High-Efficiency Dual-Frequency Reflective Linear Polarization Converter Based on Metasurface for Microwave Bands
Abstract
:1. Introduction
2. Design, Simulation, and Theoretical Analysis
3. Experimental Verification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, J.; Li, R.Q.; Qin, J.; Wang, S.Y.; Han, T.C. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Opt. Express 2018, 26, 20913–20919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Duan, W.; Pan, Y.M. Dual-polarized filtering antenna with high selectivity and low cross polarization. IEEE Trans. Antennas Propag. 2018, 64, 4188–4196. [Google Scholar]
- Liu, X.B.; Zhang, J.S.; Li, W.; Lu, R.; Li, L.M.; Xu, Z.; Zhang, A.X. Three-band polarization converter based on reflective metasurface. IEEE Antennas Wirel. Propag. 2017, 16, 924–927. [Google Scholar] [CrossRef]
- Cai, T.; Wang, G.M.; Zhang, X.F.; Shi, J.P. Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator. IEEE Antennas Wirel. Propag. 2015, 14, 1072–1076. [Google Scholar] [CrossRef]
- Wang, F.; Chakrabarty, A.; Minkowski, F.; Sun, K.; Wei, Q.H. Polarization conversion with elliptical patch nanoantennas. Appl. Phys. Lett. 2012, 101, 023101. [Google Scholar] [CrossRef]
- Shi, J.H.; Ma, H.F.; Guan, C.Y.; Wang, Z.P.; Cui, T.J. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted babinet-inverted metasurfaces. Phys. Rev. B 2014, 89, 165128–165135. [Google Scholar] [CrossRef]
- Zang, X.F.; Liu, S.J.; Gong, H.H.; Wang, Y.J.; Zhu, Y.M. Dual-band superposition induced broadband terahertz linear-to-circular polarization converter. J. Opt. Soc. Am. B 2018, 35, 950–957. [Google Scholar] [CrossRef]
- Khan, M.I.; Tahir, F.A. A broadband cross-polarization conversion anisotropic metasurface based on multiple plasmon resonances. Chin. Phys. B 2018, 27, 014101. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Chen, S.; Tian, J. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces. Opt. Lett. 2016, 41, 3142–3145. [Google Scholar] [CrossRef]
- Syeda, F.J.; Falade, O.P.; Wildsmith, T.; Reip, P.; Alomainy, A. A 60-GHz ultra-thin and flexible metasurface for frequency-selective wireless applications. Appl. Sci. 2019, 9, 945–957. [Google Scholar]
- Xie, Y.Q.; Yang, C.; Wang, Y.; Shen, Y.; Deng, X.H.; Luo, X.Q. The influence of incident modes for polarization conversion in a terahertz metasurface. Opt. Commun. 2019, 435, 341–344. [Google Scholar] [CrossRef]
- Qi, Z.; Guo, C.; Ding, J. Wideband and low RCS circularly polarized slot antenna based on polarization conversion of metasurface for satellite communication application. Microw. Opt. Technol. Lett. 2018, 60, 679–685. [Google Scholar]
- Yurduseven, O.; Marks, D.L.; Fromenteze, T.; Smith, D.R. Dynamically reconfigurable holographic metasurface aperture for a mills-cross monochromatic microwave camera. Opt. Express 2018, 26, 5281–5291. [Google Scholar] [CrossRef] [PubMed]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Balthasar Mueller, J.P.; Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 2017, 358, 896–901. [Google Scholar] [CrossRef]
- Marrucci, L.; Karimi, E.; Slussarenko, S.; Piccirillo, B.; Santamato, E.; Nagali, E.; Sciarrino, F. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 2011, 13, 064001–064014. [Google Scholar] [CrossRef]
- Sarenac, D.; Cory, D.G.; Nsofini, J.; Hincks, I.; Migue, P.; Arif, M.; Clark, C.W.; Huber, M.G.; Pushin, D.A. Generation of a lattice of Spin-Orbit beams via coherent averaging. Phys. Rev. Lett. 2018, 121, 183602–183608. [Google Scholar] [CrossRef] [PubMed]
- Luu, T.T.; Garg, M.; Kruchinin, S.Y.; Moulet, A.; Hassan, M.T.; Goulielmakis, E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 2015, 521, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Gerislioglu, B.; Ahmadivand, A.; Pala, N. Tunable plasmonic toroidal terahertz metamodulator. Phys. Rev. B 2015, 97, 161405. [Google Scholar] [CrossRef]
