On the Calculation of Urban Morphological Parameters Using GIS: An Application to Italian Cities
Abstract
:1. Introduction
2. Description of the Cities Investigated
3. Methodology
3.1. Description of the Morphological Parameters
- mean building height, (m): the geometric average over a specific area of building heights;
- sky view factor, SVF (-): the ratio of the amount of sky hemisphere visible from ground level to that of an unobstructed hemisphere;
- aspect ratio, AR (-): the mean height-to-width ratio of street canyons, building spacing;
- plan area index, λp (-): the ratio of building plan area to total plan area.
3.1.1. Mean Building Height
3.1.2. Sky View Factor
3.1.3. Aspect Ratio
3.1.4. Plan Area Index
3.2. Estimation of Morphological Parameters Using GIS
- for Lecce and Bari, SIT Puglia (http://www.sit.puglia.it, accessed on 14 April 2022);
- for Naples, Geoportale Nazionale (http://wms.pcn.minambiente.it, accessed on 18 May 2022);
- for Rome Open Data Lazio (https://geoportale.regione.lazio.it, accessed on 20 October 2022);
- for Milan, Milano Geoportale (https://geoportale.comune.milano.it, accessed on 17 June 2022).
Specific Case of SVF
3.3. Data Analysis Based on CORINE Land Cover Classes
4. Results and Discussion
4.1. Morphological Parameter Maps
4.2. Comparison of the Morphological Characteristics
4.3. Limitations and Future Morphological Works
- moving from the coarser (1000 m × 1000 m) to the finer (50 m × 50 m) grid resolutions, values of , AR, and λp increase, while values of SVF decrease;
- the maximum percentage deviations obtained using the finer grid (50 m × 50 m) are 16% (for AR in CLC 1) and 26% (for λp in CLC 2). On the other hand, the deviations obtained using the other grid resolutions (250 m × 250 m, 500 m × 500 m, and 1000 m × 1000 m) are in general larger than those obtained using 50 m × 50 m;
- focusing on values obtained for CLC 3, larger deviations (than those found for CLC 1 and 2) can be noted using the 50 m × 50 m grid resolution, with a maximum deviation of 60% for λp. This may be due to the small grid cells (50 m × 50 m), which experience a larger number of values close to 0 (cell without buildings) and 1 (cell fully occupied by buildings) as confirmed by the high standard deviation.
4.4. LCZ Map Based on Morphological Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilber, C.; Palmer, C. Urban Development and Air Pollution: Evidence from a Global Panel of Cities. Grantham Research Institute on Climate Change and the Environment, Working Paper No. 175. 2014. Available online: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2014/12/Working-Paper-175-Hilber-Palmer-2014.pdf (accessed on 1 December 2022).
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef] [PubMed]
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Annu Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Ferreira, D.G.; Diniz, C.B.; de Assis, E.S. Methods to calculate urban surface parameters and their relation to the LCZ classification. Urban Clim. 2021, 36, 100788. [Google Scholar] [CrossRef]
- Palusci, O.; Cecere, C. Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability 2022, 12, 44. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Buccolieri, R.; Pappaccogli, G.; Leo, L.S. The effects of trees on micrometeorology in a real street canyon: Consequences for local air quality. Int. J. Environ. Pollut. 2015, 58, 100–111. [Google Scholar] [CrossRef]
- Li, Z.; Ming, T.; Liu, S.; Peng, C.; de Richter, R.; Li, W.; Zhang, H.; Wen, C.-Y. Review on pollutant dispersion in urban areas-part A: Effects of mechanical factors and urban morphology. Build. Environ. 2021, 190, 107534. [Google Scholar] [CrossRef]
