Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin
Abstract
:1. Introduction
2. Endogenous Ligands
2.1. MSHs as Agonists
2.2. AgRP as an Inverse Agonist
2.3. Lipocalin 2
3. Nonclassical Ligands
3.1. Defensin
3.2. Small Molecules
3.2.1. THIQ
3.2.2. Ipsen 5i
3.2.3. ML00253764
3.3. Pharmacoperones
3.4. Ligands Identified from Animals
4. Ligands Used in Human Medicine
4.1. ACTH
4.2. Setmelanotide
4.3. Bremelanotide (PT-141)
4.4. Drug Repurposing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, Y.X. Melanocortin receptors. Biochim. Biophys. Acta 2017, 1863, 2411–2413. [Google Scholar] [CrossRef]
- Smith, A.I.; Funder, J.W. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev. 1988, 9, 159–179. [Google Scholar] [CrossRef]
- Gantz, I.; Fong, T.M. The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E468–E474. [Google Scholar] [CrossRef] [PubMed]
- Cone, R.D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 2006, 27, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Carmo, J.M.D.; da Silva, A.A.; Wang, Z.; Fang, T.; Aberdein, N.; de Lara, C.E.P.; Hall, J.E. Role of the brain melanocortins in blood pressure regulation. Biochim. Biophys. Acta (BBA) -Mol. Basis Dis. 2017, 1863, 2508–2514. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, D.Y.; Lin, Y.J.; Tao, Y.X. Melanocortin regulation of inflammation. Front. Endocrinol. 2019, 10. [Google Scholar] [CrossRef]
- Xu, Y.; Guan, X.; Zhou, R.; Gong, R. Melanocortin 5 receptor signaling pathway in health and disease. Cell. Mol. Life Sci. 2020, 77, 3831–3840. [Google Scholar] [CrossRef]
- Ji, L.Q.; Hong, Y.; Tao, Y.X. Melanocortin-5 receptor: Pharmacology and its regulation of energy metabolism. Int. J. Mol. Sci. 2022, 23, 8727. [Google Scholar] [CrossRef]
- Rask-Andersen, M.; Almén, M.S.; Schiöth, H.B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 2011, 10, 579–590. [Google Scholar] [CrossRef]
- Sriram, K.; Insel, P.A. G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol. Pharmacol. 2018, 93, 251–258. [Google Scholar] [CrossRef]
- Slosky, L.M.; Caron, M.G.; Barak, L.S. Biased allosteric modulators: New frontiers in GPCR drug discovery. Trends Pharmacol. Sci. 2021, 42, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Wold, E.A.; Chen, J.; Cunningham, K.A.; Zhou, J. Allosteric modulation of Class A GPCRs: Targets, agents, and emerging concepts. J. Med. Chem. 2018, 62, 88–127. [Google Scholar] [CrossRef] [PubMed]
- Gantz, I.; Konda, Y.; Tashiro, T.; Shimoto, Y.; Miwa, H.; Munzert, G.; Watson, S.; DelValle, J.; Yamada, T. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 1993, 268, 8246–8250. [Google Scholar] [CrossRef]
- Roselli-Rehfuss, L.; Mountjoy, K.G.; Robbins, L.S.; Mortrud, M.T.; Low, M.J.; Tatro, J.B.; Entwistle, M.L.; Simerly, R.B.; Cone, R.D. Identification of a receptor for γ melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. USA 1993, 90, 8856–8860. [Google Scholar] [CrossRef] [PubMed]
- Gantz, I.; Miwa, H.; Konda, Y.; Shimoto, Y.; Tashiro, T.; Watson, S.J.; DelValle, J.; Yamada, T. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 1993, 268, 15174–15179. [Google Scholar] [CrossRef]
- Mountjoy, K.G.; Mortrud, M.T.; Low, M.J.; Simerly, R.B.; Cone, R.D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 1994, 8, 1298–1308. [Google Scholar] [CrossRef]
- Huszar, D.; A Lynch, C.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Berkemeier, L.R.; Gu, W.; A Kesterson, R.; A Boston, B.; Cone, R.D.; et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997, 88, 131–141. [Google Scholar] [CrossRef]
- Chen, A.S.; Marsh, D.J.; Trumbauer, M.E.; Frazier, E.G.; Guan, X.M.; Yu, H.; Rosenblum, C.I.; Vongs, A.; Feng, Y.; Cao, L.; et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 2000, 26, 97–102. [Google Scholar] [CrossRef]
- Butler, A.A.; Kesterson, R.A.; Khong, K.; Cullen, M.J.; Pelleymounter, M.A.; Dekoning, J.; Baetscher, M.; Cone, R.D. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000, 141, 3518–3521. [Google Scholar] [CrossRef]
- Balthasar, N.; Dalgaard, L.T.; Lee, C.E.; Yu, J.; Funahashi, H.; Williams, T.; Ferreira, M.; Tang, V.; McGovern, R.A.; Kenny, C.D.; et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005, 123, 493–505. [Google Scholar] [CrossRef]
- Yang, L.K.; Tao, Y.X. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim. Biophys. Acta (BBA) -Mol. Basis Dis. 2017, 1863, 2486–2495. [Google Scholar] [CrossRef] [PubMed]
- Catania, A.; Gatti, S.; Colombo, G.; Lipton, J.M. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol. Rev. 2004, 56, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Getting, S.J.; Riffo-Vasquez, Y.; Pitchford, S.; Kaneva, M.; Grieco, P.; Page, C.P.; Perretti, M.; Spina, D. A role for MC3R in modulating lung inflammation. Pulm. Pharmacol. Ther. 2008, 21, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Spaccapelo, L.; Bitto, A.; Galantucci, M.; Ottani, A.; Irrera, N.; Minutoli, L.; Altavilla, D.; Novellino, E.; Grieco, P.; Zaffe, D. Melanocortin MC4 receptor agonists counteract late inflammatory and apoptotic responses and improve neuronal functionality after cerebral ischemia. Eur. J. Pharmacol. 2011, 670, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Dores, R.M. Hypothesis and Theory: Revisiting views on the co-evolution of the melanocortin receptors and the accessory proteins, MRAP1 and MRAP2. Front. Endocrinol. 2016, 7, 79. [Google Scholar] [CrossRef]
- Ericson, M.D.; Lensing, C.J.; Fleming, K.A.; Schlasner, K.N.; Doering, S.R.; Haskell-Luevano, C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim. Biophys. Acta (BBA) -Mol. Basis Dis. 2017, 1863, 2414–2435. [Google Scholar] [CrossRef]
- Tao, Y.X. Mutations in melanocortin-4 receptor: From fish to men. Prog. Mol. Biol. Transl. Sci. 2022, 189, 215–257. [Google Scholar] [CrossRef]
- Schiöth, H.B.; Muceniece, R.; Wikberg, J.E.S. Characterisation of the melanocortin 4 receptor by radioligand binding. Pharmacol. Toxicol. 1996, 79, 161–165. [Google Scholar] [CrossRef]
- Schiöth, H.B.; Muceniece, R.; Wikberg, J.E.; Chhajlani, V. Characterisation of melanocortin receptor subtypes by radioligand binding analysis. Eur. J. Pharmacol. Mol. Pharmacol. 1995, 288, 311–317. [Google Scholar] [CrossRef]
- Kievit, P.; Halem, H.; Marks, D.L.; Dong, J.Z.; Glavas, M.M.; Sinnayah, P.; Pranger, L.; Cowley, M.A.; Grove, K.L.; Culler, M.D. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 2013, 62, 490–497. [Google Scholar] [CrossRef]
- Hruby, V.J.; Wilkes, B.C.; Hadley, M.E.; Al-Obeidi, F.; Sawyer, T.K.; Staples, D.J.; de Vaux, A.E.; Dym, O.; Castrucci, A.M.D.; Hintz, M.F.; et al. α-Melanotropin: The minimal active sequence in the frog skin bioassay. J. Med. Chem. 1987, 30, 2126–2130. [Google Scholar] [CrossRef] [PubMed]
- Castrucci, A.M.; Hadley, M.; Sawyer, T.; Wilkes, B.; Al-Obeidi, F.; Staples, D.; de Vaux, A.; Dym, O.; Hintz, M.; Riehm, J.; et al. α-melanotropin: The minimal active sequence in the lizard skin bioassay. Gen. Comp. Endocrinol. 1989, 73, 157–163. [Google Scholar] [CrossRef]
- Yang, Y.; Mishra, V.; Crasto, C.J.; Chen, M.; Dimmitt, R.; Harmon, C.M. Third transmembrane domain of the adrenocorticotropic receptor is critical for ligand selectivity and potency. J. Biol. Chem. 2015, 290, 7685–7692. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Aprahamian, C.J.; Celik, A.; Georgeson, K.E.; Garvey, W.T.; Harmon, C.M.; Yang, Y. Molecular characterization of human melanocortin-3 receptor ligand−receptor interaction. Biochemistry 2006, 45, 1128–1137. [Google Scholar] [CrossRef]
