Neuromodulation of Eating Disorders: A Review of Underlying Neural Network Activity and Neuromodulatory Treatments
Abstract
:1. Introduction
2. Pathological Alterations in Brain Networks
2.1. Frontal–Striatal Circuit
2.2. Reward Networks
2.3. Default Mode Network
3. Current Neuromodulatory Options and Their Target Networks/Nodes
3.1. Non-Invasive Brain Stimulation
Disorder | First Author, Year | Country of Study | Sample Size | TMS Pattern | Number of Sessions | TMS Target | Duration of ED | Initial BMI | BMI Outcome | Disease Severity Outcome |
---|---|---|---|---|---|---|---|---|---|---|
AN with comorbid MDD | Kamolz, 2008 [52] | Germany | 1 | 100 cycles of 10 Hz for 2 s on/10 s off | 3 series for 26 total sessions | dlPFC | 4 years | 12.4 kg/m2 | Increased to 16 kg/m2 | Initial HAMD value of 28 decreased to 11. |
AN (restricting and binge–purge type) | Van den Eynde, 2013 [53] | UK | 10 | 20 cycles of 10 Hz for 5 s on/55 s off | 1 session | Left dlPFC | 10 (3–30) years | 15.7 kg/m2 (13.8–17.8 kg/m2) | N/A | Sensations of “feeling fat” and “feeling full” decreased along with “urge to exercise.” Reduced feelings of anxiety. |
AN (restrictive with comorbid MDD; binge–purge) | McClelland, 2013 [54] | UK | 2 | 20 cycles of 10 Hz for 5 s on/55 s off | 20 sessions; 19 sessions | Left dlPFC | 12 years; 35 years | 15.7 kg/m2, 16.4 kg/m2 | BMI decreased at 1 month follow-up in both patients (average decrease of ~0.7 kg/m2) | EDE and DASS scores decreased in both patients. Patient 1 reported increase in purging frequency. Patient 2 reported decreased purging and laxative use. |
AN (binge–purge subtype) or BN | Dunlop, 2015 [55] | Canada | 28 (16 responders) | 60 cycles of 10 Hz, 5 s on/10 s off | 20 sessions; 30 for responders with residual symptoms | Bilateral dmPFC | 14.75 years | 19.03 kg/m2 | N/A | No significant difference at baseline between responders and non-responders. Among responders, binge and purge frequency decreased. No change in non-responders. |
AN | McClelland, 2016 [56] | UK | 60 (49 completed study) | 20 cycles of 10 Hz for 5 s on/55 s off | 1 session | Left dlPFC | 9.05 years for TMS group, 11.27 years for sham | 16.73 kg/m2 for TMS group, 16.38 kg/m2 for sham | N/A | Single session of TMS resulted in lower core AN symptoms of feeling full, urge to restrict, and feeling fat. |
AN | Choudhary, 2017 [57] | India | 1 | 1000 pulses of 10 Hz stimulation | 21 sessions | Left dlPFC | 9 years | 10.94 kg/m2 | 17.98 kg/m2 at end of 3-week treatment, 18.55 kg/m2 at 8-week follow-up | Laxative and diuretic abuse decreased significantly. |
AN (comorbid depression and anxiety) | Jaššová, 2018 [58] | Czech Republic | 1 | 10 Hz, 15 trains/day, 100 pulses/train, intertrain interval of 107 s | 10 sessions | Left dlPFC | 1.5 years | 12.21 kg/m2 | 13.15 kg/m2 at discharge, 22.9 kg/m2 at 2-year follow-up | No change in Zung self-rating scale (score = 70). |
AN | Dalton, 2018 [59] | UK | 34 | 20 cycles of 10 Hz for 5 s on/55 s off | 20 sessions | Left dlPFC | Average 14.07 years | Average 16.00 kg/m2 | Small but non-significant increases in BMI at end of stimulation and 4-month follow-up | Significant decreases in DASS global score, favoring TMS. |
AN | Dalton, 2020 (18-month follow-up from Dalton, 2018) [60] | UK | 30 | 20 cycles of 10 Hz for 5 s on/55 s off | 20 sessions | Left dlPFC | Average 14.07 years | Average 16.00 kg/m2 | Non-significant increase in BMI at 18-month follow-up | Higher rate of weight recovery in TMS group (46% vs. 9%). Non-significant improvements in EDE-Q global in both groups and improvements in DASS-21 were maintained in both groups. |