- Bjarke, T.R.C.; Martin, R.H.; Stefan, A.S.; Westergaard, P.G.; Ye, J.; Holland, M.; Thomsen, J.W. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization. Phys. Rev. A 2015, 92, 053820. [Google Scholar]
- Ahmadivand, A.; Gerislioglu, B. Directional toroidal dipoles driven by oblique poloidal and loop current flows in plasmonic meta-atoms. J. Phys. Chem. C 2018, 122, 24304–24308. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. Polarization rotation and the third stokes parameter: The effects of spacecraft attitude and faraday rotation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 506–515. [Google Scholar] [CrossRef]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar photonics with metasurfaces. Science 2013, 339, 1232009. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Pala, N. Large-modulation-depth polarization-sensitive plasmonic toroidal terahertz metamaterial. IEEE Photonics Technol. Lett. 2017, 29, 1860–1863. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, G.; Chen, H.; Zhou, P.; Wang, X.; Zhang, L. Design of phase gradient coding metasurfaces for broadband wave modulating. Sci. Rep. 2018, 8, 8672–8680. [Google Scholar] [CrossRef]
- Wu, X.; Yan, M.; Li, W.; Tian, J.; Dai, S.; Wen, W. Anisotropic metasurface with near-unity circular polarization conversion. Appl. Phys. Lett. 2016, 108, 183502–183506. [Google Scholar] [CrossRef]
- Wang, S.; Zhan, Q. Reflection type metasurface designed for high efficiency vectorial field generation. Sci. Rep. 2016, 6, 29626–29637. [Google Scholar] [CrossRef]
- Cong, L.; Srivastava, Y.K.; Singh, R. Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces. Appl. Phys. Lett. 2016, 108, 011110. [Google Scholar] [CrossRef]
- Sell, D.; Yang, J.; Wang, E.W.; Phan, T.; Doshay, S.; Fan, J.A. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces. ACS Photonics 2018, 5, 2402–2407. [Google Scholar] [CrossRef]
- Kim, M.; Eleftheriades, G.V. Highly efficient all-dielectric optical tensor impedance metasurfaces for chiral polarization control. Opt. Lett. 2016, 41, 4831–4834. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Q.S.; Wang, Y. A wideband multifunctional multi-layer switchable linear polarization metasurface. IEEE Antennas Wirel. Propag. 2018, 17, 1314–1318. [Google Scholar] [CrossRef]
- Yu, N.F.; Aieta, F.; Genevet, P.; Kats, M.; Gaburro, Z.; Capassp, F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xiao, X.F.; Chang, L.Z.; Wang, C.Y.; Zhao, D.P. High-efficiency and multi-frequency polarization converters based on grapheme metasurface with twisting double L-shaped unit structure array. Opt. Commun. 2017, 394, 50–55. [Google Scholar] [CrossRef]
- Song, Z.Y.; Zhang, L.; Liu, Q.H. High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic metasurfaces. Plasmonics 2016, 11, 61–64. [Google Scholar] [CrossRef]
- Huang, X.J.; Xiao, B.X.; Yang, D.; Yang, H. Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial. Opt. Commun. 2015, 338, 416–421. [Google Scholar] [CrossRef]
- Leevesque, Q.; Makhsiyan, M.; Bouchon, P.; Pardo, F. Plasmonic planar antenna for wideband and efficient linear polarization conversion. Appl. Phys. Lett. 2014, 104, 111105. [Google Scholar] [CrossRef]
- Zhao, J.C.; Cheng, Y.Z. A high-effciency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial. Appl. Phys. B 2016, 122, 255. [Google Scholar] [CrossRef]
- Xu, J.; Li, R.Q.; Wang, S.Y.; Han, T.C. Ultra-broadband linear polarization converter based on anisotropic metasurface. Opt. Express 2018, 26, 26235–26241. [Google Scholar] [CrossRef]
- COMSOL 5.3 Multiphysics Modeling Software. Available online: https://www.comsol.com (accessed on 25 April 2019).