- Buccolieri, R.; Carlo, O.S.; Rivas, E.; Santiago, J.L.; Salizzoni, P.; Siddiqui, M.S. Obstacles influence on existing urban canyon ventilation and air pollutant concentration: A review of potential measures. Build. Environ. 2022, 214, 108905. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, G.; Wang, L.; Liu, X.; Wu, Z. Influencing Factors on Airflow and Pollutant Dispersion around Buildings under the Combined Effect of Wind and Buoyancy—A Review. Int. J. Environ. Res. Public Health 2022, 19, 12895. [Google Scholar] [CrossRef]
- Peng, Y.; Buccolieri, R.; Gao, Z.; Ding, W. Indices employed for the assessment of “urban outdoor ventilation”—A review. Atmosph. Envir. 2020, 223, 117211. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Buccolieri, R.; Santiago, J.L.; Martilli, A. CFD modelling: The most useful tool for developing mesoscale urban canopy parameterizations. Build. Simul. 2021, 14, 407–419. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. Climatol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Burian, S.; Augustus, N.; Jeyachandran, I.; Brown, M. National Buildings Statistics Database: Version 2; LA-UR-08-1921; University of Utah: Salt Lake City, Utah, USA, 2008; p. 82. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Feng, W.; Liu, J. A Literature Survey of Local Climate Zone Classification: Status, Application, and Prospect. Buildings 2022, 12, 1693. [Google Scholar] [CrossRef]
- Palusci, O.; Monti, P.; Cecere, C.; Montazeri, H.; Blocken, B. Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Sci. Total Environ. 2022, 807, 150490. [Google Scholar] [CrossRef]
- Ratti, C.; Di Sabatino, S.; Britter, R. Urban texture analysis with image processing techniques: Winds and dispersion. Theor. Appl. Clim. 2006, 84, 77–90. [Google Scholar] [CrossRef]
- Wang, R.; Ren, C.; Xu, Y.; Lau, K.-K.-L.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Miao, S.; Kong, F.; Zhang, Y.; Li, N. Urban morphological parameters of the main cities in China and their application in the WRF model. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002382. [Google Scholar] [CrossRef]
- Theethai Jacob, A.; Jayakumar, A.; Gupta, K.; Mohandas, S.; Hendry, M.A.; Smith, D.K.; Francis, T.; Bhati, S.; Parde, A.N.; Mohan, M.; et al. Implementation of the urban parameterization scheme in the Delhi model with an improved urban morphology. Q. J. R. Meteorol. Soc. 2023, 149, 40–60. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, K. Blue-Green Infrastructure (BGI) network in urban areas for sustainable storm water management: A geospatial approach. City Environ. Interact. 2022, 16, 100087. [Google Scholar] [CrossRef]
- Gupta, K.; Garg, P.; Gupta, P.K.; Debnath, A.; Roy, A.; Shukla, Y. An innovative approach for retrieval of gridded urban canopy parameters using very high resolution optical satellite stereo. Int. J. Remote Sens. 2022, 43, 4378–4409. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Leo, L.S.; Cataldo, R.; Ratti, C.; Britter, R.E. Construction of Digital Elevation Models for a Southern European City and a Comparative Morphological Analysis with Respect to Northern European and North American Cities. J. Appl. Meteorol. Climatol. 2010, 49, 1377–1396. [Google Scholar] [CrossRef]
- Giovannini, L.; Zardi, D.; de Franceschi, M.; Chen, F. Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol. 2014, 34, 1111–1131. [Google Scholar] [CrossRef]
