Multi-Player Non-Cooperative Game Strategy of a Nonlinear Stochastic System with Time-Varying Parameters
Abstract
:1. Introduction
2. Preliminary
3. Multi-Party Non-Cooperative Investment Strategies for Time-Varying Stochastic Financial Systems
4. The Global Linearization Method for a Nonlinear Stochastic Financial System with Time-Varying Parameters
5. Examples and Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reny, P.J. Nash equilibrium in discontinuous games. Annu. Rev. Econ. 2020, 12, 439–470. [Google Scholar] [CrossRef]
- Fu, H.F. On the existence of Pareto undominated mixed-strategy Nash equilibrium in normal-form games with infinite actions. Econ. Lett. 2021, 201, 109771. [Google Scholar] [CrossRef]
- Poveda, J.I.; Krstic, M.; Basar, T. Fixed-time Nash equilibrium seeking in time-varying networks. IEEE Trans. Autom. Control 2023, 68, 1954–1969. [Google Scholar] [CrossRef]
- Nash, J. Non-cooperative games. Ann. Math. 1951, 54, 286–295. [Google Scholar] [CrossRef]
- Goldman, A.J.; Shier, D.R. Player aggregation in noncooperative games. J. Res. Natl. Bur. Stand. 1980, 86, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.X.; Hong, S.H.; Li, C.H. Existence of extended Nash equilibriums of nonmonetized noncooperative games. Fixed Point Theory Appl. 2015, 2015, 65. [Google Scholar] [CrossRef]
- Ye, M.J.; Hu, G.Q. Distributed seeking of time-varying Nash equilibrium for non-cooperative games. IEEE Trans. Autom. Control 2015, 60, 3000–3005. [Google Scholar] [CrossRef]
- Aduba, C.; Won, C.H. N-player statistical Nash game control: m-th cost cumulant optimization. IEEE Trans. Autom. Control 2016, 61, 2688–2694. [Google Scholar] [CrossRef]
- Bressan, A.; Nguyen, K.T. Stability of feedback solutions for infinite horizon noncooperative differential games. Dyn. Games Appl. 2018, 8, 42–78. [Google Scholar] [CrossRef]
- Dianetti, J.; Ferrari, G. Nonzero-sum submodular monotone-follower games: Existence and approximation of Nash equilibria. SIAM J. Control Optim. 2020, 58, 1257–1288. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, S.S.; Chen, T. Existence and generic stability of strong noncooperative equilibria of vector-valued games. Mathematics 2022, 9, 3158. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, F.; Wang, Z.J.; Chen, Y.; Feng, S.L.; Wu, Q.W.; Hou, Y.H. On Nash-Stackelberg-Nash games under decision-dependent uncertainties: Model and equilibrium. Automatica 2022, 142, 110401. [Google Scholar] [CrossRef]
- Setiawan, R.; Salmah; Endrayanto, I.; Indarsih. Analysis of the n-person noncooperative supermodular multiobjective games. Oper. Res. Lett. 2023, 51, 278–284. [Google Scholar] [CrossRef]
- Ma, J.H.; Chen, Y.S. Study for the bifurcation topological structureand the global complicated character of a kind of nonlinear financesystem. Appl. Math. Mech. 2001, 22, 1240–1251. [Google Scholar] [CrossRef]
- Cont, R.; Tankov, P. Financial Modelling with Jump Processes; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wang, L. Dynamic model of stock prices based on technical tradingrules—Part I: The models. IEEE Trans. Fuzzy Syst. 2015, 23, 787–801. [Google Scholar] [CrossRef]
- Wang, L. Dynamical model of stock prices based on technical trading rules—Part II: Analysis of the model. IEEE Trans. Fuzzy Syst. 2015, 23, 1127–1141. [Google Scholar] [CrossRef]
- Wang, L. Dynamic model of stock prices based on technical tradingrules—Part III: Application to Hong Kong stocks. IEEE Trans. Fuzzy Syst. 2015, 23, 1680–1697. [Google Scholar] [CrossRef]
- Stoyanov, J. Stochastic financial models. J. Roy. Stat. Soc. A (Stat. Soc.) 2001, 174, 510–511. [Google Scholar] [CrossRef]
- Chen, B.S.; Chen, W.H.; Wu, H.L. Robust H2/H∞ global linearization filter design for nonlinear stochastic systems. IEEE Trans. Circuits Syst. 2009, 56, 1441–1454. [Google Scholar] [CrossRef]
- Wu, C.F.; Chen, B.S.; Zhang, W. Multiobjective investment policy for a nonlinear stochastic financial system: A fuzzy approach. IEEE Trans. Fuzzy Syst. 2017, 25, 460–474. [Google Scholar] [CrossRef]
- Chen, B.S.; Yeh, C.H. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological network under natural selection. Bio. Syst. 2017, 162, 90–118. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.S.; Chen, W.Y.; Young, C.T.; Yan, Z. Noncooperative game strategy in cyber-financial systems with Wiener and Poisson random fluctuations: LMIs-constrained MOEA approach. IEEE Trans. Cybern. 2018, 48, 3323–3336. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.S.; Lee, M.Y. Noncooperative and cooperative strategy designs for nonlinear stochastic jump diffusion systems with external disturbance: T-S fuzzy approach. IEEE Trans. Fuzzy Syst. 2020, 28, 2437–2451. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, S.; Wong, W.; Zhang, Z. Feedback stabilization of uncertain networked control systems over delayed and fading channels. IEEE Trans. Control Netw. Syst. 2021, 8, 260–268. [Google Scholar] [CrossRef]
- Tan, C.; Yang, L.; Zhang, F.; Zhang, Z.; Wong, W. Stabilization of discrete time stochastic system with input delay and control dependent noise. Syst. Control Lett. 2019, 123, 62–68. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, F.; Sun, Y.; Shi, P. Fault estimation and fault-tolerant control for linear discrete time-varying stochastic systems. Sci. China Inf. Sci. 2021, 64, 200201. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, D. Event-triggered fault detection for nonlinear discrete-time switched stochastic systems: A convex function method. Sci. China Inf. Sci. 2021, 64, 200204. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Tan, C.; Yang, L.; Wong, W. Learning based control policy and regret analysis for online quadratic optimization with asymmetric information structure. IEEE Trans. Cybern. 2022, 52, 4797–4810. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, H.; Wong, W. Delay-dependent algebraic Riccati equation to stabilization of networked control systems: Continuous-time case. IEEE Trans. Cybern. 2018, 48, 2783–2794. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Zhang, T.; Li, M.; Zhang, R.; Zhang, W. Multi-Player Non-Cooperative Game Strategy of a Nonlinear Stochastic System with Time-Varying Parameters. Axioms 2024, 13, 3. https://doi.org/10.3390/axioms13010003
Lin X, Zhang T, Li M, Zhang R, Zhang W. Multi-Player Non-Cooperative Game Strategy of a Nonlinear Stochastic System with Time-Varying Parameters. Axioms. 2024; 13(1):3. https://doi.org/10.3390/axioms13010003
Chicago/Turabian StyleLin, Xiangyun, Tongtong Zhang, Meilin Li, Rui Zhang, and Weihai Zhang. 2024. "Multi-Player Non-Cooperative Game Strategy of a Nonlinear Stochastic System with Time-Varying Parameters" Axioms 13, no. 1: 3. https://doi.org/10.3390/axioms13010003