Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Global Warming, Permafrost Degradation, and Infectious Diseases
3.2. Climate Change and Permafrost Degradation Pose Risks of Contamination of Ambient Air with Toxic Metals
3.3. Climate Change, Permafrost Degradation, Stability of Buildings, and Engineered Infrastructure
3.4. Climate Change and Adverse Weather Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Edel’geriev, R.S.K.; Romanovskaya, A.A. New approaches to the adaptation to climate change: The Arctic zone of Russia. Russ. Meteorol. Hydrol. 2020, 45, 305–316. [Google Scholar] [CrossRef]
- Iglovskii, S.A. Anthropogenic transformation of permafrost conditions of the European north of Russia and their consequences. Arct. North 2013, 10, 107–1124. (In Russian) [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/#FullReport (accessed on 20 December 2021).
- Arctic and Antarctic Research Institute. Available online: http://www.aari.nw.ru (accessed on 20 December 2021).
- Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet). Report on Climate Features on the Territory of the Russian Federation in 2020. Moscow. 2021; 104p. Available online: https://www.meteorf.ru/upload/pdf_download/doklad_klimat2020.pdf (accessed on 21 March 2022). (In Russian)
- Desyatkin, R. Climate change and the dynamics of the center’s permafrost ecosystems of continental cryolithozone of the northern hemisphere. Vestnik RAS 2018, 88, 1113–1121. [Google Scholar] [CrossRef]
- Shirokov, R.S. Formation of geoecological conditions of the coastal marine region of the Western Yamal under climate change. Belgorod State Univ. Sci. Bull. Nat. Sci. Ser. 2019, 43, 412–424. [Google Scholar] [CrossRef]
- Revich, B.A.; Shaposnikov, D.A.; Shkolnik, I.M. Projections of temperature-dependent mortality in Russian subarctic under climate change scenarios: A longitudinal study across several climate zones. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012050. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.F.; Shiklomanov, N.L. Subsidence risk from thawing permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef]
- Goncharova, O.Y.; Matyshak, G.V.; Bobrik, A.A.; Moskalenko, N.G.; Ponomareva, O.E. Temperature regimes of Northern Taiga soils in the isolated permafrost zone of Western Siberia. Eurasian Soil Sci. 2015, 48, 1329–1340. [Google Scholar] [CrossRef]
- Pavlov, A.V.; Malkova, G.V. Small-scale mapping of trends of the contemporary ground temperature changes in the Russian North. Earths Cryosphere 2009, 4, 32–39. (In Russian) [Google Scholar]
- Mokhov, I.I.; Eliseev, A.V. Modeling of global climate variations in the 20th–23rd centuries with new RCP scenarios of anthropogenic forcing. Dokl. Earth Sci. 2012, 443, 732–736. [Google Scholar] [CrossRef]
- Revich, B.A.; Shaposhnikov, D.A.; Anisimov, O.A.; Belolutskaya, M.A. Heat and cold waves in cities located in the Arctic and Subarctic zones as risk factors for increasing population mortality on the example of Arkhangelsk, Murmansk and Yakutsk. Hyg. Sanit. Russ. J. 2018, 97, 791–799. (In Russian) [Google Scholar] [CrossRef]
- Revich, B.A.; Shaposhnikov, D.A.; Anisimov, O.A.; Belolutskaya, M.A. Impact of Temperature Waves on the Health of Residents in Cities of the Northwestern Region of Russia. Stud. Russ. Econ. Dev. 2019, 30, 327–333. [Google Scholar] [CrossRef]
- Grigorieva, E.A.; Revich, B.A. Health Risks to the Russian Population from Temperature Extremes at the Beginning of the XXI Century. Atmosphere 2021, 12, 1331. [Google Scholar] [CrossRef]
- Revich, B.A. Climate Change and Health of the Population of the Russian Arctic. Environ. Plan. Manag. 2008, 71, 109–121. (In Russian) [Google Scholar]
- Svinoboev, A.N.; Neustroeva, A.B. Change of climate and living conditions in the North in perception of the indigenous population. Urban Stud. 2017, 4, 28–39. [Google Scholar] [CrossRef]
- Revich, B.A.; Shaposhnikov, D.A.; Raichich, S.R.; Saburova, S.A.; Simonova, T.G. Creating zones in administrative districts locate in the Russian Arctic region specific as per threats of cattle burials decay due to permafrost degradation. Health Risk Anal. 2021, 1, 115–125. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Gravis, A.G.; Gubarkov, A.A.; Drozdov, D.S.; Korostelev, Y.V.; Malkova, G.V.; Oblogov, G.E.; Ponomareva, O.E.; Sadurtdinov, M.R.; Streletskaya, I.D.; et al. Permafrost degradation: Results of the long-term geocryological monitoring in the western sector of Russian Arctic. Earths Cryosphere 2020, 24, 15–30. [Google Scholar] [CrossRef]
- Federal Service for Veterinary and Phytosanitary Surveillance Sanitary and Veterinary Rules of Russian Agricultural Surveillance. Collection, Utilization and Removal of Biological Waste. 1995. Available online: https://fsvps.gov.ru/fsvps/laws/165.html (accessed on 12 September 2020).
