Design of a Wearable Exoskeleton Piano Practice Aid Based on Multi-Domain Mapping and Top-Down Process Model
Abstract
:1. Introduction
1.1. Current Status of Piano Learning
1.2. Research on the Application of Exoskeleton Technology
1.3. Application of Piano Exoskeleton Assistance Devices
1.4. Application of Top-Down Design in Mechanical Design
2. Materials and Methods
2.1. Module Identification Process
2.2. Perspectives and Principles of Module Extraction
2.3. Study of Module Mapping Relationships
2.4. Functional Model Decomposition
2.5. Product Functional Organizational Structure Modeling
3. Top-Down Product Design Process
3.1. Top-Down Multi-Level Assembly Model Construction
3.2. Product Platform Establishment
4. Construction of the Assembly Model for Piano Practice Assistance Mechanisms
4.1. Target Population and Needs for Wearable Exoskeleton Piano Aids
4.2. Piano Practice Aid Functional Module Extraction
4.3. Establishment of the Functional and Structural Module Mapping Library
4.4. Simulation Analysis of the Piano Exoskeleton Practice Aid
4.4.1. Degrees of Freedom
4.4.2. Kinematic Analysis
4.4.3. Workspace
4.5. Wearable Exoskeleton Hardware Product Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, B. Pianism: Performance communication and the playing technique. Front. Psychol. 2018, 9, 2125. [Google Scholar] [CrossRef]
- Urbina, J.; Abarca, V.E.; Elias, D.A. Integration of music-based game approaches with wearable devices for hand neurorehabilitation: A narrative review. J. NeuroEng. Rehabil. 2024, 21, 89. [Google Scholar] [CrossRef]
- Tan, J. Innovative Piano Teaching New Mode and New Idea under the Background of Quality Education—A Review of the Research on Innovative Piano Teaching Mode. Sci. Technol. Chin. Coll. Univ. 2022, 4, 113–114. [Google Scholar] [CrossRef]
- Tong, Z. Design of Piano Arrangement Tone Recognition System Based on Artificial Intelligence. Mod. Electron. Technol. 2020, 43, 183–186. [Google Scholar] [CrossRef]
- Klaic, M.; Galea, M.P. Using the technology acceptance model to identify factors that predict likelihood to adopt tele-neurorehabilitation. Front. Neurol. 2020, 11, 580832. [Google Scholar] [CrossRef]
- Huiqi, Q.; Jia, L. Modern piano performance technique and aesthetic research. J. Namibian Stud. Hist. Polit. Cult. 2023, 33, 3383–3390. [Google Scholar]
- Bardi, E.; Gandolla, M.; Braghin, F.; Resta, F.; Pedrocchi, A.L.G.; Ambrosini, E. Upper limb soft robotic wearable devices: A systematic review. J. NeuroEng. Rehabil. 2022, 19, 87. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, B.; Liu, C.; Liu, T.; Han, Y.; Wang, S.; Ferreira, J.P.; Dong, W.; Zhang, X. A review on the rehabilitation exoskeletons for the lower limbs of the elderly and the disabled. Electronics 2022, 11, 388. [Google Scholar] [CrossRef]
- Ju, F.; Wang, Y.; Xie, B.; Mi, Y.; Zhao, M.; Cao, J. The use of sports rehabilitation robotics to assist in the recovery of physical abilities in elderly patients with degenerative diseases: A literature review. Healthcare 2023, 11, 326. [Google Scholar] [CrossRef]
- Arıkan, K.B.; Zadeh, H.G.M.; Turgut, A.E.; Zinnuroğlu, M.; Bayer, G.; Günendi, Z.; Cengiz, B. Anticipatory effect of execution on observation: An approach using ExoPinch finger robot. Turk. J. Med. Sci. 2019, 49, 1054–1067. [Google Scholar] [CrossRef]
- Brauchle, D.; Vukelić, M.; Bauer, R.; Gharabaghi, A. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: Combining brain-machine interfacing and robotic rehabilitation. Front. Hum. Neurosci. 2015, 9, 564. [Google Scholar] [CrossRef] [PubMed]
- Kazerooni, H.; Steger, R.; Huang, L. Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). Int. J. Robot. Res. 2006, 25, 561–573. [Google Scholar] [CrossRef]
- Pignolo, L.; Lucca, L.F.; Basta, G.; Serra, S.; Pugliese, M.E.; Sannita, W.G.; Dolce, G. A new treatment in the rehabilitation of the paretic upper limb after stroke: The ARAMIS prototype and treatment protocol. Ann. Ist. Super. Sanita 2016, 52, 301–308. [Google Scholar] [CrossRef]
- Santello, M.; Bianchi, M.; Gabiccini, M.; Ricciardi, E.; Salvietti, G.; Prattichizzo, D.; Ernst, M.; Moscatelli, A.; Jörntell, H.; Kappers, A.M.L.; et al. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 2016, 17, 1–23. [Google Scholar] [CrossRef]
- Lin, M.; Paul, R.; Abd, M.; Jones, J.; Dieujuste, D.; Chim, H.; Engeberg, E.D. Feeling the beat: A smart hand exoskeleton for learning to play musical instruments. Front. Robot. AI 2023, 10, 1212768. [Google Scholar] [CrossRef]
