Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Substrate Temperature Effects
3.2. Substrate Stage Rotation Rate Effects
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Paroli, P. Magneto-optical devices based on garnet films. Thin Solid Films 1984, 114, 187–219. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials; Institute of Physics Publishing: Bristol, UK, 1997. [Google Scholar]
- Scott, G.B.; Lacklison, D.E. Magnetooptic properties and applications of Bismuth substituted iron garnets. IEEE Trans. Magn. 1976, 12, 292–311. [Google Scholar] [CrossRef]
- Kahl, S.; Grishin, A.M.; Kharstev, S.I.; Kawano, K.; Abell, J.S. Bi3Fe5O12 thin film visualizer. IEEE Trans. Mag. 2001, 37, 2457–2459. [Google Scholar] [CrossRef]
- Vasiliev, M.; Nur-E-Alam, M.; Kotov, V.A.; Alameh, K.; Belotelov, V.I.; Burkov, V.I.; Zvezdin, A.K. RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region. Opt. Express 2009, 17, 19519–19535. [Google Scholar] [CrossRef] [PubMed]
- Belotelov, V.I.; Kreilkamp, L.E.; Akimov, I.A.; Kalish, A.N.; Bykov, D.A.; Kasture, S.; Yallapragada, V.J.; Gopal, A.V.; Grishin, A.M.; Khartsev, S.I.; et al. Plasmon mediated magneto-optical transparency. Nat. Commun. 2013, 4, 2128. [Google Scholar] [CrossRef] [PubMed]
- Sylgacheva, D.; Khokhlov, N.; Kalish, A.; Dagesyan, S.; Prokopov, A.; Shaposhnikov, A.; Berzhansky, V.; Nur-E-Alam, M.; Vasiliev, M.; Alameh, K.; et al. Transverse magnetic field impact on waveguide modes of photonic crystals. Opt. Lett. 2016, 41, 3813–3816. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, R.; Park, J.R. Magneto-optical modulator for superconducting digital output interface. IEEE Trans. Appl. Supercond. 2001, 11, 727–730. [Google Scholar] [CrossRef]
- Suzuki, T. Magnetic and magneto-optic properties of rapid thermally crystallized garnet films (invited). J. Appl. Phys. 1991, 69, 4756. [Google Scholar] [CrossRef]
- Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties. Mater. Res. Bull. 2012, 47, 1407–1411. [Google Scholar] [CrossRef]
- Adachi, N.; Obata, K.; Okuda, T.; Machi, T.; Koshizuka, N. Synthesis of Bi–Lu-substituted iron garnet films for visualization of magnetic flux in high-Tc superconductors. Jpn. J. Appl. Phys. 2002, 41, 5986–5990. [Google Scholar] [CrossRef]
- Zaezjev, M.; Sekhar, M.C.; Ferrera, M.; Razzari, L.; Ross, G.; Holmes, B.; Sorel, M.; Hutchings, D.; Roorda, S.; Morandotti, R. Magneto-optic iron-garnet thin films for integrated optical applications. SPIE Newsroom 2007. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, J.S.; Kim, S.I.; Levy, M. Epitaxial growth and properties of Bi-Substituted Yttrium-Iron-garnet films grown on (111) Gadolinium-Gallium-garnet substrates by using rf magnetron sputtering. J. Korean Phys. Soc. 2003, 43, 400–405. [Google Scholar]
- Wee, S.H.; Hong, H.S.; Kim, Y.H.; Yoo, S.I.; Kang, J. Fabrication and characterization of Bi-substituted Yttrium iron garnet films by pulsed laser deposition. Met. Mater. Int. 2003, 9, 507–511. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, S.; Li, F.; Que, D. Preparation of bismuth substituted dysprosium iron garnet film by a sol-gel process. J. Mater. Sci. Mater. Electron. 1998, 9, 347–350. [Google Scholar] [CrossRef]