- Pappaccogli, G.; Giovannini, L.; Zardi, D.; Martilli, A. Assessing the ability of WRF-BEP + BEM in reproducing the wintertime building energy consumption of an Italian Alpine city. J. Geophys. Res. Atmos. 2021, 126, e2020JD033652. [Google Scholar] [CrossRef]
- Hämmerle, M.; Gál, T.; Unger, J.; Matzarakis, A. Introducing a script for calculating the sky view factor used for urban climate investigations. Acta Climatol. Et Chorol. 2011, 44–45, 83–92. [Google Scholar]
- Chen, L.; Hang, J.; Sandberg, M.; Claesson, L.; Di Sabatino, S. The Influence of Building Packing Densities on Flow Adjustment and City Breathability in Urban-like Geometries. Procedia Eng. 2017, 198, 758–769. [Google Scholar] [CrossRef]
- Watson, I.D.; Johnson, G.T. Graphical estimation of sky view-factors in urban environments. J. Climatol. 1987, 7, 193–197. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Maciejewski, R.; Demuzere, M.; Roth, M. Sky View Factor footprints for urban climate modeling. Urb. Clim. 2018, 25, 120–134. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Hu, Y.; Zhang, H.; He, X.; Chen, W. Review of methods used to estimate the sky view factor in urban street canyons. Build. Environ. 2020, 168, 106497. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. Continuous sky view factor maps from high resolution urban digital elevation models. Clim. Res. 2010, 42, 177–183. [Google Scholar] [CrossRef]
- Bernard, J.; Bocher, E.; Petit, G.; Palominos, S. Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools. Climate 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Merbitz, H.; Buttstädt, M.; Michael, S.; Dott, W.; Schneider, C. GIS-based identification of spatial variables enhancing heat and poor air quality in urban areas. Appl. Geogr. 2012, 33, 94–106. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Morav. Geogr. Reports 2016, 24, 2–12. [Google Scholar] [CrossRef]
- Buccolieri, R.; Sandberg, M.; Di Sabatino, S. City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmos. Environ. 2010, 44, 1894–1903. [Google Scholar] [CrossRef]
- Buccolieri, R.; Wigö, H.; Sandberg, M.; Di Sabatino, S. Direct measurements of the drag force over aligned arrays of cubes exposed to boundary-layer flows. Environ. Fluid Mech. 2017, 17, 373–394. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987; Chapter 8; pp. 262–303. [Google Scholar]
- Lehnert, M.; Savić, S.; Milošević, D.; Dunjić, J.; Geletič, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS Int. J. Geo-Inf. 2021, 10, 260. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.; Gál, T.; Hidalgo, J.; et al. Generating WUDAPT level 0 data—Current status of production and evaluation. Urban Clim. 2018, 27, 24–45. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef]
- Unger, J.; Lelovics, E.; Gál, T. Local Climate Zone mapping using GIS methods in Szeged. Hung. Geogr. Bull. 2014, 63, 29–41. [Google Scholar]
- Perera, N.G.R.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar] [CrossRef]
- Muhammad, F.; Xie, C.; Vogel, J.; Afshari, A. Inference of Local Climate Zones from GIS Data, and Comparison to WUDAPT Classification and Custom-Fit Clusters. Land 2022, 11, 747. [Google Scholar] [CrossRef]
Spatially-Averaged | Median | Max | |||
---|---|---|---|---|---|
Region | (m) | λp (-) | (m) | λp (-) | |
Lecce | 7.1 | 0.14 | 5.9 | 0.07 | 30.9 |
Bari | 8.8 | 0.16 | 6.5 | 0.10 | 47.3 |
Naples | 12.0 | 0.20 | 11.0 | 0.16 | 76.7 |
Rome | 12.7 | 0.19 | 11.8 | 0.16 | 73.5 |
Milan | 10.9 | 0.22 | 9.1 | 0.19 | 79.3 |
CLC 1 | Spatially-Averaged | St. Dev. | ||||||
---|---|---|---|---|---|---|---|---|
Region | (m) | AR (-) | SVF (-) | λp (-) | (m) | AR (-) | SVF (-) | λp (-) |