- Osipov, V.I.; Sergeev, D.O. Influence of permafrost melting on the functioning of infrastructure in the Far North. In Proceedings of the the Meeting of Scientific Advisory Panel of Russian State Committee on Natural Resources, Moscow, Russia, 25 June 2020. [Google Scholar]
- Shartova, N.V.; Grischenko, M.Y.; Revich, B.A. Geographical accessibility of health services based on open data in the Arkhangelsk region. Soc. Asp. Popul. Health 2019, 65, 1–29. Available online: http://vestnik.mednet.ru/content/view/1114/30/lang,ru (accessed on 21 March 2022). (In Russian). [CrossRef]
- Porfiriev, B.N.; Eliseev, D.O.; Streletskiy, D.A. Economic assessment of permafrost degradation effects on healthcare facilities in the Russian Arctic. Her. Russ. Acad. Sci. 2021, 91, 677–686. [Google Scholar] [CrossRef]
- Porfiriev, B.N.; Eliseev, D.O.; Streletskiy, D.A. Economic Assessment of Permafrost Degradation Effects on the Housing Sector in the Russian Arctic. Her. Russ. Acad. Sci. 2021, 91, 17–25. [Google Scholar] [CrossRef]
- Porfiriev, B.N.; Eliseev, D.O.; Streletskiy, D.A. Economic assessment of permafrost degradation effects on road infrastructure sustainability under climate change in the Russian arctic. Her. Russ. Acad. Sci. 2019, 89, 567–576. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Suter, L.J.; Shiklomanov, N.I.; Porfiriev, B.N.; Eliseev, D.O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 2019, 14, 025003. [Google Scholar] [CrossRef]
- Shatilovich, A.V.; Shmakova, L.A.; Gubin, S.V.; Gilichinskii, D.A. Viable Protozoa in the Arctic Permafrost. Earths Cryosphere 2010, 14, 69–78. (In Russian) [Google Scholar]
- Yegorov, I.Y.; Maramovich, A.S.; Botvinkin, A.D. Epidemiological Surveillance over Highly Dangerous and Natural Focal Infections in the Extreme North; Kuduk: Yakutsk, Russia, 2000; 248p. (In Russian) [Google Scholar]
- Repin, V.; Pugachev, V.; Taranov, O.; Totmenina, O.; Emelianova, E.; Torok, T.; Belikov, S. What secrets does Yukagir mammoth brain harbor? In Proceedings of the International Symposium on Yukagir Mammoth: Recent Advance in Yukagir Mammoth Researches, Japan Association for the 2005 World Exposition, Aichi, Japan, 18 June 2005; p. 18. [Google Scholar]
- Tarabukina, N.P.; Neustroev, M.P.; Skryabina, M.P.; Stepanova, A.M.; Parnikova, S.I.; Bylgaeva, A.A.; Neustroev, M.M. The role of Bacillus bacteria in conservation of the remains of mammoth in permafrost. Probl. Reg. Ecol. 2018, 6, 22–27. (In Russian) [Google Scholar] [CrossRef]
- Russian Service for Supervision of Consumer Protection and Human Welfare (Rospotrebnadzor). Cadaster of Stationary Unfavorable by Anthrax Points in the Russian Federation; Intersen Publishers: Moscow, Russia, 2005; 829p. (In Russian)