AN | Woodside, 2021 [41] | Canada | 19 | 10 Hz | 22.6 average (20–30) sessions | Bilateral dmPFC | N/A | 16.4 kg/m2 (14.5–18.5 kg/m2) | Average BMI declined to 16.3 kg/m2 at end of treatments | Significant improvements in shape concerns and weight concerns in EDE. Additionally, improvement in BAI and BDI. |
BN with comorbid MDD | Hausmann, 2004 [61] | Austria | 1 | 10 trains of 10 s 20 Hz pulses with a train interval of 60 s | 10 sessions, twice daily for 5 days | Left dlPFC | 9 years | 18 kg/m2 | N/A | Absence of binge–purge behavior following stimulation treatment. HAMD decreased 50%. |
BN | Walpoth, 2008 [62] | Austria | 14 | 10 trains of 10 s 20 Hz pulses with a train interval of 60 s | 15 sessions | Left dlPFC | Average 8.4 years for TMS group, average 8.0 years for sham group. | Average 19.6 kg/m2 in TMS group, average 19.7 kg/m2 in sham group. | N/A | Significant improvement in BDI, frequency of binging, and YBOCS at end of treatment, but no significant change between groups. |
BN | Van den Eynde, 2010 [42] | UK | 38 | 20 cycles of 10 Hz for 5 s on/55 s off | 1 session | Left dlPFC | Median 5–10 years in TMS group, median 0–5 years in sham group. | Average 25.8 kg/m2 in TMS group, average 25.0 kg/m2 in sham group. | N/A | Significant decrease in urge-to-eat VAS in the TMS group. No significant changes in hunger, urge to binge, mood, tension, or FCQ-S between groups. |
BN | Van den Eynde, 2012 [63] | UK | 7 | 20 cycles of 10 Hz for 5 s on/55 s off | 1 session | Left dlPFC | Median 0–5 years in the left-handed group, median 5–10 years in the right-handed group. | Average 22.9 kg/m2 in left-handed group, average 28.5 kg/m2 in right-handed group. | N/A | No significant differences in urge to eat, mood, tension, hunger, urge to binge eat, and FCQ-S between left- and right-handed groups. Mood differed significantly between groups, with the left-handed group experiencing a worsening in mood and the right-handed group experiencing an improvement in mood. |
BN with comorbid MDD | Downar, 2012 [64] | Canada | 1 | 60 trains of 10 Hz for 5 s on/10 s off | 20 sessions | Bilateral dmPFC | 28 years | 20.3 kg/m2 | N/A | Initial HAMD of 26 and 28 on the BDI; decreased to 0 at the end of treatment and 7 after 11 sessions, respectively. Binge–purge behavior disappeared completely after session 11 (originally twice-daily 5 h binges with subsequent purging). Single binge–purge episodes on days 65, 70, and 71 post-treatment. |
BN | Gay, 2016 [65] | France | 47 | 20 cycles of 10 Hz for 5 s on/55 s off | 10 sessions | Left dlPFC | Average 8.0 years in TMS group, average 10.5 years in sham group. | N/A | N/A | No significant changes in binging, purging, craving, MADRS, or duration of binging. |
BED with comorbid bipolar II disorder | Sciortino, 2021 [43] | Italy | 2 | 30 Hz bursts at 5 Hz intervals; 2 s on/12.3 s off; 600 pulses per session | 18 sessions across 3 weeks | Left dlPFC | 32 years, 10 years | N/A | Weight reduction of 4 kg and 2 kg at 12-week follow-up. | HAMD and MADRS improved marginally in both patients. YMRS remained at 0 throughout for both. Complete remission of binging episodes at the end of 2 weeks of treatment. |
Disorder | First Author, Year | Country of Study | Sample Size | tDCS Parameters | Number of Sessions | Intervention Target | Duration of ED | Initial BMI | BMI Outcome | Disease Severity Outcome |
---|---|---|---|---|---|---|---|---|---|---|
AN | Khedr, 2014 [66] | Egypt | 7 | Anodal 2 mA for 25 min with 15 s ramp in and ramp out | 10 sessions | Left dlPFC along parasagittal line | Mean of 3.4 years | Mean 14.85 kg/m2 (12–17 kg/m2) | N/A | Significant decreases in body dissatisfaction, interpersonal distrust, interoceptive awareness, and ineffectiveness scores of the EDI. Significant improvement in BDI from 22.4 to 13.3. |