- Ishibashi, T.; Kosaka, T.; Naganuma, M.; Nomura, T. Magneto-optical properties of Bi-substituted Yttrium iron garnet films by metal-organic decomposition method. J. Phys. Conf. Ser. 2010, 200, 112002. [Google Scholar] [CrossRef]
- Hibiya, T.; Okada, O.; Masumoto, T. Refractive index of Bi-substituted gadolinium iron garnet films grown by liquid-phase epitaxy. J. Appl. Phys. 1985, 58, 510. [Google Scholar] [CrossRef]
- Duan, M.; Grishin, A.M.; Rao, K.V. Laser deposited Bismuth doped iron garnet films with perpendicular anisotropy. IEEE Trans. Magn. 1995, 31, 3245–3246. [Google Scholar] [CrossRef]
- Mino, S.; Matsuoka, M.; Tate, A.; Shibukawa, A.; Ono, K. Completely Bi-Substituted iron garnet (BIG) films prepared by electron cyclotron resonance (ECR) sputtering. J. Appl. Phys. 1992, 31, 1786–1792. [Google Scholar] [CrossRef]
- Kumar, N.; Prasad, S.; Misra, D.S.; Venkataramani, N.; Bohra, M.; Krishnan, R. The influence of substrate temperature and annealing on the properties of pulsed laser-deposited YIG films on fused quartz substrate. J. Magn. Magn. Mater. 2008, 320, 2233–2236. [Google Scholar] [CrossRef]
- Rojas, R.; Krafft, C.; Nistor, I.; Zhang, D.; Mayergoyz, I.D. Growth effects (rotation rate) on the characteristics of Bi-substituted lutetium iron garnets. J. Appl. Phys. 2004, 95, 6885. [Google Scholar] [CrossRef]
- Tehranchi, M.M.; Hamidi, S.M.; Hasanpour, A.; Mozaffari, M.; Amighian, J. The effect of target rotation rate on structural and morphological properties of thin garnet films fabricated by pulsed laser deposition. Opt. Laser Technol. 2011, 43, 609–612. [Google Scholar] [CrossRef]
- Nakajima, K.; Machida, K. Thermal expansion of gallium garnets and Bi-substituted iron garnet epitaxial thick films. J. Cryst. Growth. 1988, 92, 23–25. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; Wen, Q.; Liu, Y.J. Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method. Appl. Phys. 2010, 108, 073901. [Google Scholar] [CrossRef]
- Berzhansky, V.N.; Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Mikhailova, T.V.; Kharchenko, N.F.; Lukienko, I.N.; Kharchenko, Y.N.; Miloslavskaya, O.V.; Kotov, V.A.; et al. The effect of Faraday rotation enhancement in nanolayered structures of Bi-substituted iron garnets. Solid State Phenomena 2013, 200, 233–238. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Growth, characterization, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures. Int. J. Mater. Eng. Innov. 2014, 5, 172–181. [Google Scholar] [CrossRef]
- Rabeh, M.B.; Touatti, R.; Kanzari, M. Substrate temperature effects on structural optical and electrical properties of vacuum evaporated Cu2ZnSnS4 thin films. Int. J. Eng. Pract. Res. 2013, 2, 71–76. [Google Scholar]
- Vasiliev, M.; Nur-E-Alam, M.; Perumal, P.; Kotov, V.A.; Alameh, K.; Lee, Y.T.; Lee, Y.P. Annealing behavior and crystal structure of RF-sputtered bi-substituted dysprosium iron garnet films having excess co-sputtered bi-oxide content. J. Phys. D Appl. Phys. 2011, 44, 075002. [Google Scholar] [CrossRef]
