Sensor-Based Rehabilitation in Neurological Diseases: A Bibliometric Analysis of Research Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Publication Outputs and Time Trend
3.2. Hot Topics in Literature Research
3.3. Country Analysis
3.4. Institution Analysis
3.5. Journal Analysis
3.6. Author Analysis
3.7. Analysis of References
3.8. Keywords Analysis
4. Discussion
- Machine learning: Machine learning techniques have become increasingly essential in the analysis and interpretation of data acquired through sensors. These techniques enable the identification of patterns and relationships within the data, which may be difficult or impossible for humans to discern. As a result, machine learning has become a crucial tool in many areas of research, including wearable sensor technology, virtual reality, rehabilitation robotics, and clinical trials, among others [55]. The application of machine learning algorithms allows for the development of more accurate and efficient methods for data processing, which can lead to improved diagnostic and therapeutic approaches [56,57]. Deep learning analysis is a type of machine learning that involves training artificial neural networks to recognize patterns in data. It is a subset of artificial intelligence that uses algorithms to learn from large amounts of data and make predictions or decisions without being explicitly programmed [14]. There are several deep learning models that can be used in rehabilitation, depending on the specific task and type of data being analyzed [58].
- Task analysis: Task analysis is a critical aspect of rehabilitation that involves breaking down a specific activity or task into its individual components to understand the physical requirements and limitations of the patient. This analysis helps therapists design personalized therapy programs that target the patient’s specific needs and goals [59]. The application of sensors in task analysis can significantly enhance the accuracy and effectiveness of the rehabilitation process. Sensors can provide real-time data on the patient’s movements, muscle activity, and other physical parameters, allowing therapists to identify areas of weakness and adjust the therapy program accordingly.
- Robot sensing system: A robot sensing system is a set of sensors integrated into a robot to collect data about the robot’s environment and the physical parameters related to its operation. These sensors can include cameras, microphones, force sensors, accelerometers, and others, depending on the specific application of the robot. The data collected by the sensors is used to control the robot’s movements, adjust its behavior, and make decisions based on the information gathered. A well-designed robot sensing system can significantly improve the robot’s functionality, safety, and performance in various applications, such as manufacturing, healthcare, and exploration [60,61,62,63].
- Brain–computer interface (BCI): BCI is a technology that allows direct communication between the brain’s electrical activity and an external device, most commonly a computer [64]. BCIs can be used in stroke rehabilitation [65,66], as well as in a completely locked-in state to enable volitional communication, allowing patients to select letters, to form words and phrases, and to communicate their needs and experiences via auditory neurofeedback training [67]. BCIs can also be used to control prosthetic devices, such as robotic arms or legs, by translating neural signals into motor commands [68]. Sensors play a crucial role in brain–computer interface (BCI) technology, as they are used to detect changes in brain activity associated with specific mental states or movements. There are different types of sensors that can be used in BCIs, including invasive and non-invasive approaches. Non-invasive sensors include electroencephalography (EEG), magnetoencephalography (MEG), and functional near-infrared spectroscopy (fNIRS). Invasive sensors include microelectrode arrays and penetrating electrodes [69].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, Regional, and National Burden of Neurological Disorders, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The Global Burden of Neurological Disorders: Translating Evidence into Policy. Lancet Neurol. 2020, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Carroll, W.M. The Global Burden of Neurological Disorders. Lancet Neurol. 2019, 18, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Gooch, C.L.; Pracht, E.; Borenstein, A.R. The Burden of Neurological Disease in the United States: A Summary Report and Call to Action. Ann. Neurol. 2017, 81, 479–484. [Google Scholar] [CrossRef]
