Temperature Change Characteristics in Gansu Province of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ERA-Interim Reanalysis Temperature
2.3. Methods
2.3.1. Inverse Distance Weight Method
2.3.2. Linear Regression Model
2.3.3. Mann-Kendall Mutation Test
3. Results
3.1. Daily Temperature at Each Climate Zone
3.2. Temperature Increasing Trend
3.3. Mann-Kendall Mutation Analysis of Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadi, B.; Moazenzadeh, R. Performance Analysis of Daily Global Solar Radiation Models in Peru by Regression Analysis. Atmosphere 2021, 12, 389. [Google Scholar] [CrossRef]
- Nonki, R.M.; Lenouo, A.; Lennard, C.J.; Tchawoua, C. Correction to: Assessing climate change impacts on water resources in the Benue River Basin, Northern Cameroon. Environ. Earth Sci. 2020, 79, 111. [Google Scholar] [CrossRef] [Green Version]
- Wen, K.; Ren, G.; Li, J.; Zhang, A.; Ren, Y.; Sun, X.; Zhou, Y. Recent Surface Air Temperature Change over Mainland China Based on an Urbanization-Bias Adjusted Dataset. J. Clim. 2019, 32, 2691–2705. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.; Wen, X.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 143532. [Google Scholar] [CrossRef] [PubMed]
- Rong, Z.; Zhao, C.; Liu, J.; Gao, Y.; Zang, F.; Guo, Z.; Mao, Y.; Wang, L. Modeling the Effect of Climate Change on the Potential Distribution of Qinghai Spruce (IPicea crassifolia Kom.) in Qilian Mountains. Forests 2019, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Sahana, M.; Patel, P.P. A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ. Earth Sci. 2019, 78, 289. [Google Scholar] [CrossRef]
- Wang, H.; Long, H.; Li, X.; Yu, F. Evaluation of changes in ecological security in China’s Qinghai Lake Basin from 2000 to 2013 and the relationship to land use and climate change. Environ. Earth Sci. 2013, 72, 341–354. [Google Scholar] [CrossRef]
- Dyakonov, G.S.; Ibrayev, R.A.; Shishkova, P.O. Assessment of ERA-Interim Reanalysis Data Quality for the Caspian Sea Area. Russ. Meteorol. Hydrol. 2020, 45, 650–657. [Google Scholar] [CrossRef]
- Chen, L.; Frauenfeld, O.W. Surface Air Temperature Changes over the Twentieth and Twenty-First Centuries in China Simulated by 20 CMIP5 Models. J. Clim. 2014, 27, 3920–3937. [Google Scholar] [CrossRef]
- Kryza, M.; Wałaszek, K.; Ojrzyńska, H.; Szymanowski, M.; Werner, M.; Dore, A.J. High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 1: Model Configuration and Statistical Evaluation for the 1981–2010 Period. Pure Appl. Geophys. 2016, 174, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Tian, R.; Feng, S. Comparison of Atmospheric Vertical Motion over China in ERA-Interim, JRA-55, and NCEP/NCAR Reanalysis Datasets. Asia-Pacific J. Atmos. Sci. 2021, 57, 773–786. [Google Scholar] [CrossRef]
- Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T. High-resolution dynamical downscaling of ERA-Interim temperature and precipitation using WRF model for Greece. Clim. Dyn. 2021, 57, 799–825. [Google Scholar] [CrossRef]