Lecce | 9.5 | 0.53 | 0.75 | 0.34 | 4.3 | 0.37 | 0.19 | 0.19 |
Bari | 14.1 | 0.60 | 0.69 | 0.32 | 6.2 | 0.41 | 0.20 | 0.18 |
Naples | 15.2 | 0.50 | 0.74 | 0.26 | 6.9 | 0.40 | 0.20 | 0.16 |
Rome | 16.4 | 0.63 | 0.67 | 0.28 | 6.1 | 0.40 | 0.20 | 0.14 |
Milan | 16.0 | 0.68 | 0.63 | 0.36 | 5.6 | 0.32 | 0.17 | 0.15 |
CLC 2 | Spatially-Averaged | St. Dev. | ||||||
---|---|---|---|---|---|---|---|---|
Region | (m) | AR (-) | SVF (-) | λp (-) | (m) | AR (-) | SVF (-) | λp (-) |
Lecce | 8.5 | 0.26 | 0.88 | 0.17 | 4.8 | 0.22 | 0.12 | 0.14 |
Bari | 10.0 | 0.22 | 0.90 | 0.13 | 7.9 | 0.15 | 0.09 | 0.12 |
Naples | 10.5 | 0.22 | 0.90 | 0.13 | 5.3 | 0.18 | 0.11 | 0.10 |
Rome | 12.5 | 0.25 | 0.88 | 0.16 | 6.8 | 0.22 | 0.13 | 0.11 |
Milan | 11.6 | 0.31 | 0.84 | 0.20 | 7.2 | 0.22 | 0.14 | 0.14 |
CLC 3 | Spatially-Averaged | St. Dev. | ||||||
---|---|---|---|---|---|---|---|---|
Region | (m) | AR (-) | SVF (-) | λp (-) | (m) | AR (-) | SVF (-) | λp (-) |
Lecce | 7.4 | 0.11 | 0.96 | 0.16 | 3.3 | 0.11 | 0.06 | 0.19 |
Bari | 7.1 | 0.18 | 0.93 | 0.19 | 3.1 | 0.12 | 0.07 | 0.19 |
Naples | 9.7 | 0.19 | 0.92 | 0.22 | 5.3 | 0.16 | 0.10 | 0.20 |
Rome | 8.3 | 0.12 | 0.95 | 0.20 | 4.2 | 0.14 | 0.08 | 0.18 |
Milan | 9.3 | 0.22 | 0.90 | 0.25 | 6.2 | 0.16 | 0.10 | 0.20 |
Lecce Region | Spatially-Averaged | St. Dev. | ||||||
---|---|---|---|---|---|---|---|---|
CLC 1 | (m) | AR (-) | SVF (-) | λp (-) | (m) | AR (-) | SVF (-) | λp (-) |
50 m × 50 m | 9.53 | 0.62 | 0.72 | 0.37 | 4.53 | 0.54 | 0.22 | 0.21 |
100 m × 100 m | 9.45 | 0.53 | 0.75 | 0.34 | 4.26 | 0.42 | 0.19 | 0.19 |
250 m × 250 m | 9.14 | 0.42 | 0.79 | 0.29 | 3.86 | 0.33 | 0.16 | 0.17 |
500 m × 500 m | 9.31 | 0.39 | 0.82 | 0.28 | 3.29 | 0.27 | 0.15 | 0.16 |
1000 m × 1000 m | 9.08 | 0.31 | 0.85 | 0.23 | 2.68 | 0.21 | 0.11 | 0.12 |
CLC 2 | ||||||||
50 m × 50 m | 8.74 | 0.30 | 0.86 | 0.22 | 5.10 | 0.27 | 0.15 | 0.17 |
100 m × 100 m | 8.51 | 0.26 | 0.88 | 0.17 | 4.76 | 0.22 | 0.12 | 0.14 |
250 m × 250 m | 8.04 | 0.21 | 0.90 | 0.13 | 3.74 | 0.20 | 0.11 | 0.12 |
500 m × 500 m | 7.68 | 0.18 | 0.92 | 0.11 | 3.29 | 0.19 | 0.10 | 0.12 |
1000 m × 1000 m | 7.93 | 0.15 | 0.93 | 0.10 | 2.87 | 0.16 | 0.08 | 0.11 |
CLC 3 | AR (-) | |||||||
50 m × 50 m | 7.65 | 0.15 | 0.95 | 0.25 | 3.41 | 0.15 | 0.08 | 0.27 |
100 m × 100 m | 7.34 | 0.11 | 0.96 | 0.16 | 3.33 | 0.11 | 0.06 | 0.19 |
250 m × 250 m | 7.10 | 0.08 | 0.97 | 0.09 | 2.83 | 0.07 | 0.03 | 0.11 |
500 m × 500 m | 7.10 | 0.06 | 0.98 | 0.07 | 2.57 | 0.05 | 0.02 | 0.07 |
1000 m × 1000 m | 7.67 | 0.07 | 0.97 | 0.06 | 2.27 | 0.06 | 0.03 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, A.; Grulois, M.; Pappaccogli, G.; Palusci, O.; Donateo, A.; Salizzoni, P.; Santiago, J.L.; Martilli, A.; Maffeis, G.; Buccolieri, R. On the Calculation of Urban Morphological Parameters Using GIS: An Application to Italian Cities. Atmosphere 2023, 14, 329. https://doi.org/10.3390/atmos14020329
Esposito A, Grulois M, Pappaccogli G, Palusci O, Donateo A, Salizzoni P, Santiago JL, Martilli A, Maffeis G, Buccolieri R. On the Calculation of Urban Morphological Parameters Using GIS: An Application to Italian Cities. Atmosphere. 2023; 14(2):329. https://doi.org/10.3390/atmos14020329
Chicago/Turabian StyleEsposito, Antonio, Myrtille Grulois, Gianluca Pappaccogli, Olga Palusci, Antonio Donateo, Pietro Salizzoni, Jose Luis Santiago, Alberto Martilli, Giuseppe Maffeis, and Riccardo Buccolieri. 2023. "On the Calculation of Urban Morphological Parameters Using GIS: An Application to Italian Cities" Atmosphere 14, no. 2: 329. https://doi.org/10.3390/atmos14020329