- Revich, B.; Podolnaya, M. Thawing of permafrost may disturb historic cattle burial grounds in East Siberia. Glob. Health Action 2011, 4, 8482. [Google Scholar] [CrossRef]
- Popova, A.Y.; Kulichenko, A.N. (Eds.) The Experience of Elimination of Anthrax Outbreak in the Yamal in 2016; Print-2: Izhevsk, Russia, 2017; 313p. (In Russian) [Google Scholar]
- Simonova, E.G.; Kartavaya, S.A.; Titkov, A.V.; Loktionova, M.N.; Raichich, S.R.; Tolpin, V.A.; Lupyan, E.A.; Platonov, A.E. Anthrax in the Territory of Yamal: Assessment of Epizootiological and Epidemiological Risks. Probl. Part. Danger. Infect. 2017, 1, 89–93. [Google Scholar] [CrossRef]
- Perevertin, K.A.; Vasil’ev, T.A. Elevated risks of paleobiological contamination caused by global warming. In Proceedings of the Sixth Conference “Mathematical Modeling in Ecology” EkoMatMod-2019, Puschino, Moscow Region, Russia, 26–29 September 2019; pp. 158–160. (In Russian). [Google Scholar]
- Dyagilev, G.T.; Neustroev, M.P. Epidemiological and epizootological situation on anthrax in the republic of Sakha (Yakutia). Vet. Med. Feed. 2019, 7, 11–13. [Google Scholar] [CrossRef]
- Dugarzhapova, Z.F.; Chesnokova, M.V.; Ivanova, T.A.; Kosilko, S.A.; Balakhonov, S.V. Improvement of Methodical Approaches to Investigation of Anthrax Burials and Animal Burial Sites. Probl. Part. Danger. Infect. 2019, 4, 41–47. [Google Scholar] [CrossRef]
- Elpiner, L.I.; Dzyuba, A.V. Medical and environmental aspects of the degradation of the permafrost zone: Problem of paleoviral contamination. Hyg. Sanit. Russ. J. 2017, 96, 706–711. [Google Scholar] [CrossRef]
- El-Registan, G.I.; Nikolaev, Y.A.; Mulyukin, A.L.; Loikaw, N.G.; Demkina, E.V.; Gaponov, A.M.; Tutelian, A.V.; Pisarev, V.M. The phenomenon of persistence—The forms and mechanisms of survival of populations. Med. Alph. 2014, 2, 49–54. (In Russian) [Google Scholar]
- Kraeva, L.A.; Panin, A.L.; Goncharov, A.E.; Belov, A.B.; Vlasov, D.Y.; Kirtsideli, I.Y.; Goncharov, N.E.; Baranov, I.V.; Sboychakov, V.B. Epidemiological significance of microbiota monitoring of arctic settlements along the Northern Sea Route. Marine Medicine Russ. J. 2021, 7, 23–33. [Google Scholar] [CrossRef]
- Tronin, A.A.; Tokarevich, N.K. Average annual temperature of atmospheric air and the number of tick victims in the European North of Russia. In Proceedings of the III International Scientific and Practical Conference “Health Problems and Ensuring Sanitary and Epidemiological Well-Being of the Population in the Arctic”, Saint-Petersburg, Russia, 21–22 October 2021; pp. 230–236. (In Russian). [Google Scholar]
- Lindgren, E.; Gustafson, R. Tick-borne encephalitis in Sweden and climate change. Lancet 2001, 358, 16–18. [Google Scholar] [CrossRef]