- Gao, L.; Wei, J.; Wang, L.; Bernhardt, M.; Schulz, K.; Chen, X. A high-resolution air temperature data set for the Chinese Tian Shan in 1979–2016. Earth Syst. Sci. Data 2018, 10, 2097–2114. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Harpham, C.; Troccoli, A.; Gschwind, B.; Ranchin, T.; Wald, L.; Goodess, C.M.; Dorling, S. Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables. Earth Syst. Sci. Data 2017, 9, 471–495. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Gao, L.; Wei, J.; Ma, M.; Deng, H.; Gao, J.; Chen, X. Evaluation of ERA-Interim Air Temperature Data over the Qilian Mountains of China. Adv. Meteorol. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wu, T.; Li, R.; Yu, W.; Wang, T.; Zhu, X.; Wang, W.; Hu, G.; Tian, L. Using ERA-Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai–Tibet Plateau. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Wen, X.; Wu, X.; Gao, M. Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951–2015. Atmos. Res. 2017, 197, 132–149. [Google Scholar] [CrossRef]
- Liang, X.; Niu, Z.; Xu, X.; Wang, N. Changes of extreme climate events in Gansu Province from 1960 to 2016. J. Lanzhou Univ. Nat. Sci. 2020, 56, 231–242. (In Chinese) [Google Scholar]
- Ma, Y.; Zhang, J.; Wang, S.; Li, W. Analysis of temperature changes in Gansu Province from 1951 to 2010. J. Lanzhou Univ. Nat. Sci. 2013, 49, 794–798. (In Chinese) [Google Scholar]
- Song, Y.; Achberger, C.; Linderholm, H. Rain-season trends in precipitation and their effect in different climate regions of China during 1961–2008. Environ. Res. Lett. 2011, 6, 034025. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.Y.J.; Gao, L. Verification of ECMWF re-analysis of temperature data in Tianshan Mountain. J. Beijing Norm. Univ. Nat. Sci. 2018, 54, 635–644. (In Chinese) [Google Scholar]
- Woo, H.V.; Ng, J.L.; Huang, Y.F.; Chong, C.; Lee, J.C. Spatiotemporal analysis of temperature data trends in Peninsular Malaysia. Arab. J. Geosci. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Wang, J. Determining the most accurate program for the Mann-Kendall method in detecting climate mutation. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2020, 142, 847–854. [Google Scholar] [CrossRef]
- Nourani, V.; Mehr, A.D.; Azad, N. Trend analysis of hydroclimatological variables in Urmia lake basin using hybrid wavelet Mann–Kendall and Şen tests. Environ. Earth Sci. 2018, 77, 207. [Google Scholar] [CrossRef]
- Xing, L.; Huang, L.; Chi, G.; Yang, L.; Li, C.; Hou, X. A Dynamic Study of a Karst Spring Based on Wavelet Analysis and the Mann-Kendall Trend Test. Water 2018, 10, 698. [Google Scholar] [CrossRef] [Green Version]
- Sa’Adi, Z.; Shahid, S.; Ismail, T.; Chung, E.-S.; Wang, X.-J. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2017, 131, 263–277. [Google Scholar] [CrossRef]
- Ning, T.; Feng, Q.; Li, Z.; Li, Z. Recent changes in climate seasonality in the inland river basin of Northwestern China. J. Hydrol. 2020, 590, 1–12. [Google Scholar] [CrossRef]
- Gerald, D.; Michael, S.; Chester, F.; Vernon, E.; Arthur, V.; Russell, C.; Melvyn, E. Climate Assessment for 1998. Bull. Am. Meteorol. Soc. 1999, 5, 1–48. [Google Scholar]
- Wu, J.; Chen, X.; Chang, T.-J. Correlations between hydrological drought and climate indices with respect to the impact of a large reservoir. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 139, 727–739. [Google Scholar] [CrossRef]