AN | Costanzo, 2018 [45] | Italy | 23 | 1 mA anodal stimulation | 18 sessions | Anode over left dlPFC and cathode over right dlPFC | N/A | Mean 14.7 kg/m2 for tDCS group, 15.5 kg/m2 for sham group. | tDCS with “treatment as usual” resulted in significant improvements in BMI. No significant change in family-based therapy with “treatment as usual” group. | Significant improvement in multiple eating disorder subscales, but not significant between groups. |
AN | Phillipou, 2019 [67] | Australia | 20 | Anodal stimulation for 20 min at 2 mA | 10 sessions | Anode over left inferior parietal lobe | Currently underway | |||
AN | Mares, 2020 [68] | Czechia | 1 | 30 min of 2 mA anodal stimulation | 7 sessions | Left dlPFC anode with cathode over the right orbitofrontal region | 11 years | 17.4 kg/m2 | N/A | During tDCS, the patient developed hyperglycemia and, subsequently, diabetes mellitus. |
AN | Ursumando, 2023 [69] | Italy | 80 | 20 min of 1 mA stimulation | 1 session | F3 (anode) and F4 (cathode) of dlPFC | Currently underway | |||
BN | Kekic, 2017 [46] | UK | 39 | 20 min of 2 mA with 10 s ramp on/off | 3 sessions | F4 (anode) and F3 (cathode) of dlPFC in one group; F3 (anode) and F4 (cathode) of dlPFC in the other group | Mean 9.25 years | Mean of 21.65 kg/m2 | N/A | Both stimulatory groups exhibited decreased self-reported urge to binge eat and increased self-regulatory control. Anode right/cathode left stimulation reduced global MEDCQ-R compared to the other groups. |
BED | Burgess, 2016 [70] | USA | 30 | 20 min of 2 mA | 1 session | Anode on right dlPFC, cathode on left dlPFC | N/A | Mean of 36.1 kg/m2 | N/A | Significant fewer total calories consumed by the tDCS group. Additionally, mean decrease in consumption of preferred foods by 70.28 kcals. tDCS decreased cravings for desserts more than sham. No effect on binge frequency. |
BED | Gordon, 2019 [71] | UK | 66 | 2 mA with 10 s fade-out and fade-in | 6 sessions over 3 weeks | Anode on right dlPFC, cathode on left dlPFC | Currently underway | |||
BED | Max, 2021 [72] | Germany | 31 | 20 min of 1 mA (n = 15) or 2 mA (n = 16) | 1 session | Anode over F4, cathode over left deltoid muscle | N/A | Mean 32.1 kg/m2 in 1 mA group, mean 33.8 kg/m2 in 2 mA group | N/A | 2 mA group showed significantly fewer binge episodes with 1 mA group showing no changes. 2 mA group demonstrated improved food inhibition in UPPS. |
BED | Giel, 2023 [73] | Germany | 41 | 15 min of 2 mA | 6 sessions | Anode over F4, cathode over left deltoid muscle | N/A | Mean 31.9 kg/m2 for tDCS + FRIC group, 36.0 kg/m2 for sham + FRIC group. | Both groups experienced significant reduction in BMI | Both groups experienced significant improvement in EDE and QoL scales. Greater reduction in binge eating frequency in the tDCS + FRIC group vs. sham + FRIC group. |
BED | Flynn, 2023 [74] | UK | 80 | 2 mA | 10 sessions over 2–3 weeks | Bilateral dlPFC | Currently underway |
3.1.1. Repetitive Transcranial Magnetic Stimulation (rTMS)
rTMS for AN
rTMS for BN
rTMS for BED
3.1.2. Transcranial Direct Current Stimulation (tDCS)
tDCS for AN
tDCS for BN
tDCS for BED
3.1.3. Electroconvulsive Therapy (ECT)
3.2. Invasive Neuromodulation
3.2.1. Deep Brain Stimulation
3.2.2. Vagal Nerve Stimulation (VNS)
4. Discussion
4.1. Effects on Brain Networks/States
4.2. Neuromodulation as an Emerging Treatment Modality
4.3. Considerations for Invasive Neuromodulation
4.4. Limitations of the Current Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Zipfel, S.; Giel, K.E.; Bulik, C.M.; Hay, P.; Schmidt, U. Anorexia Nervosa: Aetiology, Assessment, and Treatment. Lancet Psychiatry 2015, 2, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- van Eeden, A.E.; van Hoeken, D.; Hoek, H.W. Incidence, Prevalence and Mortality of Anorexia Nervosa and Bulimia Nervosa. Curr. Opin. Psychiatry 2021, 34, 515–524. [Google Scholar] [CrossRef]