- Liu, Z.; Bai, B.F. Ultra-thin and high-efficiency grapheme metasurface for tunable terahertz wave manipulation. Opt. Express 2017, 25, 8584–8592. [Google Scholar] [CrossRef]
- Sun, H.Y.; Gu, C.Q.; Chen, X.L.; Li, Z.; Liu, L.L.; Martín, F. Ultra-wideband and broad-angle linear polarization conversion metasurface. J. Appl. Phys. 2017, 121, 174902. [Google Scholar] [CrossRef]
- Zheng, Q.; Guo, C.J.; Ding, J. Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antennas Wirel. Propag. 2018, 17, 1459–1463. [Google Scholar]
- Yang, D.; Lin, H.; Huang, X. Dual broadband metamaterial polarization converter in microwave regime. Prog. Electromagn. Res. Lett. 2016, 61, 71–76. [Google Scholar] [CrossRef]
- Lin, B.Q.; Wang, B.H.; Meng, W.; Da, X.Y.; Li, W.; Fang, Y.W.; Zhu, Z.H. Dual-band high-efficiency polarization converter using an anisotropic metasurface. J. Appl. Phys. 2016, 119, 183103. [Google Scholar] [CrossRef]
- Liu, Y.J.; Xia, S.; Shi, H.Y.; Zhang, A.X.; Xu, Z. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies. Appl. Phys. B 2016, 122, 178. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Zhou, Y.L.; Gao, J.; Cao, X.Y.; Yang, H.H.; Li, S.J.; Xu, L.M.; Lan, J.X.; Jidi, L.R. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression. Sci. Rep. 2017, 7, 16137–16149. [Google Scholar] [CrossRef]
- Liu, N.; Guo, H.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H. Plasmon hybridization in stacked cut-wire metamaterials. Adv. Mater. 2007, 19, 3628–3632. [Google Scholar] [CrossRef]
- Jiang, Y.N.; Wang, L.; Wang, J.; Akwuruoha, C.N.; Cao, W.P. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies. Opt. Express 2017, 25, 27616. [Google Scholar] [CrossRef]
- Gao, X.; Han, X.; Cao, W.P.; Li, H.O.; Ma, H.F.; Cui, T.J. Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurface. IEEE Trans. Antennas Propag. 2015, 63, 3522–3530. [Google Scholar] [CrossRef]
- Chen, M.; Sun, W.; Cai, J.J.; Chang, L.Z.; Xiao, X.F. Frequency-tunable mid-infrared cross polarization converters based on grapheme metasurface. Plasmonics 2017, 12, 699–705. [Google Scholar] [CrossRef]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304–1307. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Sun, Z.; Han, L.; Liu, C.; Sun, T.; Chu, P.K. High-Efficiency Dual-Frequency Reflective Linear Polarization Converter Based on Metasurface for Microwave Bands. Appl. Sci. 2019, 9, 1910. https://doi.org/10.3390/app9091910
Fu C, Sun Z, Han L, Liu C, Sun T, Chu PK. High-Efficiency Dual-Frequency Reflective Linear Polarization Converter Based on Metasurface for Microwave Bands. Applied Sciences. 2019; 9(9):1910. https://doi.org/10.3390/app9091910
Chicago/Turabian StyleFu, Changfeng, Zhijie Sun, Lianfu Han, Chao Liu, Tao Sun, and Paul K. Chu. 2019. "High-Efficiency Dual-Frequency Reflective Linear Polarization Converter Based on Metasurface for Microwave Bands" Applied Sciences 9, no. 9: 1910. https://doi.org/10.3390/app9091910
APA StyleFu, C., Sun, Z., Han, L., Liu, C., Sun, T., & Chu, P. K. (2019). High-Efficiency Dual-Frequency Reflective Linear Polarization Converter Based on Metasurface for Microwave Bands. Applied Sciences, 9(9), 1910. https://doi.org/10.3390/app9091910