- Balashov, Y.S. Ticks—Parasites and Disease Vectors; Nauka: St. Petersburg, Russia, 1998; 287p. (In Russian) [Google Scholar]
- Neustroev, M.P.; Tarabukina, N.P.; Maksimova, A.N.; Stepanova, A.M. Microbiota and sanitation of underground glaciers during food storage. Yakut Med. J. 2019, 1, 79–82. [Google Scholar] [CrossRef]
- Komova, N.N.; Maslakov, A.A. Monitoring of the thermal condition of underground storage facilities in Eastern Chukotka. In Proceedings of the Second Russian Scientific Conference “Monitoring of the State and Pollution of the Environment. Ecosystems and Climate of the Arctic Zone”, Moscow, Russia, 22–27 November 2020; pp. 236–239. (In Russian). [Google Scholar]
- Kasikov, A.G. Particulate Emissions from Copper-Nickel Production and the Consequences of their Impact on Human Body in the Far North. Her. Kola Sci. Cent. RAS 2017, 4, 58–63. (In Russian) [Google Scholar]
- Russian Service for Supervision of Consumer Protection and Human Welfare (Rospotrebnadzor). State Report “On the State of Sanitary and Epidemiological Welfare of the Population in the Murmansk Region in 2018”. Available online: http://51.rospotrebnadzor.ru/content/866/44340/ (accessed on 21 March 2022). (In Russian)
- Ministry of Natural Resources and Environmental Protection of the Komi Republic. State Report “On the State of the Environment of the Komi Republic in 2018”; Territorial Information Fund of the Komi Republic: Syktyvkar, Russia, 2019; 163p.
- Lim, A.G.; Sonke, J.E.; Krickov, I.V.; Manasypov, R.M.; Loiko, S.V.; Pokrovsky, O.S. Enhanced particulate Hg export at the permafrost boundary, western Siberia. Environ. Pollut. 2019, 254, 113083. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Natural Resources and Environmental Protection of Magadan Region. Report on the Environmental Situation in the Magadan Region in 2017. Available online: https://minprirod.49gov.ru/common/upload/23/editor/file/Ob_ekologicheskoy_situatsii_za_2017_na_publ.pdf (accessed on 2 June 2021). (In Russian)
- Roslyakov, N.A.; Kirillova, O.V. Mercury pollution of environmental by gold mining in Russia. Chem. Sustain. Dev. 1995, 3, 43–55. (In Russian) [Google Scholar]
- Sotnikov, V.I. Environmental impact of mineral deposits and their development. Sorovsky Educ. J. 1997, 5, 62–65. (In Russian) [Google Scholar]
- Ministry of Natural Resources and Environmental Protection of Sakha Republic. Summary of State Report on the Environmental Situation in the Republic of Sakha (Yakutia) for 2018. Available online: https://minpriroda.sakha.gov.ru/uploads/ckfinder/userfiles/2021/04/13/files/%D0%93%D0%94%202018.pdf (accessed on 18 August 2021).
- Tyaptirgyanov, M.M.; Tyaptirgyanova, V.M. Ecologic and hygienic assessment of accumulation of mercury in bodies and tissues of river fish of Yakutia. Yakut Med. J. 2015, 1, 34–38. (In Russian) [Google Scholar]
