 | 3.70 × 10−4 | 3.10 × 10−4 | 2.90 × 10−4 | 3.90 × 10−4 | 3.40 × 10−4 | 3.90 × 10−4 |
Kurtosis | 2.21 | 3.25 | 3.195 | 2.70 | 3.20 | 3.73 | 3.02 | 3.05 |
CLF | 2.61 | 5.05 | 4.305 | 3.85 | 4.41 | 5.27 | 4.33 | 4.42 |
IF | 2.29 | 4.28 | 3.62 | 3.33 | 3.60 | 4.41 | 3.64 | 3.71 |
Rub-impact | The Calculated Results in 8 Frequency Bands of Rub-Impact Fault | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 0.010 | 4.90 × 10−4 | 1.30 × 10−4 | 1.70 × 10−4 | 3.55 × 10−5 | 7.95 × 10−5 | 1.10 × 10−4 | 8.64 × 10−5 |
Peak | 0.020 | 1.44 × 10−3 | 3.80 × 10−4 | 5.70 × 10−4 | 9.78 × 10−5 | 2.30 × 10−4 | 4.60 × 10−4 | 2.20 × 10−4 |
Kurtosis | 2.30 | 3.27 | 3.01 | 3.44 | 2.39 | 2.88 | 6.41 | 2.79 |
CLF | 2.62 | 4.47 | 4.48 | 5.09 | 3.77 | 4.23 | 7.86 | 3.91 |
IF | 2.31 | 3.78 | 3.78 | 4.31 | 3.29 | 3.59 | 6.25 | 3.21 |
Combination of Rub-Impact and Unbalance | The Calculated Results in 8 Frequency Bands of Compound Faults | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
SD | 1.19 × 10−2 | 4.20 × 10−4 | 1.30 × 10−4 | 1.10 × 10−4 | 3.40 × 10−5 | 8.17 × 10−5 | 1.10 × 10−4 | 8.15 × 10−5 |
Peak | 2.26 × 10−2 | 1.09 × 10−3 | 3.80 × 10−4 | 3.30 × 10−4 | 9.52 × 10−5 | 2.30 × 10−4 | 4.20 × 10−4 | 2.90 × 10−4 |
Kurtosis | 2.09 | 2.65 | 2.99 | 3.60 | 2.68 | 3.19 | 4.56 | 3.86 |
CLF | 2.64 | 3.72 | 4.45 | 4.96 | 4.08 | 4.35 | 6.72 | 5.63 |
IF | 2.29 | 3.22 | 3.69 | 4.03 | 3.48 | 3.59 | 5.51 | 4.64 |
Different Types Faults | Training Samples | Testing Samples | Faults Labels | Classification Accuracy |
---|---|---|---|---|
Unbalance | 20 | 20 | 1 | 87% |
Misalignment | 20 | 20 | 2 | 82% |
Rub-impact | 20 | 20 | 3 | 73% |
combination of rub-impact and unbalance | 20 | 20 | 4 | 79% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Zhong, Y. A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft. Appl. Sci. 2016, 6, 414. https://doi.org/10.3390/app6120414
Xiang J, Zhong Y. A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft. Applied Sciences. 2016; 6(12):414. https://doi.org/10.3390/app6120414
Chicago/Turabian StyleXiang, Jiawei, and Yongteng Zhong. 2016. "A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft" Applied Sciences 6, no. 12: 414. https://doi.org/10.3390/app6120414
APA StyleXiang, J., & Zhong, Y. (2016). A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft. Applied Sciences, 6(12), 414. https://doi.org/10.3390/app6120414