- Pal, V.; Shrivastava, S.; Leibson, J.; Yu, Y.; Kim, L.; Flatley, D. Piano press: A cable-actuated glove for assistive piano playing. J. Stud. Res. 2021, 10. [Google Scholar] [CrossRef]
- Takahashi, N.; Furuya, S.; Koike, H. Soft exoskeleton glove with human anatomical architecture: Production of dexterous finger movements and skillful piano performance. IEEE Trans. Haptics 2020, 13, 679–690. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, D.; Li, M.; Ren, X.; Yuan, X.; Tang, L.; Wang, X.; Liu, S.; Yang, M.; Liu, Y.; et al. Design and verification of piano playing assisted hand exoskeleton robot. Biomimetics 2024, 9, 385. [Google Scholar] [CrossRef]
- Shrestha, A.; Fang, H.; Mei, Z.; Rider, D.P.; Wu, Q.; Qiu, Q. A survey on neuromorphic computing: Models and hardware. IEEE Circuits Syst. Mag. 2022, 22, 6–35. [Google Scholar] [CrossRef]
- Chen, X.; Gao, S.; Yang, Y.; Zhang, S. Multi-level assembly model for top-down design of mechanical products. Comput. Aided Des. 2012, 44, 1033–1048. [Google Scholar] [CrossRef]
- Sturges, R.H., Jr.; O’Shaughnessy, K.; Reed, R.G. A systematic approach to conceptual design. Concurr. Eng. 1993, 1, 93–105. [Google Scholar] [CrossRef]
- Sànchez, M.; Cortés, U.; Lafuente, J.; Roda, I.R.; Poch, M. DAI-DEPUR: An integrated and distributed architecture for wastewater treatment plants supervision. Artif. Intell. Eng. 1996, 10, 275–285. [Google Scholar] [CrossRef]
- Hubka, V.; Eder, W.E. Theory of Technical Systems: A Total Concept Theory for Engineering Design; Springer: Berlin, Germany, 1988. [Google Scholar] [CrossRef]
- Suh, E.S.; de Weck, O.L.; Chang, D. Flexible product platforms: Framework and case study. Res. Eng. Des. 2007, 18, 67–89. [Google Scholar] [CrossRef]
- Otto, K.N.; Wood, K.L. A reverse engineering and redesign methodology for product evolution. In Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Virtual, 17–19 August 2021. [Google Scholar] [CrossRef]
- Ulrich, K.T.; Eppinger, S.D. Product Design and Development; McGraw-Hill: New York, NY, USA, 2016. [Google Scholar]
- Dharmdas, A.; Patil, A.Y.; Baig, A.; Hosmani, O.Z.; Mathad, S.N.; Patil, M.B.; Kumar, R.; Kotturshettar, B.B.; Fattah, I.M.R. An experimental and simulation study of the active camber morphing concept on airfoils using bio-inspired structures. Biomimetics 2023, 8, 251. [Google Scholar] [CrossRef]
- Patil, A.Y.; Hegde, C.; Savanur, G.; Kanakmood, S.M.; Contractor, A.M.; Shirashyad, V.B.; Chivate, R.M.; Kotturshettar, B.B.; Mathad, S.N.; Patil, M.B.; et al. Biomimicking nature-inspired design structures—An experimental and simulation approach using additive manufacturing. Biomimetics 2022, 7, 186. [Google Scholar] [CrossRef]
- Leon, M.; Laing, R. A concept design stages protocol to support collaborative processes in architecture, engineering and construction projects. J. Eng. Des. Technol. 2021, 20, 777–799. [Google Scholar] [CrossRef]
- Andreasen, M.M.; Hansen, C.T.; Cash, P. Conceptual Design: Interpretations, Mindset and Models; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Lampón, J.F.; Rivo-López, E. Modular product architecture implementation and decisions on production network structure and strategic plant roles. Prod. Plan. Control 2022, 33, 1449–1464. [Google Scholar] [CrossRef]
- Bonvoisin, J.; Halstenberg, F.; Buchert, T.; Stark, R. A systematic literature review on modular product design. J. Eng. Des. 2016, 27, 488–514. [Google Scholar] [CrossRef]
- Torres, L.; Blevins, A.S.; Bassett, D.S.; Eliassi-Rad, T. The why, how, and when of representations for complex systems. arXiv 2020, arXiv:2006.02870. [Google Scholar] [CrossRef]
- Liu, X.; Shao, X. Modern mobile learning technologies in online piano education: Online educational course design and impact on learning. Interact. Learn. Environ. 2024, 32, 1279–1290. [Google Scholar] [CrossRef]
- Salvador, F. Toward a product system modularity construct: Literature review and reconceptualization. IEEE Trans. Eng. Manag. 2007, 54, 219–240. [Google Scholar] [CrossRef]
- Ma, J.; Kremer, G.E.O. A sustainable modular product design approach with key components and uncertain end-of-life strategy consideration. Int. J. Adv. Manuf. Technol. 2016, 85, 741–763. [Google Scholar] [CrossRef]
- Bacchus, F.; Yang, Q. Downward refinement and the efficiency of hierarchical problem solving. Artif. Intell. 1994, 71, 43–100. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Wang, J.; Liu, X. The process model to aid innovation of products conceptual design. Expert Syst. Appl. 2010, 37, 3574–3587. [Google Scholar] [CrossRef]