- Klein, D.A.; Walsh, B.T. Eating Disorders: Clinical Features and Pathophysiology. Physiol. Behav. 2004, 81, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.; Weiselberg, E. Bulimia Nervosa/Purging Disorder. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, A. Binge-Eating Disorder. Psychiatr. Clin. N. Am. 2019, 42, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Agüera, Z.; Lozano-Madrid, M.; Mallorquí-Bagué, N.; Jiménez-Murcia, S.; Menchón, J.M.; Fernández-Aranda, F. A Review of Binge Eating Disorder and Obesity. Neuropsychiatrie 2021, 35, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Giel, K.E.; Bulik, C.M.; Fernandez-Aranda, F.; Hay, P.; Keski-Rahkonen, A.; Schag, K.; Schmidt, U.; Zipfel, S. Binge Eating Disorder. Nat. Rev. Dis. Primers 2022, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- McElroy, S.L.; Guerdjikova, A.I.; Mori, N.; Munoz, M.R.; Keck, P.E. Overview of the Treatment of Binge Eating Disorder. CNS Spectr. 2015, 20, 546–556. [Google Scholar] [CrossRef]
- Galsworthy-Francis, L.; Allan, S. Cognitive Behavioural Therapy for Anorexia Nervosa: A Systematic Review. Clin. Psychol. Rev. 2014, 34, 54–72. [Google Scholar] [CrossRef]
- Hagan, K.E.; Walsh, B.T. State of the Art: The Therapeutic Approaches to Bulimia Nervosa. Clin. Ther. 2021, 43, 40–49. [Google Scholar] [CrossRef]
- Steinhausen, H.-C.; Weber, S. The Outcome of Bulimia Nervosa: Findings From One-Quarter Century of Research. Am. J. Psychiatry 2009, 166, 1331–1341. [Google Scholar] [CrossRef]
- Karaszewska, D.; Cleintuar, P.; Oudijn, M.; Lok, A.; van Elburg, A.; Denys, D.; Mocking, R. Efficacy and Safety of Deep Brain Stimulation for Treatment-Refractory Anorexia Nervosa: A Systematic Review and Meta-Analysis. Transl. Psychiatry 2022, 12, 333. [Google Scholar] [CrossRef]
- Auger, N.; Potter, B.J.; Ukah, U.V.; Low, N.; Israël, M.; Steiger, H.; Healy-Profitós, J.; Paradis, G. Anorexia Nervosa and the Long-term Risk of Mortality in Women. World Psychiatry 2021, 20, 448–449. [Google Scholar] [CrossRef]
- Uher, R.; Murphy, T.; Brammer, M.J.; Dalgleish, T.; Phillips, M.L.; Ng, V.W.; Andrew, C.M.; Williams, S.C.R.; Campbell, I.C.; Treasure, J. Medial Prefrontal Cortex Activity Associated With Symptom Provocation in Eating Disorders. Am. J. Psychiatry 2004, 161, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.; Vogt, B.A.; Holmes, J.; Dale, A.M.; Greve, D.; Jenike, M.A.; Rosen, B.R. Dorsal Anterior Cingulate Cortex: A Role in Reward-Based Decision Making. Proc. Natl. Acad. Sci. USA 2002, 99, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ran Kim, K.; Ku, J.; Lee, J.-H.; Namkoong, K.; Jung, Y.-C. Resting-State Synchrony between Anterior Cingulate Cortex and Precuneus Relates to Body Shape Concern in Anorexia Nervosa and Bulimia Nervosa. Psychiatry Res. 2014, 221, 43–48. [Google Scholar] [CrossRef]
- Geliebter, A.; Benson, L.; Pantazatos, S.P.; Hirsch, J.; Carnell, S. Greater Anterior Cingulate Activation and Connectivity in Response to Visual and Auditory High-Calorie Food Cues in Binge Eating: Preliminary Findings. Appetite 2016, 96, 195–202. [Google Scholar] [CrossRef]
- Hayes, D.J.; Lipsman, N.; Chen, D.Q.; Woodside, D.B.; Davis, K.D.; Lozano, A.M.; Hodaie, M. Subcallosal Cingulate Connectivity in Anorexia Nervosa Patients Differs From Healthy Controls: A Multi-Tensor Tractography Study. Brain Stimul. 2015, 8, 758–768. [Google Scholar] [CrossRef] [PubMed]
- McFadden, K.L.; Tregellas, J.R.; Shott, M.E.; Frank, G.K.W. Reduced Salience and Default Mode Network Activity in Women with Anorexia Nervosa. J. Psychiatry Neurosci. 2014, 39, 178–188. [Google Scholar] [CrossRef]