- Yang, Y.K.; Fong, T.M.; Dickinson, C.J.; Mao, C.; Li, J.Y.; Tota, M.R.; Mosley, R.; Van der Ploeg, A.L.H.T.; Gantz, I. Molecular determinants of ligand binding to the human melanocortin-4 receptor. Biochemistry 2000, 39, 14900–14911. [Google Scholar] [CrossRef]
- Zhou, A.; Bloomquist, B.; Mains, R. The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J. Biol. Chem. 1993, 268, 1763–1769. [Google Scholar] [CrossRef]
- Bertolini, A.; Poggioli, R.; Vergoni, A.V. Cross-species comparison of the ACTH-induced behavioral syndrome. Ann. N. Y. Acad. Sci. 1988, 525, 114–129. [Google Scholar] [CrossRef]
- Vergoni, A.V.; Poggioli, R.; Bertolini, A. Corticotropin inhibits food intake in rats. Neuropeptides 1986, 7, 153–158. [Google Scholar] [CrossRef]
- O'Donohue, T.L.; Handelmann, G.E.; Chaconas, T.; Miller, R.L.; Jacobowitz, D.M. Evidence that N-acetylation regulates the behavioral activity of α-MSH in the rat and human central nervous system. Peptides 1981, 2, 333–344. [Google Scholar] [CrossRef]
- Sahm, U.G.; Olivier, G.W.; Branch, S.K.; Moss, S.H.; Pouton, C.W. Synthesis and biological evaluation of α-MSH analogues substituted with alanine. Peptides 1994, 15, 1297–1302. [Google Scholar] [CrossRef]
- Sahm, U.; Qarawi, M.; Olivier, G.; Ahmed, A.; Branch, S.; Moss, S.; Pouton, C. The melanocortin (MC3) receptor from rat hypothalamus: Photoaffinity labelling and binding of alanine-substituted α-MSH analogues. FEBS Lett. 1994, 350, 29–32. [Google Scholar] [CrossRef]
- Elias, C.F.; Saper, C.B.; Maratos-Flier, E.; Tritos, N.A.; Lee, C.; Kelly, J.; Tatro, J.B.; Hoffman, G.E.; Ollmann, M.M.; Barsh, G.S.; et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 1998, 402, 442–459. [Google Scholar] [CrossRef]
- Jacobowitz, D.M.; O’Donohue, T.L. alpha-Melanocyte stimulating hormone: Immunohistochemical identification and mapping in neurons of rat brain. Proc. Natl. Acad. Sci. USA 1978, 75, 6300–6304. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.B.; McGuire, J.S. Effect of alpha- and beta-melanocyte stimulating hormones on the skin colour of man. Nature 1961, 189, 176–179. [Google Scholar] [CrossRef]
- Millington, G.; Tung, Y.; Hewson, A.; O’rahilly, S.; Dickson, S. Differential effects of α-, β-and γ2-melanocyte-stimulating hormones on hypothalamic neuronal activation and feeding in the fasted rat. Neuroscience 2001, 108, 437–445. [Google Scholar] [CrossRef]
- Schiöth, H.B.; Muceniece, R.; Mutulis, F.; Prusis, P.; Lindeberg, G.; Sharma, S.D.; Hruby, V.J.; Wikberg, J.E. Selectivity of cyclic [D-Nal7] and [D-Phe7] substituted MSH analogues for the melanocortin receptor subtypes. Peptides 1997, 18, 1009–1013. [Google Scholar] [CrossRef]
- Yan, L.Z.; Hsiung, H.M.; Heiman, M.L.; Gadski, R.A.; Emmerson, P.J.; Hertel, J.; Flora, D.; Edwards, P.; Smiley, D.; Zhang, L.; et al. Structure-activity relationships of beta-MSH derived melanocortin-4 receptor peptide agonists. Curr. Top. Med. Chem. 2007, 7, 1052–1067. [Google Scholar]
- Conde-Frieboes, K.; Thøgersen, H.; Lau, J.F.; Sensfuss, U.; Hansen, T.K.; Christensen, L.; Spetzler, J.; Olsen, H.B.; Nilsson, C.; Raun, K.; et al. Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective α-melanocyte-stimulating hormone (α-MSH) analogues. J. Med. Chem. 2012, 55, 1969–1977. [Google Scholar] [CrossRef]
- Bednarek, M.A.; MacNeil, T.; Tang, R.; Fong, T.M.; Cabello, M.A.; Maroto, A.M.; Teran, A. Potent and selective agonists of human melanocortin receptor 5: Cyclic analogues of α-melanocyte-stimulating hormone. J. Med. Chem. 2007, 50, 2520–2526. [Google Scholar] [CrossRef]
- Haskell-Luevano, C.; Nikiforovich, G.; Sharma, S.D.; Yang, Y.K.; Dickinson, C.; Hruby, V.J.; Gantz, I. Biological and conformational examination of stereochemical modifications using the template melanotropin peptide, Ac-Nle-c[Asp-His- Phe-Arg-Trp-Ala-Lys]-NH2, on human melanocortin receptors. J. Med. Chem. 1997, 40, 1738–1748. [Google Scholar] [CrossRef]
- Yang, Y.K.; Thompson, D.A.; Dikinson, C.J.; Wilken, J.; Barsh, G.S.; Kent, S.B.; Gantz, I. Characterization of Agouti-related protein binding to melanocortin receptors. Mol. Endocrinol. 1999, 13, 148e155. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, L.L.; Ittoop, O.R.R.; Bunce, K.; Truesdale, A.T.; Willard, D.H.; Nichols, J.S.; Blanchard, S.G.; Mountjoy, K.; Chen, A.W.-J.; Wilkison, W.O. Mutations in the carboxyl terminus of the agouti protein decrease agouti inhibition of ligand binding to the melanocortin receptors. Biochemistry 1997, 36, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.K.; Ollmann, M.M.; Wilson, B.D.; Dickinson, C.; Yamada, T.; Barsh, G.S.; Gantz, I. Effects of recombinant agouti-signaling protein on melanocortin action. Mol. Endocrinol. 1997, 11, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Mosialou, I.; Shikhel, S.; Liu, J.M.; Maurizi, A.; Luo, N.; He, Z.; Huang, Y.; Zong, H.; Friedman, R.A.; Barasch, J.; et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 2017, 543, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Ericson, M.D.; Singh, A.; Tala, S.R.; Haslach, E.M.; Dirain, M.L.S.; Schaub, J.W.; Flores, V.; Eick, N.; Lensing, C.J.; Freeman, K.T.; et al. Human β-defensin 1 and β-defensin 3 (mouse ortholog mBD14) function as full endogenous agonists at select melanocortin receptors. J. Med. Chem. 2018, 61, 3738–3744. [Google Scholar] [CrossRef]
- Nix, M.A.; Kaelin, C.B.; Ta, T.; Weis, A.; Morton, G.J.; Barsh, G.S.; Millhauser, G.L. Molecular and functional analysis of human β-defensin 3 action at melanocortin receptors. Chem. Biol. 2013, 20, 784–795. [Google Scholar] [CrossRef]
- Durek, T.; Cromm, P.M.; White, A.M.; Schroeder, C.I.; Kaas, Q.; Weidmann, J.; Ahmad Fuaad, A.; Cheneval, O.; Harvey, P.J.; Daly, N.L.; et al. Development of novel melanocortin receptor agonists based on the cyclic peptide framework of sunflower trypsin inhibitor-1. J. Med. Chem. 2018, 61, 3674–3684. [Google Scholar] [CrossRef]
- Bednarek, M.A.; MacNeil, T.; Tang, R.; Fong, T.M.; Cabello, M.A.; Maroto, M.; Teran, A. Potent and selective peptide agonists of α-melanocyte stimulating hormone (αMSH) action at human melanocortin receptor 5; their synthesis and biological evaluation in vitro. Chem. Biol. Drug Des. 2007, 69, 350–355. [Google Scholar] [CrossRef]
- Grieco, P.; Balse-Srinivasan, P.; Han, G.; Weinberg, D.; MacNeil, T.; Van der Ploeg, L.H.; Hruby, V.J. Synthesis and biological evaluation on hMC3, hMC4 and hMC5 receptors of gamma-MSH analogs substituted with L-alanine. J. Pept. Res. 2002, 59, 203–210. [Google Scholar] [CrossRef]
- Qu, H.; Cai, M.; Mayorov, A.V.; Grieco, P.; Zingsheim, M.; Trivedi, D.; Hruby, V.J. Substitution of arginine with proline and proline derivatives in melanocyte-stimulating hormones leads to slectivity for human melanocortin 4 receptor. J. Med. Chem. 2009, 52, 3627–3635. [Google Scholar] [CrossRef]
- Hruby, V.J.; Lu, D.; Sharma, S.D.; Castrucci, A.L.; Kesterson, R.A.; al-Obeidi, F.A.; Hadley, M.E.; Cone, R.D. Cyclic lactam α-melanotropin analogues of Ac-Nle4-c[Asp5, D-Phe7,Lys10] α-melanocyte-stimulating hormone-(4-10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J. Med. Chem. 1995, 38, 3454–3461. [Google Scholar] [CrossRef] [PubMed]
- Bennett, H. Biosynthetic fate of the amino-terminal fragment of pro-opiomelanocortin within the intermediate lobe of the mouse pituitary. Peptides 1986, 7, 615–622. [Google Scholar] [CrossRef]
- Abbott, C.R.; Rossi, M.; Kim, M.-S.; AlAhmed, S.H.; Taylor, G.M.; A Ghatei, M.; Smith, D.M.; Bloom, S.R. Investigation of the melanocyte stimulating hormones on food intake: Lack of evidence to support a role for the melanocortin-3-receptor. Brain Res. 2000, 869, 203–210. [Google Scholar] [CrossRef]