- Teasell, R.W.; Murie Fernandez, M.; McIntyre, A.; Mehta, S. Rethinking the Continuum of Stroke Rehabilitation. Arch. Phys. Med. Rehabil. 2014, 95, 595–596. [Google Scholar] [CrossRef]
- Bonnechère, B.; Timmermans, A.; Michiels, S. Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. Sensors 2023, 23, 875. [Google Scholar] [CrossRef]
- Feys, P.; Straudi, S. Beyond Therapists: Technology-Aided Physical MS Rehabilitation Delivery. Mult. Scler. J. 2019, 25, 1387–1393. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Kold, S.; Rahbek, O.; Bai, S. Wearable Sensors for Activity Monitoring and Motion Control: A Review. Biomim. Intell. Robot. 2023, 3, 100089. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A Review of Wearable Sensors and Systems with Application in Rehabilitation. J. NeuroEng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef]
- Bonato, P. Advances in Wearable Technology and Applications in Physical Medicine and Rehabilitation. J. Neuroeng. Rehabil. 2005, 2, 2. [Google Scholar] [CrossRef]
- Nascimento, L.M.S.; Bonfati, L.V.; Freitas, M.L.B.; Mendes Junior, J.J.A.; Siqueira, H.V.; Stevan, S.L. Sensors and Systems for Physical Rehabilitation and Health Monitoring—A Review. Sensors 2020, 20, 4063. [Google Scholar] [CrossRef]
- Oarde, D.E.; Libatique, N.C.; Tangonan, G.L.; Sotto, D.M.; Pacaldo, A.T. Digital Motion Analysis System for Rehabilitation Using Wearable Sensors. In Proceedings of the 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Palawan, Philippines, 12–16 November 2014; pp. 1–7. [Google Scholar]
- Regterschot, G.R.H.; Ribbers, G.M.; Bussmann, J.B.J. Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice. Sensors 2021, 21, 4744. [Google Scholar] [CrossRef]
- Boukhennoufa, I.; Zhai, X.; Utti, V.; Jackson, J.; McDonald-Maier, K.D. Wearable Sensors and Machine Learning in Post-Stroke Rehabilitation Assessment: A Systematic Review. Biomed. Signal Process. Control. 2022, 71, 103197. [Google Scholar] [CrossRef]
- Mingers, J.; Leydesdorff, L. A Review of Theory and Practice in Scientometrics. Eur. J. Oper. Res. 2015, 246, 1–19. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging Trends in Regenerative Medicine: A Scientometric Analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Braam, R.R.; Moed, H.F.; van Raan, A.F.J. Mapping of Science by Combined Co-Citation and Word Analysis. II: Dynamical Aspects. J. Am. Soc. Inf. Sci. 1991, 42, 252–266. [Google Scholar] [CrossRef]
- White, H.D.; McCain, K.W. Visualizing a Discipline: An Author Co-Citation Analysis of Information Science, 1972–1995. J. Am. Soc. Inf. Sci. 1998, 49, 327–355. [Google Scholar] [CrossRef]
- Chen, C. Mapping Scientific Frontiers: The Quest for Knowledge Visualization; Springer: London, UK, 2003. [Google Scholar] [CrossRef]
- Small, H.G. A Co-Citation Model of a Scientific Specialty: A Longitudinal Study of Collagen Research. Soc. Stud. Sci. 1977, 7, 139–166. [Google Scholar] [CrossRef]
- de Solla Price, D.J. Networks of Scientific Papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Vaughan, L. Co-Occurrence Matrices and Their Applications in Information Science: Extending ACA to the Web Environment. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 1616–1628. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Newman, M.E.J. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Kleinberg, J. Bursty and Hierarchical Structure in Streams. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Edmonton, AB, Cananda, 23–26 July 2002, Association for Computing Machinery: New York, NY, USA, 2002; pp. 91–101. [Google Scholar]
- Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by Latent Semantic Analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- Dunning, T. Accurate Methods for the Statistics of Surprise and Coincidence. Comput. Linguist. 1993, 19, 61–74. [Google Scholar]
- Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Ringer, R.J.; Wagner, T.H.; Krebs, H.I.; Volpe, B. TRobot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef]
- Patel, S.; Hughes, R.; Hester, T.; Stein, J.; Akay, M.; Dy, J.G.; Bonato, P. A Novel Approach to Monitor Rehabilitation Outcomes in Stroke Survivors Using Wearable Technology. Proc. IEEE 2010, 98, 450–461. [Google Scholar] [CrossRef]
- Clark, R.A.; Pua, Y.H.; Fortin, K.; Ritchie, C.; Webster, K.E.; Denehy, L.; Bryant, A.L. Validity of the Microsoft Kinect for Assessment of Postural Control. Gait Posture 2012, 36, 372–377. [Google Scholar] [CrossRef]
- Lang, C.E.; Bland, M.D.; Bailey, R.R.; Schaefer, S.Y.; Birkenmeier, R.L. Assessment of Upper Extremity Impairment, Function, and Activity after Stroke: Foundations for Clinical Decision Making. J. Hand Ther. 2013, 26, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A Survey on Robotic Devices for Upper Limb Rehabilitation. J. NeuroEngineering Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef]
- Bailey, R.R.; Klaesner, J.W.; Lang, C.E. Quantifying Real-World Upper-Limb Activity in Nondisabled Adults and Adults with Chronic Stroke. Neurorehabilit. Neural Repair. 2015, 29, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.R.; Klaesner, J.W.; Lang, C.E. An Accelerometry-Based Methodology for Assessment of Real-World Bilateral Upper Extremity Activity. PLoS ONE 2014, 9, e103135. [Google Scholar] [CrossRef] [PubMed]
- Billinger, S.A.; Arena, R.; Bernhardt, J.; Eng, J.J.; Franklin, B.A.; Johnson, C.M.; Mackay-Lyons, M.; Macko, R.F.; Mead, G.E.; Roth, E.J.; et al. Physical Activity and Exercise Recommendations for Stroke Survivors. Stroke 2014, 45, 2532–2553. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Van Wegen, E.; Van Peppen, R.; Van Der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef]
- Webster, D.; Celik, O. Systematic Review of Kinect Applications in Elderly Care and Stroke Rehabilitation. J. NeuroEngineering Rehabil. 2014, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Noorkõiv, M.; Rodgers, H.; Price, C.I. Accelerometer Measurement of Upper Extremity Movement after Stroke: A Systematic Review of Clinical Studies. J. NeuroEngineering Rehabil. 2014, 11, 144. [Google Scholar] [CrossRef]
- Mousavi Hondori, H.; Khademi, M. A Review on Technical and Clinical Impact of Microsoft Kinect on Physical Therapy and Rehabilitation. J. Med. Eng. 2014, 2014, 846514. [Google Scholar] [CrossRef] [PubMed]
- Godinho, C.; Domingos, J.; Cunha, G.; Santos, A.T.; Fernandes, R.M.; Abreu, D.; Gonçalves, N.; Matthews, H.; Isaacs, T.; Duffen, J.; et al. A Systematic Review of the Characteristics and Validity of Monitoring Technologies to Assess Parkinson’s Disease. J. NeuroEngineering Rehabil. 2016, 13, 24. [Google Scholar] [CrossRef]
- Yu, L.; Xiong, D.; Guo, L.; Wang, J. A Remote Quantitative Fugl-Meyer Assessment Framework for Stroke Patients Based on Wearable Sensor Networks. Comput. Methods Programs Biomed. 2016, 128, 100–110. [Google Scholar] [CrossRef]
- MacEira-Elvira, P.; Popa, T.; Schmid, A.C.; Hummel, F.C. Wearable Technology in Stroke Rehabilitation: Towards Improved Diagnosis and Treatment of Upper-Limb Motor Impairment. J. Neuroeng. Rehabil. 2019, 16, 142. [Google Scholar] [CrossRef]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Kanzler, C.M.; Lambercy, O.; Luft, A.R.; Veerbeek, J.M. Systematic Review on Kinematic Assessments of Upper Limb Movements After Stroke. Stroke 2019, 50, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation 2020, 141, E139–E596. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Dodakian, L.; Le, V.; See, J.; Augsburger, R.; McKenzie, A.; Zhou, R.J.; Chiu, N.L.; Heckhausen, J.; Cassidy, J.M.; et al. Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM R. J. Inj. Funct. Rehabil. 2018, 10, S220–S232. [Google Scholar] [CrossRef] [PubMed]
- Hayward, K.S.; Eng, J.J.; Boyd, L.A.; Lakhani, B.; Bernhardt, J.; Lang, C.E. Exploring the Role of Accelerometers in the Measurement of Real World Upper-Limb Use After Stroke. Brain Impair. 2016, 17, 16–33. [Google Scholar] [CrossRef]