- Doose, A.; King, J.A.; Bernardoni, F.; Geisler, D.; Hellerhoff, I.; Weinert, T.; Roessner, V.; Smolka, M.N.; Ehrlich, S. Strengthened Default Mode Network Activation During Delay Discounting in Adolescents with Anorexia Nervosa After Partial Weight Restoration: A Longitudinal fMRI Study. J. Clin. Med. 2020, 9, 900. [Google Scholar] [CrossRef]
- Marsh, R.; Horga, G.; Wang, Z.; Wang, P.; Klahr, K.W.; Berner, L.A.; Walsh, B.T.; Peterson, B.S. An fMRI Study of Self-Regulatory Control and Conflict Resolution in Adolescents with Bulimia Nervosa. Am. J. Psychiatry 2011, 168, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Seitz, J.; Hueck, M.; Dahmen, B.; Schulte-Rüther, M.; Legenbauer, T.; Herpertz-Dahlmann, B.; Konrad, K. Attention Network Dysfunction in Bulimia Nervosa—An fMRI Study. PLoS ONE 2016, 11, e0161329. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, M.A.; Simon, J.J.; Skunde, M.; Walther, S.; Bendszus, M.; Herzog, W.; Friederich, H.-C. Altered Functional Connectivity in Binge Eating Disorder and Bulimia Nervosa: A Resting-state fMRI Study. Brain Behav. 2019, 9, e01207. [Google Scholar] [CrossRef]
- Averbeck, B.; O’Doherty, J.P. Reinforcement-Learning in Fronto-Striatal Circuits. Neuropsychopharmacology 2022, 47, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Lao-Kaim, N.P.; Fonville, L.; Giampietro, V.P.; Williams, S.C.R.; Simmons, A.; Tchanturia, K. Aberrant Function of Learning and Cognitive Control Networks Underlie Inefficient Cognitive Flexibility in Anorexia Nervosa: A Cross-Sectional fMRI Study. PLoS ONE 2015, 10, e0124027. [Google Scholar] [CrossRef]
- Foerde, K.; Steinglass, J.; Shohamy, D.; Walsh, B.T. Neural Mechanisms Supporting Maladaptive Food Choices in Anorexia Nervosa. Nat. Neurosci. 2015, 18, 1571–1573. [Google Scholar] [CrossRef]
- Haynos, A.F.; Camchong, J.; Pearson, C.M.; Lavender, J.M.; Mueller, B.A.; Peterson, C.B.; Specker, S.; Raymond, N.; Lim, K.O. Resting State Hypoconnectivity of Reward Networks in Binge Eating Disorder. Cereb. Cortex 2021, 31, 2494–2504. [Google Scholar] [CrossRef]
- Cowdrey, F.A.; Park, R.J.; Harmer, C.J.; McCabe, C. Increased Neural Processing of Rewarding and Aversive Food Stimuli in Recovered Anorexia Nervosa. Biol. Psychiatry 2011, 70, 736–743. [Google Scholar] [CrossRef]
- Frank, G.K.W.; Shott, M.E.; Riederer, J.; Pryor, T.L. Altered Structural and Effective Connectivity in Anorexia and Bulimia Nervosa in Circuits That Regulate Energy and Reward Homeostasis. Transl. Psychiatry 2016, 6, e932. [Google Scholar] [CrossRef]
- Cyr, M.; Yang, X.; Horga, G.; Marsh, R. Abnormal Fronto-striatal Activation as a Marker of Threshold and Subthreshold Bulimia Nervosa. Hum. Brain Mapp. 2018, 39, 1796–1804. [Google Scholar] [CrossRef]
- Lee, J.E.; Namkoong, K.; Jung, Y.-C. Impaired Prefrontal Cognitive Control over Interference by Food Images in Binge-Eating Disorder and Bulimia Nervosa. Neurosci. Lett. 2017, 651, 95–101. [Google Scholar] [CrossRef]
- Veit, R.; Schag, K.; Schopf, E.; Borutta, M.; Kreutzer, J.; Ehlis, A.-C.; Zipfel, S.; Giel, K.E.; Preissl, H.; Kullmann, S. Diminished Prefrontal Cortex Activation in Patients with Binge Eating Disorder Associates with Trait Impulsivity and Improves after Impulsivity-Focused Treatment Based on a Randomized Controlled IMPULS Trial. NeuroImage Clin. 2021, 30, 102679. [Google Scholar] [CrossRef]
- Rösch, S.A.; Schmidt, R.; Lührs, M.; Ehlis, A.-C.; Hesse, S.; Hilbert, A. Evidence of fNIRS-Based Prefrontal Cortex Hypoactivity in Obesity and Binge-Eating Disorder. Brain Sci. 2021, 11, 19. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Yokum, S.; Orr, P.T.; Stice, E.; Corbin, W.R.; Brownell, K.D. Neural Correlates of Food Addiction. Arch. Gen. Psychiatry 2011, 68, 808–816. [Google Scholar] [CrossRef]