- Wang, L.; Chen, R.; Han, C.; Wang, X.; Liu, G.; Song, Y.; Yang, Y.; Liu, J.; Liu, Z.; Liu, X.; et al. Change characteristics of precipitation and temperature in the Qilian Mountains and Hexi Oasis, Northwestern China. Environ. Earth Sci. 2019, 78, 284. [Google Scholar] [CrossRef]
- Guo, D.; Pepin, N.; Yang, K.; Sun, J.; Li, D. Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau. Sci. Bull. 2021, 66, 1146–1150. [Google Scholar] [CrossRef]
- Wu, B.; Shi, J.; Xie, M.; He, L.; Chen, X.; Zhao, J. Optimal protective effect of forest coverage on soil and water loss in Gansu Provinc. Acta Ecol. Sin. 2003, 23, 1125–1137. (In Chinese) [Google Scholar]
- Li, H.; Gao, Z.; Wang, S.; Wang, H. Extreme temperature variation of Hexi Corridor in recent 60 years. Arid. Land Geogr. 2015, 38, 1–9. (In Chinese) [Google Scholar]
- Yang, B.; Han, X. Analysis on variation characteristics of precipitation and temperature in some areas of Gansu Province in recent 65 years. Gansu Sci. Technol. 2019, 35, 60–61. (In Chinese) [Google Scholar]
- Teng, C.; Zhang, M.; Teng, J.; Qiao, Q. Climatic Change Characteristics in Wushaoling Region of Gansu Province During 1951-2016. J. Arid. Meteorol. 2018, 36, 75–81. (In Chinese) [Google Scholar]
- Dou, R.; Yan, J.; Wang, P. Spatiotemporal Distribution of Temperature in Gansu Province under Global Climate Change during the Period from 1956 to 2012. Arid Zone Res. 2015, 32, 73–79. (In Chinese) [Google Scholar]
- Zhao, Y.; Zhang, B.; Wang, B.; He, X.; Jin, S.; Yin, H. Spatiotemporal Climate Change in the Hedong Region in Gansu Province in Recent 54 Years. Arid Zone Res. 2012, 29, 956–964. (In Chinese) [Google Scholar]
- Wang, B.; Zhang, M.; Wei, J.; Huang, X.; Wang, S. Study on Change of Extreme Temperatures in Gansu Province during the Period of 1960-2009. Arid Zone Res. 2012, 29, 674–680. (In Chinese) [Google Scholar]
- Jiao, W.; Zhang, B.; Huang, T.; Ma, S.; Hou, Q. Spatiotemporal Change of Extreme Temperature in the Hedong Region in Recent 30 Years. Arid Zone Res. 2019, 36, 1466–1477. (In Chinese) [Google Scholar]
- Huang, H.; Zhang, B.; Huang, T.; Wang, H.; Ma, S.; Ma, B.; Wang, X.; Cui, Y. Quantifying and predicting spatial and temporal variations in extreme temperatures since 1990 in Gansu Province, China. Arid Land Geogr. 2020, 43, 319–328. (In Chinese) [Google Scholar]
Climate Types | T_mean (°C) | T_max (°C) | T_min (°C) |
---|---|---|---|
Subtropical monsoon climate | 10.193 | 13.968 | 7.160 |
Temperate monsoon climate | 6.747 | 11.904 | 2.581 |
Temperate continental climate | 6.686 | 12.328 | 1.460 |
Plateau mountain climate | −0.312 | 5.577 | −5.215 |
Climate Types | T_mean | T_max | T_min |
---|---|---|---|
Subtropical monsoon climate | 0.334 | 0.300 | 0.336 |
Temperate monsoon climate | 0.420 | 0.405 | 0.464 |
Temperate continental climate | 0.407 | 0.471 | 0.424 |
Plateau mountain climate | 0.387 | 0.464 | 0.398 |
Periods | Subtropical Monsoon Climate | Temperate Monsoon Climate | Temperate Continental Climate | Plateau Mountain Climate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T_mean | T_max | T_min | T_mean | T_max | T_min | T_mean | T_max | T_min | T_mean | T_max | T_min | |