- Faity, G.; Mottet, D.; Froger, J. Validity and Reliability of Kinect v2 for Quantifying Upper Body Kinematics during Seated Reaching. Sensors 2022, 22, 2735. [Google Scholar] [CrossRef]
- Milosevic, B.; Leardini, A.; Farella, E. Kinect and Wearable Inertial Sensors for Motor Rehabilitation Programs at Home: State of the Art and an Experimental Comparison. Biomed. Eng. Online 2020, 19, 25. [Google Scholar] [CrossRef]
- Karbasi, M.; Bilal, S.; Aghababaeyan, R.; Rad, A.E.; Bhatti, Z.; Shah, A. Analysis and Enhancement of the Denoising Depth Data Using Kinect through Iterative Technique. J. Teknol. 2016, 78, 185–193. [Google Scholar] [CrossRef]
- Adans-Dester, C.; Hankov, N.; O’Brien, A.; Vergara-Diaz, G.; Black-Schaffer, R.; Zafonte, R.; Dy, J.; Lee, S.I.; Bonato, P. Enabling Precision Rehabilitation Interventions Using Wearable Sensors and Machine Learning to Track Motor Recovery. Npj Digit. Med. 2020, 3, 121. [Google Scholar] [CrossRef]
- Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J. Healthc. Eng. 2022, 2022, 4653923. [Google Scholar] [CrossRef] [PubMed]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine Learning in Human Movement Biomechanics: Best Practices, Common Pitfalls, and New Opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, J. Deep Learning Analysis Based on Multi-Sensor Fusion Data for Hemiplegia Rehabilitation Training System for Stoke Patients. Robotica 2022, 40, 780–797. [Google Scholar] [CrossRef]
- Adams, A.E.; Rogers, W.A.; Fisk, A.D. Choosing the Right Task Analysis Tool. Ergon. Des. 2012, 20, 4–10. [Google Scholar] [CrossRef]
- Mathew, M.; Thomas, M.J.; Navaneeth, M.G.; Sulaiman, S.; Amudhan, A.N.; Sudheer, A.P. A Systematic Review of Technological Advancements in Signal Sensing, Actuation, Control and Training Methods in Robotic Exoskeletons for Rehabilitation. Ind. Robot 2022. ahead of print. [Google Scholar] [CrossRef]
- Assad Uz Zaman, M.; Islam, M.R.; Rahman, M.H.; Schultz, K.; McGonigle, E.; Wang, I. Robot Sensor System for Supervised Rehabilitation with Real-Time Feedback. Multimed. Tools Appl. 2020, 79, 26643–26660. [Google Scholar] [CrossRef]
- Mancisidor, A.; Zubizarreta, A.; Cabanes, I.; Portillo, E.; Jung, J.H. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics. Sensors 2018, 18, 785. [Google Scholar] [CrossRef]
- Davarzani, S.; Ahmadi-Pajouh, M.A.; Ghafarirad, H. Design of Sensing System for Experimental Modeling of Soft Actuator Applied for Finger Rehabilitation. Robotica 2022, 40, 2091–2111. [Google Scholar] [CrossRef]
- Sreedharan, S.; Sitaram, R.; Paul, J.S.; Kesavadas, C. Brain-Computer Interfaces for Neurorehabilitation. Crit. Rev. Biomed. Eng. 2013, 41, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Soekadar, S.R.; Birbaumer, N.; Slutzky, M.W.; Cohen, L.G. Brain-Machine Interfaces in Neurorehabilitation of Stroke. Neurobiol. Dis. 2015, 83, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, R.; Li, H.; Xu, K.; Shi, Y.; Wang, Q.; Yang, T.; Sun, X. Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. BioMed Res. Int. 2021, 2021, 9967348. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, U.; Vlachos, I.; Zimmermann, J.B.; Espinosa, A.; Tonin, A.; Jaramillo-Gonzalez, A.; Khalili-Ardali, M.; Topka, H.; Lehmberg, J.; Friehs, G.M.; et al. Spelling Interface Using Intracortical Signals in a Completely Locked-in Patient Enabled via Auditory Neurofeedback Training. Nat. Commun. 2022, 13, 1236. [Google Scholar] [CrossRef]
- Flesher, S.N.; Downey, J.E.; Weiss, J.M.; Hughes, C.L.; Herrera, A.J.; Tyler-Kabara, E.C.; Boninger, M.L.; Collinger, J.L.; Gaunt, R.A. A Brain-Computer Interface That Evokes Tactile Sensations Improves Robotic Arm Control. Science 2021, 372, 831–836. [Google Scholar] [CrossRef]
- Luo, J.; Xue, N.; Chen, J. A Review: Research Progress of Neural Probes for Brain Research and Brain–Computer Interface. Biosensors 2022, 12, 1167. [Google Scholar] [CrossRef] [PubMed]
- Wearable Medical Device Market Size Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/wearable-medical-devices-market (accessed on 16 April 2023).