- Raichle, M.E. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; McBride, R.; Loo, C.K.; Mitchell, P.B.; Malhi, G.S.; Croker, V.M. Right Versus Left Prefrontal Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Preliminary Investigation. J. Clin. Psychiatry 2001, 62, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Joos, A.; Klöppel, S.; Hartmann, A.; Glauche, V.; Tüscher, O.; Perlov, E.; Saum, B.; Freyer, T.; Zeeck, A.; Tebartz van Elst, L. Voxel-Based Morphometry in Eating Disorders: Correlation of Psychopathology with Grey Matter Volume. Psychiatry Res. 2010, 182, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Jáuregui-Lobera, I.; Martínez-Quiñones, J.V. Neuromodulation in Eating Disorders and Obesity: A Promising Way of Treatment? Neuropsychiatr. Dis. Treat. 2018, 14, 2817–2835. [Google Scholar] [CrossRef]
- McClelland, J.; Bozhilova, N.; Campbell, I.; Schmidt, U. A Systematic Review of the Effects of Neuromodulation on Eating and Body Weight: Evidence from Human and Animal Studies. Eur. Eat. Disord. Rev. 2013, 21, 436–455. [Google Scholar] [CrossRef] [PubMed]
- Woodside, D.B.; Dunlop, K.; Sathi, C.; Lam, E.; McDonald, B.; Downar, J. A Pilot Trial of Repetitive Transcranial Magnetic Stimulation of the Dorsomedial Prefrontal Cortex in Anorexia Nervosa: Resting fMRI Correlates of Response. J. Eat. Disord. 2021, 9, 52. [Google Scholar] [CrossRef]
- Van den Eynde, F.; Claudino, A.M.; Mogg, A.; Horrell, L.; Stahl, D.; Ribeiro, W.; Uher, R.; Campbell, I.; Schmidt, U. Repetitive Transcranial Magnetic Stimulation Reduces Cue-Induced Food Craving in Bulimic Disorders. Biol. Psychiatry 2010, 67, 793–795. [Google Scholar] [CrossRef]
- Sciortino, D.; Schiena, G.; Cantù, F.; Maggioni, E.; Brambilla, P. Case Report: Repeated Transcranial Magnetic Stimulation Improves Comorbid Binge Eating Disorder in Two Female Patients With Treatment-Resistant Bipolar Depression. Front. Psychiatry 2021, 12, 732066. [Google Scholar] [CrossRef] [PubMed]
- Luzi, L.; Gandini, S.; Massarini, S.; Bellerba, F.; Terruzzi, I.; Senesi, P.; Macrì, C.; Ferrulli, A. Reduction of Impulsivity in Patients Receiving Deep Transcranial Magnetic Stimulation Treatment for Obesity. Endocrine 2021, 74, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, F.; Menghini, D.; Maritato, A.; Castiglioni, M.C.; Mereu, A.; Varuzza, C.; Zanna, V.; Vicari, S. New Treatment Perspectives in Adolescents with Anorexia Nervosa: The Efficacy of Non-Invasive Brain-Directed Treatment. Front. Behav. Neurosci. 2018, 12, 133. [Google Scholar] [CrossRef] [PubMed]
- Kekic, M.; McClelland, J.; Bartholdy, S.; Boysen, E.; Musiat, P.; Dalton, B.; Tiza, M.; David, A.S.; Campbell, I.C.; Schmidt, U. Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial. PLoS ONE 2017, 12, e0167606. [Google Scholar] [CrossRef]
- Gluck, M.E.; Alonso-Alonso, M.; Piaggi, P.; Weise, C.M.; Jumpertz-von Schwartzenberg, R.; Reinhardt, M.; Wassermann, E.M.; Venti, C.A.; Votruba, S.B.; Krakoff, J. Neuromodulation Targeted to the Prefrontal Cortex Induces Changes in Energy Intake and Weight Loss in Obesity. Obesity 2015, 23, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Bravo, G.L.; Poje, A.B.; Perissinotti, I.; Marcondes, B.F.; Villamar, M.F.; Manzardo, A.M.; Luque, L.; LePage, J.F.; Stafford, D.; Fregni, F.; et al. Transcranial Direct Current Stimulation Reduces Food-Craving and Measures of Hyperphagia Behavior in Participants with Prader-Willi Syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 266–275. [Google Scholar] [CrossRef]
- Gallop, L.; Flynn, M.; Campbell, I.C.; Schmidt, U. Neuromodulation and Eating Disorders. Curr. Psychiatry Rep. 2022, 24, 61–69. [Google Scholar] [CrossRef]