- Mu, C.; Zhang, F.; Chen, X.; Ge, S.; Mu, M.; Jia, L.; Wu, Q.; Zhang, T. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 2019, 161, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, A.R.; Castello, L.; Zhulidov, A.V.; Gurtovaya, T.Y.; Robarts, R.D.; Holmes, R.M.; Zhulidov, D.A.; Spencer, R.G.M. Temporal and Longitudinal Mercury Trends in Burbot (Lota lota) in the Eastern Arctic. Environ. Sci. Technol. 2017, 51, 13436–13442. [Google Scholar] [CrossRef] [PubMed]
- Castello, L.; Zhulidov, A.V.; Gurtovaya, T.Y.; Robarts, R.D.; Holmes, R.M.; Zhulidov, D.A.; Lysenko, V.S.; Spencer, R.G.M. Low and Declining Mercury in Arctic Russian Rivers. Environ. Sci. Technol. 2014, 48, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Dudarev, A.A.; Dushkina, E.V.; Sladkova, Y.N.; Chupakhin, V.S.; Lukicheva, L.A. Levels of Exposure to metals in population of Pechenga district of Murmansk region. Industr. Med. 2016, 6, 11–16. [Google Scholar]
Hazard for Cattle | Hazard for People | |||||
---|---|---|---|---|---|---|
Subject of RF | Municipal District | HIterr | Score | Municipal District | HIpop | Score |
Yak-Arctic | Srednekolymsky | 21.26 | 6 | Naryan-Mar u.o. | 6747.26 | 6 |
Yak-West | Mirninsky | 13.24 | 6 | Syktyvkar u.o. | 436.8 | 5 |
Yak-West | Niurbinsky | 12.45 | 6 | Yakutsk u.o. | 357.38 | 5 |
NAO | Naryan-Mar u.o. | 12.32 | 6 | Lesosibirsk u.o. | 75.85 | 4 |
Taymyr | Dudinka u.o. | 11.36 | 6 | Chusovskoy u.o. | 17.71 | 3 |
Taymyr | Ust-Yeniseisky | 9.54 | 5 | Ukhta u.o. | 17.46 | 3 |
Yak-East | Oimyakonsky | 9.13 | 5 | Namsky | 14.75 | 3 |
Chukotka | Chukotka AO | 9.08 | 5 | Ust-Aldansky | 9.98 | 3 |
Yak-Centre | Ust-Aldansky | 8.76 | 4 | Sosnogorsky | 6.78 | 3 |
Yak-Centre | Amginsky | 8.2 | 4 | Mirninsky | 5.76 | 3 |
Yak-West | Viluisky | 8.19 | 4 | Niurbinsky | 5.69 | 3 |
KHMAO | Khanty-Mansiisky | 8.07 | 4 | Churapchinsky | 5.53 | 3 |
Koryak | Koryak AO | 8.02 | 4 | Khangalassky | 5.22 | 3 |
Evenk | Evenk AO | 7.61 | 4 | Amginsky | 4.66 | 3 |
Yak-Centre | Gorny | 7.45 | 4 | Minusinsky | 4.4 | 3 |
Magadan | Magadan Oblast | 7.16 | 4 | Viluisky | 3.71 | 3 |
Yak-Centre | Namsky | 7.12 | 4 | Khanty-Mansiisky | 3.51 | 3 |
Yak-West | Verkhneviluisky | 6.82 | 4 | Verkhneviluisky | 3.41 | 3 |
Yak-Centre | Kobyaisky | 6.82 | 4 | Kudymkarsky | 3.21 | 3 |
Yak-Arctic | Oleneksky | 6.13 | 3 | Abansky | 3.06 | 3 |
Yak-South | Olekminsky | 4.96 | 3 | Syktyvdinsky | 2.69 | 3 |
YANAO | Yamalsky | 4.54 | 3 | Megino-Kangalassky | 2.31 | 3 |
Yak-West | Suntarsky | 4.39 | 2 | Krasnoturansky | 2.2 | 3 |
Yak-Center | Khangalassky | 3.94 | 2 | Magadan Oblast | 2.17 | 3 |
Yak-Center | Yakutsk u.o. | 3.83 | 2 | Nadymsky | 2.05 | 3 |