- Li, L.; Yu, S.; Tao, J. Design for energy efficiency in early stages: A top-down method for new product development. J. Clean. Prod. 2019, 224, 175–187. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, K.; Xu, Y.; Wang, Y.; Wen, T.; Gao, H.; Zhong, Z.; Yang, D. Top-down attention-based mechanisms for interpretable autonomous driving. IEEE Trans. Intell. Transp. Syst. 2024, 1–15. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Zhang, N.; Chen, L.; Cao, J. A knowledge graph-enabled multi-domain mapping approach supporting product rapid design: A case study of new energy vehicles. Adv. Eng. Inform. 2024, 62, 102779. [Google Scholar] [CrossRef]
- Petnga, L. Ontology-driven knowledge modeling and reasoning for multi-domain system architecting and configuration. In Recent Trends and Advances in Model-Based Systems Engineering; Madni, A.M., Boehm, B., Erwin, D., Moghaddam, M., Sievers, M., Wheaton, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 229–239. [Google Scholar] [CrossRef]
- Cao, J.; Bucher, D.F.; Hall, D.M.; Lessing, J. Cross-phase product configurator for modular buildings using kit-of-parts. Autom. Constr. 2021, 123, 103437. [Google Scholar] [CrossRef]
- Zhang, X.; Ming, X.; Bao, Y. A flexible smart manufacturing system in mass personalization manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line. Comput. Ind. Eng. 2022, 171, 108379. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Zhu, H. A semantic-based methodology to deliver model views of forward design for prefabricated buildings. Buildings 2022, 12, 1158. [Google Scholar] [CrossRef]
User Requirement P. | Requirement Weight K. |
---|---|
Finger Position Correction | 0.209 |
Practice Assistance | 0.2239 |
Free Movement | 0.1891 |
Strong Support | 0.199 |
Aesthetic Design | 0.1791 |
Functional Module | Corresponding Structural Module | Structural Description | Functional Behavior Description | |
---|---|---|---|---|
Hand Assistance System | Frame | Fixed on the Back of the Hand | Used to Secure the Trainee’s Hand Back | |
Hand Assistance Mechanism | The five finger assistive mechanisms correspond to each finger, with each mechanism including a hinged L-shaped link, a first link, and a second link. | Connected to the drive components, these mechanisms assist the fingers in pressing the piano keys. | ||
Power Unit | Push Rod Motor | The push rods of the five pushrod motors are each hinged to the L-shaped linkages of the five finger assistance mechanisms, with the other end of the motors hinged to the top of the frame. | The motors push the five fingers of the user, passively pressing the correct piano keys to complete note playback. | |
Bracket Assembly | Expandable Component | Includes the first and second telescopic tubes connected with expandable components. | Drives the learner’s wrist to move along the length of the piano to the corresponding key area based on the first instruction. | |
Guide Rail | Fixedly connected to the opposing sides of the two telescopic components at both ends. | |||
Drive Component | Transverse Motor | Fixed to the telescoping support. | Drives the movement of the user’s hand, positioning it in the correct range on the piano. | |
Driven Wheel | Facilitates the left and right movement of the user’s wrists. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Li, M.; Chen, G.; Ren, X.; Yang, D.; Li, J.; Yuan, X.; Liu, S.; Yang, M.; Chen, M.; et al. Design of a Wearable Exoskeleton Piano Practice Aid Based on Multi-Domain Mapping and Top-Down Process Model. Biomimetics 2025, 10, 15. https://doi.org/10.3390/biomimetics10010015
Xu Q, Li M, Chen G, Ren X, Yang D, Li J, Yuan X, Liu S, Yang M, Chen M, et al. Design of a Wearable Exoskeleton Piano Practice Aid Based on Multi-Domain Mapping and Top-Down Process Model. Biomimetics. 2025; 10(1):15. https://doi.org/10.3390/biomimetics10010015
Chicago/Turabian StyleXu, Qiujian, Meihui Li, Guoqiang Chen, Xiubo Ren, Dan Yang, Junrui Li, Xinran Yuan, Siqi Liu, Miaomiao Yang, Mufan Chen, and et al. 2025. "Design of a Wearable Exoskeleton Piano Practice Aid Based on Multi-Domain Mapping and Top-Down Process Model" Biomimetics 10, no. 1: 15. https://doi.org/10.3390/biomimetics10010015
APA StyleXu, Q., Li, M., Chen, G., Ren, X., Yang, D., Li, J., Yuan, X., Liu, S., Yang, M., Chen, M., Wang, B., Zhang, P., & Ma, H. (2025). Design of a Wearable Exoskeleton Piano Practice Aid Based on Multi-Domain Mapping and Top-Down Process Model. Biomimetics, 10(1), 15. https://doi.org/10.3390/biomimetics10010015