- Dunlop, K.A.; Woodside, B.; Downar, J. Targeting Neural Endophenotypes of Eating Disorders with Non-Invasive Brain Stimulation. Front. Neurosci. 2016, 10, 30. [Google Scholar] [CrossRef]
- Steinglass, J.E.; Berner, L.A.; Attia, E. Cognitive Neuroscience of Eating Disorders. Psychiatr. Clin. N. Am. 2019, 42, 75–91. [Google Scholar] [CrossRef]
- Kamolz, S.; Richter, M.M.; Schmidtke, A.; Fallgatter, A.J. Transcranial magnetic stimulation for comorbid depression in anorexia. Nervenarzt 2008, 79, 1071–1073. [Google Scholar] [CrossRef]
- Van den Eynde, F.; Guillaume, S.; Broadbent, H.; Campbell, I.C.; Schmidt, U. Repetitive Transcranial Magnetic Stimulation in Anorexia Nervosa: A Pilot Study. Eur. Psychiatry 2013, 28, 98–101. [Google Scholar] [CrossRef] [PubMed]
- McClelland, J.; Bozhilova, N.; Nestler, S.; Campbell, I.C.; Jacob, S.; Johnson-Sabine, E.; Schmidt, U. Improvements in symptoms following neuronavigated repetitive transcranial magnetic stimulation (rtms) in severe and enduring anorexia nervosa: Findings from two case studies. Eur. Eat. Disord. Rev. 2013, 21, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, K.; Woodside, B.; Lam, E.; Olmsted, M.; Colton, P.; Giacobbe, P.; Downar, J. Increases in Frontostriatal Connectivity Are Associated with Response to Dorsomedial Repetitive Transcranial Magnetic Stimulation in Refractory Binge/Purge Behaviors. Neuroimage Clin. 2015, 8, 611–618. [Google Scholar] [CrossRef] [PubMed]
- McClelland, J.; Kekic, M.; Bozhilova, N.; Nestler, S.; Dew, T.; Van den Eynde, F.; David, A.S.; Rubia, K.; Campbell, I.C.; Schmidt, U. A Randomised Controlled Trial of Neuronavigated Repetitive Transcranial Magnetic Stimulation (rTMS) in Anorexia Nervosa. PLoS ONE 2016, 11, e0148606. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Roy, P.; Kumar Kar, S. Improvement of Weight and Attitude towards Eating Behaviour with High Frequency rTMS Augmentation in Anorexia Nervosa. Asian J. Psychiatr. 2017, 28, 160. [Google Scholar] [CrossRef]
- Jaššová, K.; Albrecht, J.; Papežová, H.; Anders, M. Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment of Depression and Anxiety in a Patient with Anorexia Nervosa. Med. Sci. Monit. 2018, 24, 5279–5281. [Google Scholar] [CrossRef]
- Dalton, B.; Bartholdy, S.; McClelland, J.; Kekic, M.; Rennalls, S.J.; Werthmann, J.; Carter, B.; O’Daly, O.G.; Campbell, I.C.; David, A.S.; et al. Randomised Controlled Feasibility Trial of Real versus Sham Repetitive Transcranial Magnetic Stimulation Treatment in Adults with Severe and Enduring Anorexia Nervosa: The TIARA Study. BMJ Open 2018, 8, e021531. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.; Lewis, Y.D.; Bartholdy, S.; Kekic, M.; McClelland, J.; Campbell, I.C.; Schmidt, U. Repetitive Transcranial Magnetic Stimulation Treatment in Severe, Enduring Anorexia Nervosa: An Open Longer-Term Follow-Up. Eur. Eat. Disord. Rev. 2020, 28, 773–781. [Google Scholar] [CrossRef]
- Hausmann, A.; Mangweth, B.; Walpoth, M.; Hoertnagel, C.; Kramer-Reinstadler, K.; Rupp, C.I.; Hinterhuber, H. Repetitive Transcranial Magnetic Stimulation (rTMS) in the Double-Blind Treatment of a Depressed Patient Suffering from Bulimia Nervosa: A Case Report. Int. J. Neuropsychopharmacol. 2004, 7, 371–373. [Google Scholar] [CrossRef]