Yak-Center | Churapchinsky | 3.29 | 2 | Gorny | 1.96 | 2 |
YANAO | Nadymsky | 3.17 | 2 | Sayansky | 1.95 | 2 |
Komi | Sosnogorsky | 2.64 | 2 | Tattinsky | 1.82 | 2 |
Yak-Arctic | Zhigansky | 2.33 | 1 | Priluzsky | 1.81 | 2 |
Yak-Centre | Tattinsky | 2.12 | 1 | Suntarsky | 1.79 | 2 |
YANAO | Priuralsky | 2.07 | 1 | Inta u.o. | 1.67 | 2 |
Yak-East | Tomponsky | 2.03 | 1 | Pechora u.o. | 1.6 | 2 |
Yak-East | Ust-Maisky | 1.97 | 1 | Srednekolymsky | 1.27 | 2 |
Komi | Inta u.o. | 1.88 | 1 | Kosinsly | 1.22 | 2 |
Komi | Ukhta u.o. | 1.58 | 1 | Dudinka u.o. | 1.15 | 2 |
Krasnoyarsk | Abansky | 1.48 | 1 | Gainsky | 1.08 | 2 |
Krasnoyarsk | Sayansky | 1.48 | 1 | Izhemsky | 0.91 | 2 |
Komi | Priluzsky | 1.41 | 1 | Elizovsky | 0.9 | 2 |
KPAO | Gainsky | 1.37 | 1 | Oimyakonsky | 0.84 | 2 |
Yak-Arctic | Verkhoyansky | 1.34 | 1 | Kobiaisky | 0.79 | 2 |
Komi | Syktyvkarsky u.o. | 1.23 | 1 | Olekminsky | 0.77 | 2 |
Yak-Arctic | Nizhnekolymsky | 1.17 | 1 | Usinsk u.o. | 0.66 | 2 |
Komi | Izhemsky | 0.99 | 1 | Chukotka AO | 0.63 | 2 |
Komi | Pechora u.o. | 0.95 | 1 | Surgutsky | 0.56 | 2 |
KPAO | Chusovskoy u.o. | 0.94 | 1 | Irbeisky | 0.52 | 2 |
Yak-Arctic | Verkhnekolymsky | 0.91 | 1 | Yamalsky | 0.52 | 2 |
Yak-Centre | Megino-Kangalassky | 0.88 | 1 | Koryak AO | 0.51 | 2 |
KHMAO | Kondinsky | 0.85 | 1 | Kuraginsky | 0.51 | 2 |
Komi | Syktyvdinsky | 0.82 | 1 | Idrinsky | 0.49 | 2 |
Yak-Arctic | Bulunsky | 0.81 | 1 | Priuralsky | 0.48 | 2 |
Yak-Arctic | Momsky | 0.78 | 1 | Kondinsky | 0.48 | 2 |
KPAO | Kosinsky | 0.68 | 1 | Ust-Kulomsky | 0.47 | 2 |
KPAO | Kudymkarsky | 0.68 | 1 | Ust-Yeniseysky | 0.36 | 2 |
Kamchatka | Elizovsky | 0.57 | 1 | Kniazhpogostsky | 0.31 | 2 |
Krasnoyarsk | Minusinsky | 0.55 | 1 | Kolsky | 0.25 | 2 |
Krasnoyarsk | Krasnoturansky | 0.55 | 1 | Tomponsky | 0.19 | 1 |
Komi | Ust-Kulomsky | 0.53 | 1 | Evenk AO | 0.17 | 1 |
KHMAO | Berezovsky | 0.5 | 1 | Ust-Maisky | 0.15 | 1 |
KHMAO | Surgutsky | 0.47 | 1 | Berezovsky | 0.13 | 1 |
Komi | Usinsky u.o. | 0.47 | 1 | Verkhoyansky | 0.11 | 1 |
Taymyr | Khatangsky | 0.45 | 1 | Leshukonsky | 0.09 | 1 |
Yak-Arctic | Eveno-Batyntaisky | 0.45 | 1 | Mezensky | 0.08 | 1 |
Komi | Knyazhpogostsky | 0.41 | 1 | Oleneksky | 0.08 | 1 |
Krasnoyarsk | Irbeisky | 0.37 | 1 | Zhigansky | 0.07 | 1 |
Krasnoyarsk | Lesosibirsk u.o. | 0.32 | 1 | Nizhnekolymsky | 0.06 | 1 |
Arkhangelsk | Leshukonsky | 0.31 | 1 | Verkhnekolymsky | 0.06 | 1 |
Arkhangelsk | Mezensky | 0.31 | 1 | Momsky | 0.03 | 1 |
Krasnoyarsk | Idrinsky | 0.27 | 1 | Bulunsky | 0.03 | 1 |
Krasnoyarsk | Kuraginsky | 0.27 | 1 | Eveno-Batyntaisky | 0.02 | 1 |
Murmansk | Kolsky | 0.17 | 1 | Khatangsky | 0.02 | 1 |