- Kask, A.; Rägo, L.; Wikberg, J.E.; Schiöth, H.B. Differential effects of melanocortin peptides on ingestive behaviour in rats: Evidence against the involvement of MC3 receptor in the regulation of food intake. Neurosci. Lett. 2000, 283, 1–4. [Google Scholar] [CrossRef]
- Harrold, J.A.; Widdowson, P.S.; Williams, G. β-MSH: A functional ligand that regulated energy homeostasis via hypothalamic MC4-R? Peptides 2003, 24, 397–405. [Google Scholar] [CrossRef]
- Challis, B.G.; Pritchard, L.E.; Creemers, J.W.; Delplanque, J.; Keogh, J.M.; Luan, J.; Wareham, N.J.; Yeo, G.S.H.; Bhattacharyya, S.; Froguel, P.; et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum. Mol. Genet. 2002, 11, 1997–2004. [Google Scholar] [CrossRef]
- Biebermann, H.; Castaneda, T.R.; van Landeghem, F.; von Deimling, A.; Escher, F.; Brabant, G.; Hebebrand, J.; Hinney, A.; Tschop, M.H.; Gruters, A.; et al. A role for β-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. 2006, 3, 141–146. [Google Scholar] [CrossRef]
- Lee, Y.S.; Challis, B.G.; Thompson, D.A.; Yeo, G.S.; Keogh, J.M.; Madonna, M.E.; Wraight, V.; Sims, M.; Vatin, V.; Meyre, D.; et al. A POMC variant implicates β-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab. 2006, 3, 135–140. [Google Scholar] [CrossRef]
- Abe, K.; Nicholson, W.E.; Liddle, G.W.; Orth, D.N.; Island, D.P. Normal and abnormal regulation of β-MSH in man. J. Clin. Investig. 1969, 48, 1580–1585. [Google Scholar] [CrossRef]
- Smith, A.; Shuster, S. Immunoreactive beta-melanocyte-stimulating hormone in cerebrospinal fluid. Lancet 1976, 307, 1321–1322. [Google Scholar] [CrossRef]
- Shuster, S.; Smith, A.; Plummer, N.; Thody, A.; Clark, F. Immunoreactive beta-melanocyte-stimulating hormone in cerebrospinal fluid and plasma in hypopituitarism: Evidence for an extrapituitary origin. BMJ 1977, 1, 1318–1319. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, T.; Ling, N.; Guillemin, R. Pituitary immunoreactive γ-melanotropins are glycosylated oligopeptides. Nature 1980, 285, 416–417. [Google Scholar] [CrossRef] [PubMed]
- Osamura, R.; Komatsu, N.; Watanabe, K.; Nakai, Y.; Tanaka, I.; Imura, H. Immunohistochemical and immunocytochemical localization of γ-melanocyte stimulating hormone (γ-MSH)-like immunoreactivity in human and rat hypothalamus. Peptides 1982, 3, 781–787. [Google Scholar] [CrossRef]
- Fodor, M.; Sluiter, A.; Frankhuijzen-Sierevogel, A.; Wiegant, V.M.; Hoogerhout, P.; De Wildt, D.J.; Versteeg, D.H. Distribution of Lys-γ2-melanocyte-stimulating hormone-(Lys-γ2-MSH)-like immunoreactivity in neuronal elements in the brain and peripheral tissues of the rat. Brain Res. 1996, 731, 182–189. [Google Scholar] [CrossRef]
- Denef, C.; Lu, J.; Swinnen, E. γ-MSH Peptides in the pituitary. Ann. New York Acad. Sci. 2003, 994, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Grieco, P.; Balse, P.M.; Weinberg, D.; MacNeil, T.; Hruby, V.J. D-amino acid scan of γ-melanocyte-stimulating hormone: Importance of Trp8 on human MC3 receptor selectivity. J. Med. Chem. 2000, 43, 4998–5002. [Google Scholar] [CrossRef]
- Joseph, C.G.; Yao, H.; Scott, J.W.; Sorensen, N.B.; Marnane, R.N.; Mountjoy, K.G.; Haskell-Luevano, C. γ2-Melanocyte stimulation hormone (γ2-MSH) truncation studies results in the cautionary note that γ2-MSH is not selective for the mouse MC3R over the mouse MC5R. Peptides 2010, 31, 2304–2313. [Google Scholar] [CrossRef]
- Dores, R.M.; Baron, A.J. Evolution of POMC: Origin, phylogeny, posttranslational processing, and the melanocortins. Ann. N. Y. Acad. Sci. 2011, 1220, 34–48. [Google Scholar] [CrossRef]
- Klovins, J.; Haitina, T.; Ringholm, A.; Lowgren, M.; Fridmanis, D.; Slaidina, M.; Stier, S.; Schioth, H.B. Cloning of two melanocortin (MC) receptors in spiny dogfish: MC3 receptor in cartilaginous fish shows high affinity to ACTH-derived peptides while it has lower preference to γ-MSH. Eur. J. Biochem. 2004, 271, 4320–4331. [Google Scholar] [CrossRef]
- Ji, R.L.; Huang, L.; Wang, Y.; Liu, T.; Fan, S.-Y.; Tao, M.; Tao, Y.X. Topmouth culter melanocortin-3 receptor: Regulation by two isoforms of melanocortin-2 receptor accessory protein 2. Endocr. Connect. 2021, 10, 1489–1501. [Google Scholar] [CrossRef]
- Ge, X.; Yang, H.; Bednarek, M.A.; Galon-Tilleman, H.; Chen, P.; Chen, M.; Lichtman, J.S.; Wang, Y.; Dalmas, O.; Yin, Y.; et al. LEAP2 is an endogenous antagonist of the ghrelin receptor. Cell Metab. 2018, 27, 461–469.e6. [Google Scholar] [CrossRef] [PubMed]
- Ollmann, M.M.; Wilson, B.D.; Yang, Y.K.; Kerns, J.A.; Chen, Y.; Gantz, I.; Barsh, G.S. Antagonism of central melanocortin receptors in vitro and in vivo by Agouti-related protein. Science 1997, 278, 135–138. [Google Scholar] [CrossRef]
- Kiefer, L.L.; Veal, J.M.; Mountjoy, K.G.; Wilkison, W.O. Melanocortin receptor binding determinants in the Agouti protein. Biochemistry 1998, 37, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Tota, M.R.; Smith, T.S.; Mao, C.; MacNeil, T.; Mosley, R.T.; Van der Ploeg, A.L.H.T.; Fong, T.M. Molecular interaction of Agouti protein and Agouti-related protein with human melanocortin receptors. Biochemistry 1998, 38, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Willard, D.H.; Bodnar, W.; Harris, C.; Kiefer, L.; Nichols, J.S.; Blanchard, S.; Hoffman, C.; Moyer, M.; Burkhart, W. Agouti structure and function: Characterization of a potent alpha-melanocyte stimulating hormone receptor antagonist. Biochemistry 1995, 34, 12341–12346. [Google Scholar] [CrossRef]
- Lu, D.; Willard, D.; Patel, I.R.; Kadwell, S.; Overton, L.; Kost, T.; Luther, M.; Chen, W.; Woychik, R.; Wilkison, W.O.; et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994, 371, 799–802. [Google Scholar] [CrossRef]
- Siegrist, W.; Drozdz, R.; Cotti, R.; Willard, D.H.; Wilkison, W.O.; Eberle, A.N. Interactions of α-melanotropin and Agouti on B16 melanoma cells: Evidence for inverse agonism of Agouti. J. Recept. Signal Transduct. 1997, 17, 75–98. [Google Scholar] [CrossRef]
- Fan, W.; Boston, B.A.; Kesterson, R.A.; Hruby, V.J.; Cone, R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997, 385, 165–168. [Google Scholar] [CrossRef]
- Patel, M.P.; Fabersunne, C.S.C.; Yang, Y.-K.; Kaelin, C.B.; Barsh, G.S.; Millhauser, G.L. Loop-swapped chimeras of the Agouti-related protein and the Agouti signaling protein identify contacts required for melanocortin 1 receptor selectivity and antagonism. J. Mol. Biol. 2010, 404, 45–55. [Google Scholar] [CrossRef]
- Tolle, V.; Low, M.J. In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 2008, 57, 86–94. [Google Scholar] [CrossRef]
- Nijenhuis, W.A.J.; Oosterom, J.; Adan, R.A.H. AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol. Endocrinol. 2001, 15, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Haskell-Luevano, C.; Monck, E.K. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul. Pept. 2001, 99, 1–7. [Google Scholar] [CrossRef]
- Tao, Y.X.; Huang, H.; Wang, Z.-Q.; Yang, F.; Williams, J.N.; Nikiforovich, G.V. Constitutive activity of neural melanocortin receptors. Methods Enzymol. 2010, 484, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.X. Constitutive activity in melanocortin-4 receptor. Adv. Pharmacol. 2014, 70, 135–154. [Google Scholar] [CrossRef]
- Mo, X.L.; Tao, Y.X. Activation of MAPK by inverse agonists in six naturally occurring constitutively active mutant human melanocortin-4 receptors. Biochim. Biophys. Acta -Mol. Basis Dis. 2013, 1832, 1939–1948. [Google Scholar] [CrossRef]