- Nizamis, K.; Athanasiou, A.; Almpani, S.; Dimitrousis, C.; Astaras, A. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Sensors 2021, 21, 2084. [Google Scholar] [CrossRef] [PubMed]
Rank | Country Region | Publications | Country Region | Centrality | Country Region | Co-Occurrence |
---|---|---|---|---|---|---|
1 | USA | 303 | USA | 0.40 | USA | 294 |
2 | Italy | 137 | Brazil | 0.21 | Italy | 134 |
3 | China | 133 | England | 0.20 | China | 132 |
4 | England | 71 | Italy | 0.19 | England | 66 |
5 | Germany | 65 | Spain | 0.18 | Switzerland | 65 |
6 | Switzerland | 65 | Belgium | 0.18 | Germany | 64 |
7 | Canada | 58 | China | 0.16 | Canada | 55 |
8 | South Korea | 54 | Australia | 0.16 | South Korea | 52 |
9 | Spain | 53 | Canada | 0.15 | Spain | 50 |
10 | Netherlands | 50 | Germany | 0.14 | Netherlands | 49 |
Ranking | Institution | Country | Publications | Total Link Strength |
---|---|---|---|---|
1 | Swiss Federal Institute of Technology | Switzerland | 29 | 8076 |
2 | Oregon Health & Science University | USA | 20 | 2249 |
3 | Universitat Zurich | Switzerland | 18 | 6292 |
4 | Northwestern University | USA | 16 | 5618 |
5 | University of Toronto | Canada | 16 | 2139 |
6 | Fudan University | China | 15 | 2803 |
7 | Washington Univ | USA | 14 | 7816 |
8 | University of Twente | Netherlands | 14 | 3636 |
9 | Case Western Reserve University | USA | 14 | 439 |
10 | Scuola Superiore Sant Anna | Italy | 10 | 2151 |
Rank | Journal | P | IF | Co-Cited Journal | Cit | IF |
---|---|---|---|---|---|---|
1 | Sensors | 129 | 3.847 | Archives of Physical Medicine and Rehabilitation | 612 | 4.060 |
2 | Journal of Neuroengineering and Rehabilitation | 65 | 5.208 | Journal of Neuroengineering and Rehabilitation | 571 | 5.208 |
3 | IEEE Transactions on Neural Systems and Rehabilitation Engineering | 49 | 4.528 | IEEE Transactions on Neural Systems and Rehabilitation Engineering | 457 | 4.528 |
4 | Archives of Physical Medicine and Rehabilitation | 27 | 4.060 | Neurorehabilitation And Neural Repair | 433 | 4.895 |
5 | Frontiers in Neurology | 27 | 4.086 | Stroke | 428 | 10.170 |
6 | IEEE Access | 24 | 3.476 | Biosensors—Basel | 414 | 5.743 |
7 | IEEE Sensors Journal | 20 | 4.325 | Gait & Posture | 412 | 2.746 |
8 | Applied Sciences Basel | 17 | 2.838 | Physical Therapy | 495 | 3.140 |
9 | Gait & Posture | 17 | 2.746 | PloS One | 358 | 3.752 |
10 | Medical Engineering & Physics | 16 | 2.356 | IEEE Transactions on Biomedical Engineering | 311 | 4.756 |
Rank | Authors | Country | Institution | P | H-Index |
---|---|---|---|---|---|
1 | Cattaneo Davide | Italy | IRCCS Fondazione Don Carlo Gnocchi Onlus | 11 | 27 |
2 | Curt Armin | England | University of Cambridge | 11 | 62 |
3 | Horak Fay B. | USA | Oregon Health & Science University | 11 | 93 |
4 | Ferrarin Murizio | Italy | IRCCS Fondazione Don Carlo Gnocchi, ONLUS | 10 | 160 |
5 | King Laurie A. | USA | Oregon Health & Science University | 10 | 23 |
6 | Lang Catherine E. | USA | Washington University (WUSTL) | 10 | 47 |
7 | Luft Andreas | Switzerland | University Zurich Hospital | 10 | 36 |
8 | Audu Musa L | USA | Case Western Reserve University | 9 | 18 |
9 | Carpinella Ilaria | Italy | IRCCS Fondazione Don Carlo Gnocchi, ONLUS | 9 | 18 |
10 | Dobkin Bruce H | USA | David Geffen School of Medicine at UCLA University of California System | 9 | 57 |
Rank | Title | Cit | First author | Journal | Publication Year |
---|---|---|---|---|---|
1 | Soft robotic glove for combined assistance and at-home rehabilitation | 803 | Polygerinos, P. | Robotics And Autonomous Systems | 2015 |
2 | Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes | 534 | Aminian, K. | Journal Of Biomechanics | 2002 |