Region | Regional GDP in 2019, Million USD | Expected Annual Economic Loss Due to Permafrost Degradation, Million USD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Health Care | Residential Housing | Motorway Network | ||||||||
Low | Medium | High | Low | Medium | High | Low | Medium | High | ||
Komi Republic | 29,415 | 8.72 | 8.72 | 8.72 | 120.82 | 120.82 | 120.82 | 27.28 | 27.28 | 27.28 |
Nenets AO | 13,515 | 0.02 | 6.34 | 6.35 | 0.41 | 126.12 | 126.12 | 9.35 | 10.33 | 11.31 |
Khanty-Mansi AO | 186,247 | 0.00 | 0.26 | 3.91 | 0.00 | 3.27 | 45.71 | 2.79 | 2.79 | 2.79 |
Yamal-Nenets AO | 126,554 | 29.4 | 37.09 | 37.09 | 448.9 | 566.53 | 566.5 | 28.73 | 35.25 | 41.63 |
Krasnoyarsk region | 109,887 | 0.03 | 24.92 | 33.29 | 0.41 | 255.92 | 342.0 | 57.35 | 57.81 | 58.27 |
Sakha Republic (Yakutia) | 49,809 | 0.00 | 12.34 | 185.51 | 0.00 | 155.92 | 2 345 | 303.0 | 343.99 | 384.9 |
Magadan Oblast | 8718 | 0.00 | 0.97 | 36.35 | 0.00 | 5.31 | 193.8 | 45.37 | 48.37 | 51.55 |
Chukotka AO | 3873 | 0.14 | 0.14 | 19.17 | 1.22 | 1.22 | 138.3 | 46.82 | 48.30 | 49.78 |
Total | 528,017 | 38.3 | 90.80 | 330.4 | 571.8 | 1 235.1 | 3 878 | 520.7 | 574.11 | 627.5 |
Region | Population, Number of People | Number of Siberian Anthrax Cattle Burials in Frozen Soils | ||||
---|---|---|---|---|---|---|
Total | Arctic Zone of Russia | Areas of Permafrost Degradation | ||||
Urban | Rural | Urban | Rural | |||
Komi Republic | 637,072 | 176,518 | 135,063 | 17,509 | 240,539 | 28 |
Archangelsk Oblast | 888,896 | 238,155 | 591,280 | 45,052 | 0 | 84 |
Nenets AO | 32,948 | 11,441 | 32,948 | 11,441 | 44,389 | 20 |
Murmansk AO | 675,190 | 57,674 | 675,190 | 57,674 | 0 | 2 |
Khanty-Mansi AO | 1,563,020 | 124,634 | 0 | 0 | 341,868 | 21 |
Yamal-Nenets AO | 459,078 | 87,932 | 459,078 | 87,932 | 547,010 | 8 |
Krasnoyarsk region | 2,217,054 | 638,845 | 208,994 | 21,135 | 544,954 | 39 |
Sakha Republic (Yakutia) | 651,070 | 330,901 | 26,107 | 41,691 | 981,971 | 270 |
Kamchatka region | 245,188 | 66,479 | 0 | 0 | 311,667 | n/a |
Magadan Oblast | 133,607 | 5427 | 0 | 0 | 139,034 | n/a |
Chukotka AO | 35,242 | 14,285 | 35,242 | 14,285 | 49,527 | n/a |
Total | 7,538,365 | 1,752,291 | 2,163,902 | 296,719 | 3,200,959 | 472 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revich, B.A.; Eliseev, D.O.; Shaposhnikov, D.A. Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation. Atmosphere 2022, 13, 532. https://doi.org/10.3390/atmos13040532
Revich BA, Eliseev DO, Shaposhnikov DA. Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation. Atmosphere. 2022; 13(4):532. https://doi.org/10.3390/atmos13040532
Chicago/Turabian StyleRevich, Boris A., Dmitry O. Eliseev, and Dmitry A. Shaposhnikov. 2022. "Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation" Atmosphere 13, no. 4: 532. https://doi.org/10.3390/atmos13040532