1979–2008 | 0.371 | 0.378 | 0.306 | 0.462 | 0.485 | 0.481 | 0.500 | 0.579 | 0.502 | 0.474 | 0.548 | 0.491 |
1980–2009 | 0.395 | 0.382 | 0.335 | 0.493 | 0.513 | 0.513 | 0.499 | 0.582 | 0.503 | 0.491 | 0.565 | 0.511 |
1981–2010 | 0.393 | 0.392 | 0.324 | 0.503 | 0.551 | 0.510 | 0.494 | 0.574 | 0.510 | 0.483 | 0.578 | 0.491 |
1982–2011 | 0.371 | 0.330 | 0.323 | 0.480 | 0.499 | 0.506 | 0.436 | 0.501 | 0.467 | 0.450 | 0.540 | 0.464 |
1983–2012 | 0.347 | 0.279 | 0.332 | 0.451 | 0.435 | 0.505 | 0.406 | 0.466 | 0.440 | 0.389 | 0.459 | 0.420 |
1984–2013 | 0.366 | 0.307 | 0.352 | 0.437 | 0.428 | 0.483 | 0.403 | 0.484 | 0.429 | 0.342 | 0.435 | 0.354 |
1985–2014 | 0.340 | 0.253 | 0.364 | 0.405 | 0.371 | 0.466 | 0.317 | 0.396 | 0.342 | 0.290 | 0.383 | 0.296 |
1986–2015 | 0.354 | 0.272 | 0.381 | 0.398 | 0.362 | 0.462 | 0.314 | 0.386 | 0.342 | 0.287 | 0.380 | 0.296 |
1987–2016 | 0.367 | 0.310 | 0.383 | 0.397 | 0.379 | 0.445 | 0.316 | 0.380 | 0.342 | 0.291 | 0.389 | 0.290 |
1988–2017 | 0.397 | 0.362 | 0.401 | 0.439 | 0.436 | 0.476 | 0.368 | 0.423 | 0.403 | 0.328 | 0.411 | 0.341 |
Average | 0.370 | 0.327 | 0.350 | 0.447 | 0.446 | 0.485 | 0.405 | 0.477 | 0.428 | 0.383 | 0.469 | 0.395 |
SD | 0.019 | 0.048 | 0.030 | 0.037 | 0.061 | 0.022 | 0.072 | 0.077 | 0.065 | 0.081 | 0.077 | 0.085 |
Climate Types | T_mean | T_max | T_min |
---|---|---|---|
Subtropical monsoon climate | 1997 | 1997 | No |
Temperate monsoon climate | 1997 | 1997 | No |
Temperate continental climate | 1997 | No | 1997 |
Plateau mountain climate | No | No | 1994 |
Periods | Subtropical Monsoon Climate | Temperate Monsoon Climate | Temperate Continental Climate | Plateau Mountain Climate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T_mean | T_max | T_min | T_mean | T_max | T_min | T_mean | T_max | T_min | T_mean | T_max | T_min | |
1979–2008 | 1997 | 1997 | 1997 | 1994 | 1995 | 1997 | 1993 | 1993 | 1996 | No | No | 1994 |
1980–2009 | 1997 | 1997 | 1997 | 1995 | 1994 | 1997 | 1993 | 1993 | 1996 | No | No | 1994 |
1981–2010 | 1997 | 1994 | 1997 | 1995 | 1994 | 1997 | 1993 | 1993 | 1996 | No | No | 1994 |
1982–2011 | 1994 | 1994 | 1997 | 1994 | 1994 | 1997 | 1993 | 1993 | 1994 | 1993 | No | 1993 |
1983–2012 | 1994 | 1997 | 1997 | 1994 | 1993 | 1997 | 1987 | 1989 | 1993 | 1993 | 1994 | 1994 |
1984–2013 | 1994 | 1993 | 1997 | 1994 | 1994 | 1997 | 1993 | 1993 | 1993 | 1993 | 1996 | 1993 |
1985–2014 | 1997 | 1997 | No | 1997 | 1993 | 1997 | 1997 | No | 1996 | 1997 | 1997 | 1996 |
1986–2015 | 1997 | 1997 | 2003 | 1997 | 1997 | 2001 | 1997 | 1997 | 1996 | 1997 | 1997 | 1996 |
1987–2016 | 1997 | 1997 | No | 2000 | 1997 | No | 1997 | No | 1998 | 1997 | 2002 | 1998 |
1988–2017 | 1997 | 1997 | No | 1997 | 1996 | No | 1997 | No | 1998 | 1997 | 1997 | 1997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; He, Z. Temperature Change Characteristics in Gansu Province of China. Atmosphere 2022, 13, 728. https://doi.org/10.3390/atmos13050728
Zhao P, He Z. Temperature Change Characteristics in Gansu Province of China. Atmosphere. 2022; 13(5):728. https://doi.org/10.3390/atmos13050728
Chicago/Turabian StyleZhao, Peng, and Zhibin He. 2022. "Temperature Change Characteristics in Gansu Province of China" Atmosphere 13, no. 5: 728. https://doi.org/10.3390/atmos13050728