- Yang, Z.; Tao, Y.X. Biased signaling initiated by agouti-related peptide through human melanocortin-3 and -4 receptors. Biochim. Biophys. Acta 2016, 1862, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Volkoff, H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front. Neurosci. 2016, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Cerdá-Reverter, J.M.; Peter, R. Endogenous melanocortin antagonist in fish: Structure, brain mapping, and regulation by fasting of the goldfish agouti-related protein gene. Endocrinology 2003, 144, 4552–4561. [Google Scholar] [CrossRef]
- Song, Y.; Golling, G.; Thacker, T.L.; Cone, R.D. Agouti-related protein (AGRP) is conserved and regulated by metabolic state in the zebrafish, Danio rerio. Endocrine 2003, 22, 257–266. [Google Scholar] [CrossRef]
- Sanchez, E.; Rubio, V.C.; Thompson, D.; Metz, J.; Flik, G.; Millhauser, G.L.; Cerdá-Reverter, J.M. Phosphodiesterase inhibitor-dependent inverse agonism of agouti-related protein on melanocortin 4 receptor in sea bass (Dicentrarchus labrax). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1293–R1306. [Google Scholar] [CrossRef]
- Renquist, B.J.; Zhang, C.; Williams, S.Y.; Cone, R.D. Development of an assay for high-throughput energy expenditure monitoring in the zebrafish. Zebrafish 2013, 10, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.K.; Zhang, Z.R.; Wen, H.S.; Tao, Y.X. Characterization of channel catfish (Ictalurus punctatus) melanocortin-3 receptor reveals a potential network in regulation of energy homeostasis. Gen. Comp. Endocrinol. 2019, 277, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liang, X.F.; Li, G.L.; Tao, Y.X. Biased signaling in fish melanocortin-4 receptors (MC4Rs): Divergent pharmacology of four ligands on spotted scat (Scatophagus argus) and grass carp (Ctenopharyngodon idella) MC4Rs. Mol. Cell. Endocrinol. 2020, 515, 110929. [Google Scholar] [CrossRef] [PubMed]
- Cerdá-Reverter, J.M.; Ringholm, A.; Schiöth, H.B.; Peter, R. Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: Involvement in the control of food intake. Endocrinology 2003, 144, 2336–2349. [Google Scholar] [CrossRef]
- Li, J.T.; Yang, Z.; Chen, H.P.; Zhu, C.H.; Deng, S.P.; Li, G.L.; Tao, Y.X. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in spotted scat, Scatophagus argus. Gen. Comp. Endocrinol. 2016, 230-231, 143–152. [Google Scholar] [CrossRef]
- Li, L.; Yang, Z.; Zhang, Y.P.; He, S.; Liang, X.F.; Tao, Y.X. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in grass carp (Ctenopharyngodon idella ). Domest. Anim. Endocrinol. 2016, 59, 140–151. [Google Scholar] [CrossRef]
- Yi, T.L.; Yang, L.K.; Ruan, G.L.; Yang, D.Q.; Tao, Y.X. Melanocortin-4 receptor in swamp eel (Monopterus albus): Cloning, tissue distribution, and pharmacology. Gene 2018, 678, 79–89. [Google Scholar] [CrossRef]
- Rao, Y.; Chen, R.; Zhang, Y.; Tao, Y.X. Orange-spotted grouper melanocortin-4 receptor: Modulation of signaling by MRAP2. Gen. Comp. Endocrinol. 2019, 284, 113234. [Google Scholar] [CrossRef]
- Zhang, K.Q.; Hou, Z.S.; Wen, H.S.; Li, Y.; Qi, X.; Li, W.J.; Tao, Y.X. Melanocortin-4 receptor in spotted sea bass, Lateolabrax maculatus: Cloning, tissue distribution, physiology, and pharmacology. Front. Endocrinol. 2019, 10, 705. [Google Scholar] [CrossRef]
- Tao, M.; Ji, R.L.; Huang, L.; Fan, S.Y.; Liu, T.; Liu, S.J.; Tao, Y.X. Regulation of melanocortin-4 receptor pharmacology by two isoforms of melanocortin receptor accessory protein 2 in topmouth culter (Culter alburnus). Front. Endocrinol. 2020, 11, 538. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Liu, T.; Qin, C.J.; Zou, Y.C.; Wang, J.; Li, R.; Tao, Y.X. MRAP2 interaction with melanocortin-4 receptor in SnakeHead (Channa argus). Biomolecules 2021, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Murashita, K.; Kurokawa, T.; Ebbesson, L.O.; Stefansson, S.O.; Rønnestad, I. Characterization, tissue distribution, and regulation of agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) in Atlantic salmon (Salmo salar). Gen. Comp. Endocrinol. 2009, 162, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Agulleiro, M.J.; Cortés, R.; Leal, E.; Ríos, D.; Sánchez, E.; Cerdá-Reverter, J.M. Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 2014, 205, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Klovins, J.; Haitina, T.; Fridmanis, D.; Kilianova, Z.; Kapa, I.; Fredriksson, R.; Gallo-Payet, N.; Schioth, H.B. The melanocortin system in Fugu: Determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs. Mol. Biol. Evol. 2004, 21, 563–579. [Google Scholar] [CrossRef]
- Cerdá-Reverter, J.M.; Agulleiro, M.J.; R, R.G.; Sánchez, E.; Ceinos, R.; Rotllant, J. Fish melanocortin system. Eur. J. Pharmacol. 2011, 660, 53–60. [Google Scholar] [CrossRef]
- Flower, D.R. The lipocalin protein family: Structure and function. Biochem. J. 1996, 318, 1–14. [Google Scholar] [CrossRef]
- Yan, Q.W.; Yang, Q.; Mody, N.; Graham, T.E.; Hsu, C.-H.; Xu, Z.; Houstis, N.E.; Kahn, B.B.; Rosen, E.D. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 2007, 56, 2533–2540. [Google Scholar] [CrossRef]
- Petropoulou, P.-I.; Mosialou, I.; Shikhel, S.; Hao, L.; Panitsas, K.; Bisikirska, B.; Luo, N.; Bahna, F.; Kim, J.; Carberry, P.; et al. Lipocalin-2 is an anorexigenic signal in primates. eLife 2020, 9. [Google Scholar] [CrossRef]
- Guo, H.; Jin, D.; Zhang, Y.; Wright, W.; Bazuine, M.; Brockman, D.A.; Bernlohr, D.A.; Chen, X. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 2010, 59, 1376–1385. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.; Deis, J.A.; Mashek, M.G.; Zhao, M.; Ariyakumar, D.; Armien, A.G.; Bernlohr, D.A.; Mashek, D.G.; Chen, X. Lipocalin 2 regulates brown fat activation via a nonadrenergic activation mechanism. J. Biol. Chem. 2014, 289, 22063–22077. [Google Scholar] [CrossRef]
- Pazgier, M.; Hoover, D.M.; Yang, D.; Lu, W.; Lubkowski, J. Human β-defensins. Cell. Mol. Life Sci. CMLS 2006, 63, 1294–1313. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, R.I. Primate defensins. Nat. Rev. Genet. 2004, 2, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Candille, S.I.; Kaelin, C.B.; Cattanach, B.M.; Yu, B.; Thompson, D.A.; Nix, M.A.; Kerns, J.A.; Schmutz, S.M.; Millhauser, G.L.; Barsh, G.S. A β-defensin mutation causes black coat color in domestic dogs. Science 2007, 318, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Kaelin, C.B.; I Candille, S.; Yu, B.; Jackson, P.; A Thompson, D.; A Nix, M.; Binkley, J.; Millhauser, G.L.; Barsh, G.S. New ligands for melanocortin receptors. Int. J. Obes. 2008, 32, S19–S27. [Google Scholar] [CrossRef]
- Aono, S.; Dennis, J.C.; He, S.; Wang, W.; Tao, Y.X.; Morrison, E.E. Exploring pleiotropic functions of canine β-defensin 103: Nasal cavity expression, antimicrobial activity, and melanocortin receptor activity. Anat. Rec. 2019, 304, 210–221. [Google Scholar] [CrossRef]
- Benoit, S.C.; Schwartz, M.W.; Lachey, J.L.; Hagan, M.M.; Rushing, P.A.; Blake, K.A.; Yagaloff, K.A.; Kurylko, G.; Franco, L.; Danhoo, W.; et al. A novel selective melanocortin-4 receptor agonist reduces food intake in rats and mice without producing aversive consequences. J. Neurosci. 2000, 20, 3442–3448. [Google Scholar] [CrossRef]
- Mutulis, F.; Yahorava, S.; Mutule, I.; Yahorau, A.; Liepinsh, E.; Kopantshuk, S.; Veiksina, S.; Tars, K.; Belyakov, S.; Mishnev, A.; et al. New substituted piperazines as ligands for melanocortin receptors. Correlation to the X-ray structure of “THIQ”. J. Med. Chem. 2004, 47, 4613–4626. [Google Scholar] [CrossRef]