3 | Human motion tracking for rehabilitation-A survey | 484 | Zhou, H. | Biomedical Signal Processing And Control | 2008 |
4 | Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering | 312 | Heo, P. | International Journal of Precision Engineering And Manufacturing | 2012 |
5 | ARMin: a robot for patient-cooperative arm therapy | 263 | Nef, T. | Medical & Biological Engineering & Computing | 2007 |
6 | Methods for gait event detection and analysis in ambulatory systems | 228 | Rueterbories, J. | Medical Engineering & Physics | 2010 |
7 | Automating arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravity-reduced environment | 208 | Sanchez, R. | IEEE Transactions On Neural Systems And Rehabilitation Engineering | 2006 |
8 | Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed | 190 | Spain, R. I. | Gait & Posture | 2012 |
9 | The Promise of mHealth: Daily Activity Monitoring and Outcome Assessments by Wearable Sensors | 183 | Dobkin, B. | Neurorehabilitation And Neural Repair | 2011 |
10 | Patient-centered activity monitoring in the self-management of chronic health conditions | 181 | Chiauzzi, E. | Bmc Medicine | 2015 |
Cluster | Label | Main Keywords | Mean Year |
---|---|---|---|
0 | machine learning | gesture recognition; human-computer interaction; learning algorithms; gait recognition | 2017 |
1 | wearable sensors | gait analysis; inertial measurement units; six-minute walk; simulator sickness | 2014 |
2 | Parkinson’s disease | monitoring technologies; exercise intensity; ambulatory systems; gait recognition | 2011 |
3 | spinal cord injury | physical activity; brain–computer interfaces; gait rehabilitation; Hammerstein model | 2007 |
4 | virtual reality | deep learning; human-computer interaction; biomechanical modeling; optimal control | 2015 |
5 | post-stroke rehabilitation | serious games; Microsoft Kinect; electrodermal activity | 2014 |
6 | gait analysis | movement; inertial sensor; accelerometry; balance | 2011 |
7 | rehabilitation robotics | virtual reality; sensorimotor interaction; movement analysis; human-machine interface | 2008 |
8 | stroke rehabilitation | wearable sensors; physical therapy; motor learning; hand rehabilitation | 2010 |
9 | upper extremity | machine learning; outcome measures; body-worn sensors | 2009 |
10 | clinical trials | stroke rehabilitation; brain tissue regeneration; physical therapy; virtual reality | 2016 |
11 | legged locomotion | haptic interfaces; rehabilitation robotics; sensing systems; motion analysis | 2017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facciorusso, S.; Spina, S.; Reebye, R.; Turolla, A.; Calabrò, R.S.; Fiore, P.; Santamato, A. Sensor-Based Rehabilitation in Neurological Diseases: A Bibliometric Analysis of Research Trends. Brain Sci. 2023, 13, 724. https://doi.org/10.3390/brainsci13050724
Facciorusso S, Spina S, Reebye R, Turolla A, Calabrò RS, Fiore P, Santamato A. Sensor-Based Rehabilitation in Neurological Diseases: A Bibliometric Analysis of Research Trends. Brain Sciences. 2023; 13(5):724. https://doi.org/10.3390/brainsci13050724
Chicago/Turabian StyleFacciorusso, Salvatore, Stefania Spina, Rajiv Reebye, Andrea Turolla, Rocco Salvatore Calabrò, Pietro Fiore, and Andrea Santamato. 2023. "Sensor-Based Rehabilitation in Neurological Diseases: A Bibliometric Analysis of Research Trends" Brain Sciences 13, no. 5: 724. https://doi.org/10.3390/brainsci13050724
APA StyleFacciorusso, S., Spina, S., Reebye, R., Turolla, A., Calabrò, R. S., Fiore, P., & Santamato, A. (2023). Sensor-Based Rehabilitation in Neurological Diseases: A Bibliometric Analysis of Research Trends. Brain Sciences, 13(5), 724. https://doi.org/10.3390/brainsci13050724