- Eschenfelder, A.H. Magnetic Bubble Technology; Springer-Verlag: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Cullity, B.D. Elements of X-ray Diffraction, 2nd ed.; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1978. [Google Scholar]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. High-performance RF-sputtered Bi-substituted iron garnet thin films with almost in-plane magnetization. Opt. Mater. Express 2017, 7, 676–686. [Google Scholar] [CrossRef]
- Thornton, J.A. The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. 1986, 4, 3059–3065. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A 2003, 21, s117–s128. [Google Scholar] [CrossRef]
- Kotov, V.A.; Shavrov, V.G.; Vasiliev, M.; Alameh, K.; Nur-E-Alam, M.; Prasad, S.; Narayanan, V.; Alyab’eva, L.N.; Balabanov, D.E.; Burkov, V.I. Magneto-optic properties of ultrathin bismuth-containing ferrite-garnet films obtained using radio-frequency magnetron sputtering. J. Commun. Technol. Electron. 2014, 59, 1423–1425. [Google Scholar] [CrossRef]
Samples/Parameters | ST1 | ST2 | ST3 | ST4 | |
---|---|---|---|---|---|
Substrate temperature | RT (~22) °C | 150 °C | 300 °C | 600 °C | |
Substrate stage rotation rate (rpm) | 15.5–16 | 15.5–16 | 15.5–16 | 15.5–16 | |
Substrate type | Quartz | Quartz | Quartz | Quartz | |
Argon (Ar) pressure | 2 mTorr | 2 mTorr | 2 mTorr | 2 mTorr | |
RF power densities at target | 3.8 W/cm2 | 3.8 W/cm2 | 3.8 W/cm2 | 3.8 W/cm2 | |
Deposition run time | 62 min | 62 min | 62 min | 62 min | |
Garnet layer thicknesses deposited | 340 nm | 350 nm | 345 nm | 235 nm | |
Annealing process parameters | 670 °C for 1 h | 670 °C for 1 h | 670 °C for 1 h | 670 °C for 1 h | |
Best MO performance measured in 532 nm | Sp. Faraday rotation (deg/µm) | 7.5 | 6.84 | 7.15 | 5.02 |
MO figure of merit (degrees) | 15.2 | 13.23 | 13.21 | 8.7 | |
Coercivity (Hc) (Oe) | ~300 | ~150 | ~100 | ~220 | |
Saturation magnetization (Hsat) (Oe) | ~500 | ~300 | ~500 | ~480 | |
Average crystallite size (nm) | 33.23 | 36.30 | 35.95 | 30.01 |
Samples/Parameters | SS1 | SS2 | SS3 | |
---|---|---|---|---|
Substrate stage rotation rate (rpm) | 7.5–8 | 15.5–16 | 25.5–26 | |
Substrate temperature | RT | RT | RT | |
Process gas (Ar) pressure | 2 mTorr | 2 mTorr | 2 mTorr | |
RF power densities at target | 3.8 W/cm2 | 3.8 W/cm2 | 3.8 W/cm2 | |
Deposition run time | 62 min | 62 min | 62 min | |
Deposited layer thickness | 364 nm | 376 nm | 352 nm | |
Annealing process parameters | 6 h at 580 °C or 1 h at 670 °C | 6 h at 580 °C or 1 h at 670 °C | 6 h at 580 °C or 1 h at 670 °C | |
MO parameters measured at 532 nm | Specific Faraday rotation (deg/µm) | 6.03 | 6.36 | 6.27 |
Figure of merit (degrees) | 11.9 | 15.1 | 11.2 | |
Coercivity (Hc) (Oe) | ~130 | ~130 | ~160 | |
Saturation magnetization (Hsat) (Oe) | ~230 | ~250 | ~300 | |
Average crystallite size (nm) | 36.6 nm | 36.8 nm | 31.3 nm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films. Appl. Sci. 2018, 8, 456. https://doi.org/10.3390/app8030456
Nur-E-Alam M, Vasiliev M, Alameh K. Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films. Applied Sciences. 2018; 8(3):456. https://doi.org/10.3390/app8030456
Chicago/Turabian StyleNur-E-Alam, M., Mikhail Vasiliev, and Kamal Alameh. 2018. "Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films" Applied Sciences 8, no. 3: 456. https://doi.org/10.3390/app8030456