- Todorovic, A.; Haskell-Luevano, C. A review of melanocortin receptor small molecule ligands. Peptides 2005, 26, 2026–2036. [Google Scholar] [CrossRef]
- Hess, S.; Linde, Y.; Ovadia, O.; Safrai, E.; Shalev, D.E.; Swed, A.; Halbfinger, E.; Lapidot, T.; Winkler, I.; Gabinet, Y.; et al. Backbone cyclic peptidomimetic melanocortin-4 receptor agonist as a novel orally administrated drug lead for treating obesity. J. Med. Chem. 2008, 51, 1026–1034. [Google Scholar] [CrossRef]
- He, S.; Ye, Z.; Dobbelaar, P.H.; Sebhat, I.K.; Guo, L.; Liu, J.; Jian, T.; Lai, Y.; Franklin, C.L.; Bakshi, R.K.; et al. Spiroindane based amides as potent and selective MC4R agonists for the treatment of obesity. Bioorganic Med. Chem. Lett. 2010, 20, 4399–4405. [Google Scholar] [CrossRef]
- Haskell-Luevano, C.; Rosenquist, A.; Souers, A.; Khong, K.C.; Ellman, J.A.; Cone, R.D. Compounds that activate the mouse melanocortin-1 receptor identified by screening a small molecule library based upon the beta-turn. J. Med. Chem. 1999, 42, 4380–4387. [Google Scholar] [CrossRef] [PubMed]
- Sebhat, I.K.; Martin, W.J.; Ye, Z.; Barakat, K.; Mosley, R.T.; Johnston, D.B.; Bakshi, R.; Palucki, B.; Weinberg, D.H.; MacNeil, T.; et al. Design and pharmacology of N-[(3R)-1,2,3,4-tetrahydroisoquinolinium-3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl)piperidin-1-yl]-2-oxoethylamine (1), a potent, selective, melanocortin subtype-4 receptor agonist. J. Med. Chem. 2002, 45, 4589–4593. [Google Scholar] [CrossRef] [PubMed]
- Bondebjerg, J.; Xiang, Z.; Bauzo, R.M.; Haskell-Luevano, C.; Meldal, M. A solid-phase approach to mouse melanocortin receptor agonists derived from a novel thioether cyclized peptidomimetic scaffold. J. Am. Chem. Soc. 2002, 124, 11046–11055. [Google Scholar] [CrossRef]
- Ujjainwalla, F.; Sebhat, I.K. Small molecule ligands of the human melanocortin-4 receptor. Curr. Top. Med. Chem. 2007, 7, 1068–1084. [Google Scholar] [CrossRef]
- Yeo, G.S.; Chao, D.H.M.; Siegert, A.-M.; Koerperich, Z.M.; Ericson, M.D.; Simonds, S.E.; Larson, C.M.; Luquet, S.; Clarke, I.; Sharma, S.; et al. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol. Metab. 2021, 48, 101206. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.J.; McGowan, E.; E Cashen, D.; Gantert, L.T.; E Drisko, J.; Hom, G.J.; Nargund, R.; Sebhat, I.; Howard, A.D.; Van der Ploeg, L.H.; et al. Activation of melanocortin MC4 receptors increases erectile activity in rats ex copula. Eur. J. Pharmacol. 2002, 454, 71–79. [Google Scholar] [CrossRef]
- Hadley, M.E. Discovery that a melanocortin regulates sexual functions in male and female humans. Peptides 2005, 26, 1687–1689. [Google Scholar] [CrossRef]
- Greenfield, J.R.; Miller, J.W.; Keogh, J.M.; Henning, E.; Satterwhite, J.H.; Cameron, G.S.; Astruc, B.; Mayer, J.P.; Brage, S.; See, T.C.; et al. Modulation of blood pressure by central melanocortinergic pathways. N. Engl. J. Med. 2009, 360, 44–52. [Google Scholar] [CrossRef]
- Van der Ploeg, L.H.T.; Martin, W.J.; Howard, A.D.; Nargund, R.P.; Austin, C.P.; Guan, X.; Drisko, J.; Cashen, D.; Sebhat, I.; Patchett, A.A.; et al. A role for the melanocortin 4 receptor in sexual function. Proc. Natl. Acad. Sci. USA 2002, 99, 11381–11386. [Google Scholar] [CrossRef]
- Irani, B.G.; Xiang, Z.; Yarandi, H.N.; Holder, J.R.; Moore, M.C.; Bauzo, R.M.; Proneth, B.; Shaw, A.M.; Millard, W.J.; Chambers, J.B.; et al. Implication of the melanocortin-3 receptor in the regulation of food intake. Eur. J. Pharmacol. 2011, 660, 80–87. [Google Scholar] [CrossRef]
- Doering, S.R.; Freeman, K.; Debevec, G.; Geer, P.; Santos, R.G.; Lavoi, T.M.; Giulianotti, M.A.; Pinilla, C.; Appel, J.R.; Houghten, R.A.; et al. Discovery of nanomolar melanocortin-3 receptor (MC3R)-selective small molecule pyrrolidine bis-cyclic guanidine agonist compounds via a high-throughput “unbiased” screening campaign. J. Med. Chem. 2021, 64, 5577–5592. [Google Scholar] [CrossRef] [PubMed]
- Luger, T.A.; Böhm, M. An α-MSH analog in erythropoietic protoporphyria. J. Investig. Dermatol. 2015, 135, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Al-Obeidi, F.; Castrucci, A.M.D.L.; Hadley, M.E.; Hruby, V.J. Potent and prolonged-acting cyclic lactam analogs of alpha-melanotropin: Design based on molecular dynamics. J. Med. Chem. 1989, 32, 2555–2561. [Google Scholar] [CrossRef] [PubMed]
- Al-Obeidi, F.; Hadley, M.E.; Pettitt, B.M.; Hruby, V.J. Design of a new class of superpotent cyclic α-melanotropins based on quenched dynamic simulations. J. Am. Chem. Soc. 1989, 111, 3413–3416. [Google Scholar] [CrossRef]
- Logan, D.W.; Bryson-Richardson, R.J.; Taylor, M.S.; Currie, P.; Jackson, I.J. Sequence characterization of teleost fish melanocortin receptors. Ann. N. Y. Acad. Sci. 2003, 994, 319–330. [Google Scholar] [CrossRef]
- Jangprai, A.; Boonanuntanasarn, S.; Yoshizaki, G. Characterization of melanocortin 4 receptor in Snakeskin Gourami and its expression in relation to daily feed intake and short-term fasting. Gen. Comp. Endocrinol. 2011, 173, 27–37. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Zhu, M.; Xu, B.; Guo, W.; Lyu, Y.; Zhang, C. Pharmacological modulation of melanocortin-4 receptor by melanocortin receptor accessory protein 2 in Nile tilapia. Gen. Comp. Endocrinol. 2019, 282, 113219. [Google Scholar] [CrossRef]
- Logan, D.W.; Bryson-Richardson, R.J.; E Pagán, K.; Taylor, M.S.; Currie, P.D.; Jackson, I.J. The structure and evolution of the melanocortin and MCH receptors in fish and mammals. Genomics 2003, 81, 184–191. [Google Scholar] [CrossRef]
- Selz, Y.; Braasch, I.; Hoffmann, C.; Schmidt, C.; Schultheis, C.; Schartl, M.; Volff, J.-N. Evolution of melanocortin receptors in teleost fish: The melanocortin type 1 receptor. Gene 2007, 401, 114–122. [Google Scholar] [CrossRef]
- Schjolden, J.; Schiöth, H.B.; Larhammar, D.; Winberg, S.; Larson, E.T. Melanocortin peptides affect the motivation to feed in rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 2009, 160, 134–138. [Google Scholar] [CrossRef]
- Aspiras, A.C.; Rohner, N.; Martineau, B.; Borowsky, R.L.; Tabin, C.J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc. Natl. Acad. Sci. USA 2015, 112, 9668–9673. [Google Scholar] [CrossRef] [PubMed]
- Rønnestad, I.; Gomes, A.S.; Murashita, K.; Angotzi, R.; Jönsson, E.; Volkoff, H. Appetite-controlling endocrine systems in teleosts. Front. Endocrinol. 2017, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cai, M.; Chen, M.; Qu, H.; McPherson, D.; Hruby, V.; Harmon, C.M. Key amino acid residues in the melanocortin-4 receptor for nonpeptide THIQ specific binding and signaling. Regul. Pept. 2009, 155, 46–54. [Google Scholar] [CrossRef]
- Muceniece, R.; Zvejniece, L.; Vilskersts, R.; Liepinsh, E.; Baumane, L.; Kalvinsh, I.; Wikberg, J.E.; Dambrova, M. Functional evaluation of THIQ, a melanocortin 4 receptor agonist, in models of food intake and Inflammation. Basic Clin. Pharmacol. Toxicol. 2007, 101, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tao, Y.X. A small molecule agonist THIQ as a novel pharmacoperone for intracellularly retained melanocortin-4 receptor mutants. Int. J. Biol. Sci. 2014, 10, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Poitout, L.; Brault, V.; Sackur, C.; Bernetiere, S.; Camara, J.; Plas, P.; Roubert, P. Identification of a novel series of benzimidazoles as potent and selective antagonists of the human melanocortin-4 receptor. Bioorg. Med. Chem. Lett. 2007, 17, 4464–4470. [Google Scholar] [CrossRef]
- Tao, Y.X. The Melanocortin-4 receptor: Physiology, pharmacology, and pathophysiology. Endocr. Rev. 2010, 31, 506–543. [Google Scholar] [CrossRef]
- Tao, Y.X.; Huang, H. Ipsen 5i is a novel potent pharmacoperone for intracellularly retained melanocortin-4 receptor mutants. Front. Endocrinol. 2014, 5, 131. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Tao, Y.X. Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochim. Biophys. Acta (BBA) -Mol. Basis Dis. 2017, 1863, 2496–2507. [Google Scholar] [CrossRef]
- Vos, T.J.; Caracoti, A.; Che, J.L.; Dai, M.; Farrer, C.A.; Forsyth, N.E.; Drabic, S.V.; Horlick, R.A.; Lamppu, D.; Yowe, D.L.; et al. Identification of 2-[2-[2-(5-bromo-2- methoxyphenyl)-ethyl]-3-fluorophenyl]-4,5-dihydro-1H-imidazole (ML00253764), a small molecule melanocortin 4 receptor antagonist that effectively reduces tumor-induced weight loss in a mouse model. J. Med. Chem. 2004, 47, 1602–1604. [Google Scholar] [CrossRef]
- Nicholson, J.R.; Kohler, G.; Schaerer, F.; Senn, C.; Weyermann, P.; Hofbauer, K.G. Peripheral administration of a melanocortin 4-receptor inverse agonist prevents loss of lean body mass in tumor-bearing mice. J. Pharmacol. Exp. Ther. 2006, 317, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Valastyan, J.S.; Lindquist, S. Mechanisms of protein-folding diseases at a glance. Dis. Model. Mech. 2014, 7, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Conn, P.M.; Ulloa-Aguirre, A.; Janovick, J.A. “Pharmacoperone”: What’s in a word? Pharmacol. Res. 2013, 83, 1–2. [Google Scholar] [CrossRef]
- Cohen, F.E.; Kelly, J.W. Therapeutic approaches to protein-misfolding diseases. Nature 2003, 426, 905–909. [Google Scholar] [CrossRef]
- Conn, P.J.; Lindsley, C.W.; Meiler, J.; Niswender, C.M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov. 2014, 13, 692–708. [Google Scholar] [CrossRef] [PubMed]
- Loo, T.W.; Clarke, D.M. Chemical and pharmacological chaperones as new therapeutic agents. Expert Rev. Mol. Med. 2007, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.X.; Conn, P.M. Chaperoning G protein-coupled receptors: From cell biology to therapeutics. Endocr. Rev. 2014, 35, 602–647. [Google Scholar] [CrossRef]
- Tao, Y.X.; Conn, P.M. Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol. Rev. 2018, 98, 697–725. [Google Scholar] [CrossRef]
- Marinko, J.T.; Huang, H.; Penn, W.D.; Capra, J.A.; Schlebach, J.P.; Sanders, C.R. Folding and misfolding of human membrane proteins in health and disease: From single molecules to cellular proteostasis. Chem. Rev. 2019, 119, 5537–5606. [Google Scholar] [CrossRef]
- Bernier, V.; Lagacé, M.; Bichet, D.-G.; Bouvier, M. Pharmacological chaperones: Potential treatment for conformational diseases. Trends Endocrinol. Metab. 2004, 15, 222–228. [Google Scholar] [CrossRef]
- Ulloa-Aguirre, A.; Janovick, J.A.; Brothers, S.; Conn, P.M. Pharmacologic rescue of conformationally-defective proteins: Implications for the treatment of human disease. Traffic 2004, 5, 821–837. [Google Scholar] [CrossRef] [PubMed]
- Conn, P.M.; Ulloa-Aguirre, A.; Ito, J.; Janovick, J.A. G protein-coupled receptor trafficking in health and disease: Lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol. Rev. 2007, 59, 225–250. [Google Scholar] [CrossRef] [PubMed]
- Conn, P.M.; Ulloa-Aguirre, A. Trafficking of G-protein-coupled receptors to the plasma membrane: Insights for pharmacoperone drugs. Trends Endocrinol. Metab. 2010, 21, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.S.; Ulloa-Aguirre, A.; Tao, Y.X. Pharmacoperone drugs: Targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev. Clin. Pharmacol. 2018, 11, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.X. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol. Cell. Endocrinol. 2020, 511, 110862. [Google Scholar] [CrossRef] [PubMed]
- René, P.; Lanfray, D.; Richard, D.; Bouvier, M. Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity. JCI Insight 2021, 6. [Google Scholar] [CrossRef]
- Ulloa-Aguirre, A.; Zariñán, T.; Gutiérrez-Sagal, R.; Tao, Y.X. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front. Endocrinol. 2022, 13, 934685. [Google Scholar] [CrossRef]
- Morello, J.P.; Salahpour, A.; Laperrière, A.; Bernier, V.; Arthus, M.F.; Lonergan, M.; Petäjä-Repo, U.; Angers, S.; Morin, D.; Bichet, D.G.; et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 2000, 105, 887–895. [Google Scholar] [CrossRef]
- Petäjä-Repo, U.E.; Hogue, M.; Bhalla, S.; Laperrière, A.; Morello, J.P.; Bouvier, M. Ligands act as pharmacological chaperones and increase the efficiency of δ opioid receptor maturation. EMBO J. 2002, 21, 1628–1637. [Google Scholar] [CrossRef]
- Noorwez, S.M.; Kuksa, V.; Imanishi, Y.; Zhu, L.; Filipek, S.; Palczewski, K.; Kaushal, S. Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J. Biol. Chem. 2003, 278, 14442–14450. [Google Scholar] [CrossRef]
- Newton, C.L.; Whay, A.M.; McArdle, C.A.; Zhang, M.; van Koppen, C.J.; van de Lagemaat, R.; Segaloff, D.L.; Millar, R.P. Rescue of expression and signaling of human luteinizing hormone G protein-coupled receptor mutants with an allosterically binding small-molecule agonist. Proc. Natl. Acad. Sci. USA 2011, 108, 7172–7176. [Google Scholar] [CrossRef] [PubMed]
- Conn, P.M.; Ulloa-Aguirre, A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. Adv. Pharmacol. 2011, 62, 109–141. [Google Scholar] [CrossRef] [PubMed]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–297. [Google Scholar] [CrossRef]
- Liu, T.; Ji, R.L.; Tao, Y.X. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol. Ther. 2022, 234, 108044. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Tao, Y.X. Functional studies on twenty novel naturally occurring melanocortin-4 receptor mutations. Biochim. et Biophys. Acta (BBA) -Mol. Basis Dis. 2011, 1812, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.C.; Tao, Y.X. Functional characterization and pharmacological rescue of melanocortin-4 receptor mutations identified from obese patients. J. Cell Mol. Med. 2009, 13, 3268–3282. [Google Scholar] [CrossRef]
- René, P.; Le Gouill, C.; Pogozheva, I.D.; Lee, G.; Mosberg, H.I.; Farooqi, I.S.; Valenzano, K.J.; Bouvier, M. Pharmacological chaperones restore function to MC4R mutants responsible for severe early-onset obesity. J. Pharmacol. Exp. Ther. 2010, 335, 520–532. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, H.M.; Zhao, B.L.; Yu, P.; Fan, Z.C. Rescue of defective MC4R cell-surface expression and signaling by a novel pharmacoperone Ipsen 17. J. Mol. Endocrinol. 2014, 53, 17–29. [Google Scholar] [CrossRef]
- Muratspahić, E.; Freissmuth, M.; Gruber, C.W. Nature-derived peptides: A growing niche for GPCR ligand discovery. Trends Pharmacol. Sci. 2019, 40, 309–326. [Google Scholar] [CrossRef]
- Do, E.U.; Jo, E.B.; Choi, G.; Piao, L.Z.; Shin, J.; Seo, M.-D.; Kang, S.-J.; Lee, B.-J.; Kim, K.H.; Kim, J.B.; et al. Melanocortin 4 receptors interact with antimicrobial frog peptide analogues. Biochem. Biophys. Res. Commun. 2006, 343, 1094–1100. [Google Scholar] [CrossRef]
- Reynaud, S.; Ciolek, J.; Degueldre, M.; Saez, N.J.; Sequeira, A.F.; Duhoo, Y.; Bras, J.L.A.; Meudal, H.; Cabo Diez, M.; Fernandez Pedrosa, V.; et al. A venomics approach coupled to high-throughput toxin production strategies identifies the first venom-derived melanocortin receptor agonists. J. Med. Chem. 2020, 63, 8250–8264. [Google Scholar] [CrossRef] [PubMed]
- Montero-Melendez, T. ACTH: The forgotten therapy. Semin. Immunol. 2015, 27, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Hench, P.S.; Kendall, E.C.; Slocumb, C.H.; Polley, H.F. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone: Compound E) and of pituitary adrenocortical hormone in arthritis: Preliminary report. Ann. Rheum. Dis. 1949, 8, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.; Newell, D.; Ridley, A. Multiple sclerosis treatment of acute exacerbations with corticotropin (A.C.T.H.). Lancet 1961, 278, 1120–1122. [Google Scholar] [CrossRef]
- Gettig, J.; Cummings, J.P.; Matuszewski, K.H.P. Acthar gel and cosyntropin review: Clinical and financial implications. Formul. Manag. 2009, 34, 250–257. [Google Scholar]
- Stafstrom, C.E.; Arnason, B.G.W.; Baram, T.Z.; Catania, A.; Cortez, M.A.; Glauser, T.A.; Pranzatelli, M.R.; Riikonen, R.; Rogawski, M.; Shinnar, S.; et al. Treatment of infantile spasms. J. Child Neurol. 2011, 26, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Flanagan, J.J.; Feng, J.; Soska, R.; Frascella, M.; Pellegrino, L.J.; Lun, Y.; Guillen, D.; Lockhart, D.J.; Valenzano, K.J. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PLoS ONE 2012, 7, e40776. [Google Scholar] [CrossRef]
- Daoussis, D.; Antonopoulos, I.; Yiannopoulos, G.; Andonopoulos, A.P. ACTH as first line treatment for acute gout in 181 hospitalized patients. Jt. Bone Spine 2013, 80, 291–294. [Google Scholar] [CrossRef]
- Gong, R. The renaissance of corticotropin therapy in proteinuric nephropathies. Nat. Rev. Nephrol. 2011, 8, 122–128. [Google Scholar] [CrossRef]
- Berg, A.-L.; Arnadottir, M. ACTH-induced improvement in the nephrotic syndrome in patients with a variety of diagnoses. Nephrol. Dial. Transplant. 2004, 19, 1305–1307. [Google Scholar] [CrossRef]
- Bomback, A.S.; A Tumlin, J.; Baranski, J.; E Bourdeau, J.; Besarab, A.; Appel, A.S.; Radhakrishnan, J.; Appel, G.B. Treatment of nephrotic syndrome with adrenocorticotropic hormone (ACTH) gel. Drug Des. Dev. Ther. 2011, 5, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Getting, S.J.; Christian, H.C.; Flower, R.J.; Perretti, M. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Care Res. 2002, 46, 2765–2775. [Google Scholar] [CrossRef] [PubMed]
- Getting, S.J.; Flower, R.J.; Perretti, M. Agonism at melanocortin receptor type 3 on macrophages inhibits neutrophil influx. Agents Actions 1999, 48, 140–141. [Google Scholar] [CrossRef]
- Benjamins, J.A.; Nedelkoska, L.; Bealmear, B.; Lisak, R.P. ACTH protects mature oligodendroglia from excitotoxic and inflammation-related damagein vitro. Glia 2013, 61, 1206–1217. [Google Scholar] [CrossRef] [PubMed]
- Benjamins, J.A.; Nedelkoska, L.; Lisak, R.P. Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage. J. Neurosci. Res. 2014, 92, 1243–1251. [Google Scholar] [CrossRef]
- Lisak, R.P.; Nedelkoska, L.; Bealmear, B.; Benjamins, J.A. Melanocortin receptor agonist ACTH 1–39 protects rat forebrain neurons from apoptotic, excitotoxic and inflammation-related damage. Exp. Neurol. 2015, 273, 161–167. [Google Scholar] [CrossRef]
- Masters, R.K.; Reither, E.N.; Powers, D.A.; Yang, Y.C.; Burger, A.E.; Link, B.G. The impact of obesity on US mortality levels: The importance of age and cohort factors in population estimates. Am. J. Public Health 2013, 103, 1895–1901. [Google Scholar] [CrossRef]
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [CrossRef]
- Baik, I.; Ascherio, A.; Rimm, E.B.; Giovannucci, E.; Spiegelman, D.; Stampfer, M.J.; Willett, W.C. Adiposity and mortality in men. Am. J. Epidemiol. 2000, 152, 264–271. [Google Scholar] [CrossRef]
- Yanovski, S.Z.; Yanovski, J.A. Long-term drug treatment for obesity: A systematic and clinical review. JAMA 2014, 311, 74–86. [Google Scholar] [CrossRef]
- Krishna, R.; Gumbiner, B.; Stevens, C.; Musser, B.; Mallick, M.; Suryawanshi, S.; Maganti, L.; Zhu, H.; Han, T.H.; Scherer, L.; et al. Potent and selective agonism of the melanocortin receptor 4 with MK-0493 does not induce weight loss in obese human subjects: Energy intake predicts lack of weight loss efficacy. Clin. Pharmacol. Ther. 2009, 86, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Royalty, J.E.; Konradsen, G.; Eskerod, O.; Wulff, B.S.; Hansen, B.S. Investigation of safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple doses of a long-acting α-MSH analog in healthy overweight and obese subjects. J. Clin. Pharmacol. 2013, 54, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Skowronski, A.A.; Morabito, M.V.; Mueller, B.R.; Lee, S.; Hjorth, S.; Lehmann, A.; Watanabe, K.; Zeltser, L.M.; Ravussin, Y.; Rosenbaum, M.; et al. Effects of a novel MC4R agonist on maintenance of reduced body weight in diet-induced obese mice. Obesity 2013, 22, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Kühnen, P.; Clement, K.; Wiegand, S.; Blankenstein, O.; Gottesdiener, K.; Martini, L.L.; Mai, K.; Blume-Peytavi, U.; Gruters, A.; Krude, H. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med. 2016, 375, 240–246. [Google Scholar] [CrossRef]
- Clément, K.; Biebermann, H.; Farooqi, I.S.; Van der Ploeg, L.; Wolters, B.; Poitou, C.; Puder, L.; Fiedorek, F.; Gottesdiener, K.; Kleinau, G.; et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat. Med. 2018, 24, 551–555. [Google Scholar] [CrossRef]
- Eneli, I.; Xu, J.Y.; Fiedorek, F.; Webster, M.; McCagg, A.; Ayers, K.; Van der Ploeg, L.; Garfield, A.; Estrada, E. Tracing the effect of the melanocortin-4 receptor pathway in obesity: Study design and mthodology of the TEMPO Registry. Horm. Res. Paediat. 2018, 90, 335. [Google Scholar] [CrossRef]
- Clément, K.; Akker, E.V.D.; Argente, J.; Bahm, A.; Chung, W.K.; Connors, H.; De Waele, K.; Farooqi, I.S.; Gonneau-Lejeune, J.; Gordon, G.; et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: Single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 2020, 8, 960–970. [Google Scholar] [CrossRef]
- Haws, R.; Brady, S.; Davis, E.; Fletty, K.; Yuan, G.; Gordon, G.; Stewart, M.; Yanovski, J. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in Bardet-Biedl syndrome. Diabetes, Obes. Metab. 2020, 22, 2133–2140. [Google Scholar] [CrossRef]
- Markham, A. Setmelanotide: First approval. Drugs 2021, 81, 397–403. [Google Scholar] [CrossRef]
- Collet, T.H.; Dubern, B.; Mokrosinski, J.; Connors, H.; Keogh, J.M.; de Oliveira, E.M.; Henning, E.; Poitou-Bernert, C.; Oppert, J.M.; Tounian, P. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol. Metab. 2017, 6, 1321–1329. [Google Scholar] [CrossRef]
- Kleinau, G.; Heyder, N.A.; Tao, Y.X.; Scheerer, P. Structural complexity and plasticity of signaling regulation at the melanocortin-4 receptor. Int. J. Mol. Sci. 2020, 21, 5728. [Google Scholar] [CrossRef] [PubMed]
- Israeli, H.; Degtjarik, O.; Fierro, F.; Chunilal, V.; Gill, A.K.; Roth, N.J.; Botta, J.; Prabahar, V.; Peleg, Y.; Chan, L.F.; et al. Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science 2021, 372, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Garfield, A.S.; Shah, B.; Kleyn, P.; Ichetovkin, I.; Moeller, I.H.; Mowrey, W.R.; Van der Ploeg, L.H. Current mechanistic and pharmacodynamic understanding of melanocortin-4 receptor activation. Molecules 2019, 24, 1892. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Shrestha, Y.B.; Pandey, M.; Chen, M.; Kablan, A.; Gavrilova, O.; Offermanns, S.; Weinstein, L.S. Gq/11α and Gsα mediate distinct physiological responses to central melanocortins. J. Clin. Investig. 2015, 126, 40–49. [Google Scholar] [CrossRef]
- Wessells, H.; Gralnek, D.; Dorr, R.; Hruby, V.J.; E Hadley, M.; Levine, N. Effect of an alpha-melanocyte stimulating hormone analog on penile erection and sexual desire in men with organic erectile dysfunction. Urology 2000, 56, 641–646. [Google Scholar] [CrossRef]
- Clayton, A.H.; Althof, S.E.; Kingsberg, S.; DeRogatis, L.R.; Kroll, R.; Goldstein, I.; Kaminetsky, J.; Spana, C.; Lucas, J.; Jordan, R.; et al. Bremelanotide for female sexual dysfunctions in premenopausal women: A randomized, placebo-controlled dose-finding trial. Womens Health 2016, 12, 325–337. [Google Scholar] [CrossRef]
- Lansdell, M.I.; Hepworth, D.; Calabrese, A.; Brown, A.D.; Blagg, J.; Burring, D.J.; Wilson, P.; Fradet, D.; Brown, T.B.; Quinton, F.; et al. Discovery of a selective small-molecule melanocortin-4 receptor agonist with efficacy in a pilot study of sexual dysfunction in humans. J. Med. Chem. 2010, 53, 3183–3197. [Google Scholar] [CrossRef]
- Dhillon, S.; Keam, S.J. Bremelanotide: First approval. Drugs 2019, 79, 1599–1606. [Google Scholar] [CrossRef]
- Pfaus, J.G.; Shadiack, A.; Van Soest, T.; Tse, M.; Molinoff, P. Selective facilitation of sexual solicitation in the female rat by a melanocortin receptor agonist. Proc. Natl. Acad. Sci. USA 2004, 101, 10201–10204. [Google Scholar] [CrossRef]
- Molinoff, P.B.; Shadiack, A.M.; Earle, D.; Diamond, L.E.; Quon, C.Y. PT-141: A melanocortin agonist for the treatment of sexual dysfunction. Ann. N. Y. Acad. Sci. 2003, 994, 96–102. [Google Scholar] [CrossRef]
- Renquist, B.J.; Lippert, R.N.; Sebag, J.A.; Ellacott, K.L.; Cone, R.D. Physiological roles of the melanocortin MC3 receptor. Eur. J. Pharmacol. 2011, 660, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Clayton, A.; Lucas, J.; Jordan, R.; Spana, C.; Pfaus, J. 221 Bremelanotide: A review of its neurobiology and treatment efficacy for HSDD. J. Sex. Med. 2017, 14, S62–S63. [Google Scholar] [CrossRef]
- Pfaus, J.; Giuliano, F.; Gelez, H. Bremelanotide: An overview of preclinical CNS effects on female sexual function. J. Sex. Med. 2007, 4, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Kingsberg, S.A.; Clayton, A.H.; Portman, D.; Williams, L.A.; Krop, J.; Jordan, R.; Lucas, J.; Simon, J.A. Bremelanotide for the treatment of hypoactive sexual desire disorder: Two randomized Phase 3 trials. Obstet. Gynecol. 2019, 134, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Mayer, D.; Lynch, S.E. Bremelanotide: New drug approved for treating hypoactive sexual desire disorder. Ann. Pharmacother. 2020, 54, 684–690. [Google Scholar] [CrossRef]
- Cohen, J.A.; Barkhof, F.; Comi, G.; Hartung, H.P.; Khatri, B.O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G.; et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 402–415. [Google Scholar] [CrossRef]
- Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 387–401. [Google Scholar] [CrossRef]
- Gesualdo, C.; Balta, C.; Platania, C.B.M.; Trotta, M.C.; Herman, H.; Gharbia, S.; Rosu, M.; Petrillo, F.; Giunta, S.; Della Corte, A.; et al. Fingolimod and diabetic retinopathy: A drug repurposing study. Front. Pharmacol. 2021, 12. [Google Scholar] [CrossRef]
- Goodman, L.S. Goodman and Gilman’s the Pharmacological Basis of Therapeutics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Montero-Melendez, T.; Forfar, R.A.E.; Cook, J.M.; Jerman, J.C.; Taylor, D.L.; Perretti, M. Old drugs with new skills: Fenoprofen as an allosteric enhancer at melanocortin receptor 3. Cell. Mol. Life Sci. 2016, 74, 1335–1345. [Google Scholar] [CrossRef]
- Yuan, X.C.; Tao, Y.X. Fenoprofen—An old drug rediscovered as a biased allosteric enhancer for melanocortin receptors. ACS Chem. Neurosci. 2018, 10, 1066–1074. [Google Scholar] [CrossRef]
- Parween, S.; Rihs, S.; Flück, C.E. Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: A possible mechanism for its anti-androgenic and weight balancing effects in vivo? J. Steroid Biochem. Mol. Biol. 2020, 200, 105684. [Google Scholar] [CrossRef] [PubMed]
Ligands | Binding Affinity [28,29] | Activity [30] |
---|---|---|
MC1R | α-MSH > β-MSH > γ3-MSH > ACTH > γ1-MSH > γ2-MSH | γ1-MSH > α-MSH > γ2-MSH > γ3-MSH > β-MSH |
MC3R | γ1-MSH > γ3-MSH > β-MSH > γ2-MSH > α-MSH > ACTH | γ2-MSH > γ3-MSH > γ1-MSH > α-MSH > β-MSH |
MC4R | β-MSH > α-MSH > ACTH > γ1-MSH > γ3-MSH > γ2-MSH | α-MSH > β-MSH > γ2-MSH > γ1-MSH > γ3-MSH |
MC5R | α-MSH > β-MSH > ACTH > γ1-MSH > γ2-MSH= γ3-MSH | α-MSH > β-MSH > γ1-MSH > γ2-MSH > γ3-MSH |
Peptides | MC1R | MC3R | MC4R | MC5R | Index | Reference |
---|---|---|---|---|---|---|
α-MSH | 0.0334 | 20.7 | 641 | 8240 | Ki (nM) | [28] |
0.23 | 31.5 | 900 | 7160 | Ki (nM) | [46] | |
0.32 | 15.5 | 41.4 | 332 | Ki (nM) | [30] | |
0.94 | 27.74 | 30.37 | 125.3 | Ki (nM) | [47] | |
1.5 | 46 | 26 | 150 | Ki (nM) | [48] | |
3.9 | 19 | 19 | 120 | IC50 (nM) | [49] | |
5.97 | 50.04 | 38.7 | 557 | IC50 (nM) | [50] | |
β-MSH | 1.17 | 13.4 | 376 | 14,400 | Ki (nM) | [28] |
0.89 | 10.64 | 8.18 | 76.9 | Ki (nM) | [47] | |
0.864 | 23.2 | 19.9 | 306 | Ki (nM) | [30] | |
γ1-MSH | 2.68 | 7.06 | 29,000 | 42,600 | Ki (nM) | [28] |
2.75 | 11 | 1300 | 552 | Ki (nM) | [30] | |
γ2-MSH | 11.2 | 17.7 | >100,000 | >100,000 | Ki (nM) | [28] |
20.8 | 57.2 | 6250 | 3250 | Ki (nM) | [30] | |
γ3-MSH | 1.39 | 10.9 | 33,500 | >100,000 | Ki (nM) | [28] |
0.419 | 5.84 | 117 | 336 | Ki (nM) | [30] | |
ACTH | 2.5 | 86.9 | 693 | 17,000 | Ki (nM) | [28] |
AgRP | - | 11.2 | 9 | 25.6 | IC50 (nM) | [51] |
ASIP | 23 | 195 | 70 | >1000 | Ki (nM) | [52] |
0.47 | 6.4 | 0.14 | 1.16 | Ki (nM) | [53] | |
Lipocalin 2 | 86.96 | 82.13 | 51.39 | - | Kd (nM) | [54] |
hBD1 | 7000 | >100,000 | IC50 (nM) | [55] | ||
hBD3 | 26,000 | >100,000 | IC50 (nM) | [55] | ||
42 | 110 | Ki (nM) | [56] | |||
Setmelanotide | 3.9 | 10 | 2.1 | 430 | Ki (nM) | [30] |
5.5 | 18 | 5 | 1910 | IC50 (nM) | [57] | |
Bremelanotide | 3.4 | 220 | 29 | 190 | IC50 (nM) | [57] |
NDP-MSH | 0.046 | 0.78 | 0.30 | 0.48 | Ki (nM) | [48] |
0.109 | 0.680 | 0.620 | 0.891 | Ki (nM) | [30] | |
MTII | 0.2 | 20 | 1.5 | 23 | IC50 (nM) | [57] |
0.27 | 24 | 2.66 | 23.1 | Ki (nM) | [30] | |
0.36 | 3.1 | 0.18 | 1.2 | IC50 (nM) | [58] | |
0.686 | 34.1 | 6.6 | 46.1 | Ki (nM) | [46] | |
6.4 | 176 | 0.25 | 17 | Ki (nM) | [48] | |
SHU9119 | 0.62 | 0.23 | 0.07 | 0.065 | IC50 (nM) | [58] |
0.714 | 1.2 | 0.36 | 1.12 | Ki (nM) | [46] |
Peptides | MC1R | MC3R | MC4R | MC5R | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
EC50 (nM) | pA2 | EC50 (nM) | pA2 | EC50 (nM) | pA2 | EC50 (nM) | pA2 | ||
α-MSH | 0.057 | 0.669 | 0.21 | 0.807 | [31] | ||||
1.01 | 1.04 | 4.7 | 10.5 | [30] | |||||
3.4 | 1.1 | 1.9 | 16 | [58] | |||||
β-MSH | 4.24 | 1.59 | 6.62 | 23.7 | [30] | ||||
γ1-MSH | 0.932 | 0.734 | 48.5 | 101 | [30] | ||||
γ2-MSH | 3.05 | 0.487 | 93.7 | 500 | [30] | ||||
- | 1 | 55 | 200 | [59] | |||||
γ3-MSH | 1.34 | 0.465 | 42.2 | 233 | [30] | ||||
AgRP | 8.4 | 8.6 | [51] | ||||||
ASIP | 9.3 | 8.2 | 9.9 | 8.9 | [53] | ||||
Lipocalin 2 | 1.52 | 1.83 | 1.41 | [54] | |||||
hBD1 | 7400 | >100,000 | 21,000 | >100,000 | [55] | ||||
hBD3 | 400 | 35% @100 μM | 2600 | 45% @100 μM | [55] | ||||
Setmelanotide | 5.8 | 5.3 | 0.27 | 1600 | [30] | ||||
0.26 | 0.69 | <0.032 | - | [57] | |||||
Bremelanotide | 0.095 | 2.4 | 0.25 | - | [57] | ||||
NDP-MSH | 0.462 | 0.109 | 0.075 | 0.253 | [30] | ||||
MTII | 0.2 | 0.51 | 0.05 | 5.33 | [30] | ||||
0.3 | 1.3 | 2.9 | 3.3 | [60] | |||||
0.32 | 1.1 | 0.26 | 2.3 | [58] | |||||
SHU9119 | 0.036 | Partial agonist | 8.3 | 9.3 | 0.434 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.-C.; Tao, Y.-X. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022, 12, 1407. https://doi.org/10.3390/biom12101407
Yuan X-C, Tao Y-X. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules. 2022; 12(10):1407. https://doi.org/10.3390/biom12101407
Chicago/Turabian StyleYuan, Xiao-Chen, and Ya-Xiong Tao. 2022. "Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin" Biomolecules 12, no. 10: 1407. https://doi.org/10.3390/biom12101407