- Walpoth, M.; Hoertnagl, C.; Mangweth-Matzek, B.; Kemmler, G.; Hinterhölzl, J.; Conca, A.; Hausmann, A. Repetitive Transcranial Magnetic Stimulation in Bulimia Nervosa: Preliminary Results of a Single-Centre, Randomised, Double-Blind, Sham-Controlled Trial in Female Outpatients. Psychother. Psychosom. 2008, 77, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, F.; Broadbent, H.; Guillaume, S.; Claudino, A.; Campbell, I.C.; Schmidt, U. Handedness, Repetitive Transcranial Magnetic Stimulation and Bulimic Disorders. Eur. Psychiatry 2012, 27, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Downar, J.; Sankar, A.; Giacobbe, P.; Woodside, B.; Colton, P. Unanticipated Rapid Remission of Refractory Bulimia Nervosa, during High-Dose Repetitive Transcranial Magnetic Stimulation of the Dorsomedial Prefrontal Cortex: A Case Report. Front. Psychiatry 2012, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Gay, A.; Jaussent, I.; Sigaud, T.; Billard, S.; Attal, J.; Seneque, M.; Galusca, B.; Van Den Eynde, F.; Massoubre, C.; Courtet, P.; et al. A Lack of Clinical Effect of High-Frequency rTMS to Dorsolateral Prefrontal Cortex on Bulimic Symptoms: A Randomised, Double-Blind Trial. Eur. Eat. Disord. Rev. 2016, 24, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Gamal, N.F.E.; El-Fetoh, N.A.; Khalifa, H.; Ahmed, E.M.; Ali, A.M.; Noaman, M.; El-Baki, A.A.; Karim, A.A. A Double-Blind Randomized Clinical Trial on the Efficacy of Cortical Direct Current Stimulation for the Treatment of Alzheimer’s Disease. Front. Aging Neurosci. 2014, 6, 275. [Google Scholar] [CrossRef]
- Phillipou, A.; Kirkovski, M.; Castle, D.J.; Gurvich, C.; Abel, L.A.; Miles, S.; Rossell, S.L. High-Definition Transcranial Direct Current Stimulation in Anorexia Nervosa: A Pilot Study. Int. J. Eat. Disord. 2019, 52, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Mares, T.; Ceresnakova, S.; Albrecht, J.; Buday, J.; Klasova, J.; Horackova, K.; Raboch, J.; Papezova, H.; Anders, M. The Onset of Diabetes during Transcranial Direct Current Stimulation Treatment of Anorexia Nervosa—A Case Report. Front. Psychiatry 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Ursumando, L.; Ponzo, V.; Monteleone, A.M.; Menghini, D.; Fucà, E.; Lazzaro, G.; Esposito, R.; Picazio, S.; Koch, G.; Zanna, V.; et al. The Efficacy of Non-Invasive Brain Stimulation in the Treatment of Children and Adolescents with Anorexia Nervosa: Study Protocol of a Randomized, Double Blind, Placebo-Controlled Trial. J. Eat. Disord. 2023, 11, 127. [Google Scholar] [CrossRef]
- Burgess, E.E.; Sylvester, M.D.; Morse, K.E.; Amthor, F.R.; Mrug, S.; Lokken, K.L.; Osborn, M.K.; Soleymani, T.; Boggiano, M.M. Effects of Transcranial Direct Current Stimulation (tDCS) on Binge Eating Disorder. Int. J. Eat. Disord. 2016, 49, 930–936. [Google Scholar] [CrossRef]
- Gordon, G.; Brockmeyer, T.; Schmidt, U.; Campbell, I.C. Combining Cognitive Bias Modification Training (CBM) and Transcranial Direct Current Stimulation (tDCS) to Treat Binge Eating Disorder: Study Protocol of a Randomised Controlled Feasibility Trial. BMJ Open 2019, 9, e030023. [Google Scholar] [CrossRef]
- Max, S.M.; Plewnia, C.; Zipfel, S.; Giel, K.E.; Schag, K. Combined Antisaccade Task and Transcranial Direct Current Stimulation to Increase Response Inhibition in Binge Eating Disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 17–28. [Google Scholar] [CrossRef]
- Giel, K.E.; Schag, K.; Max, S.M.; Martus, P.; Zipfel, S.; Fallgatter, A.J.; Plewnia, C. Inhibitory Control Training Enhanced by Transcranial Direct Current Stimulation to Reduce Binge Eating Episodes: Findings from the Randomized Phase II ACCElect Trial. Psychother. Psychosom. 2023, 92, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.; Campbell, I.; Schmidt, U. Does Concurrent Self-Administered Transcranial Direct Current Stimulation and Attention Bias Modification Training Improve Symptoms of Binge Eating Disorder? Protocol for the TANDEM Feasibility Randomized Controlled Trial. Front. Psychiatry 2022, 13, 949246. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS): An Update (2014-2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef] [PubMed]
- Chervyakov, A.V.; Chernyavsky, A.Y.; Sinitsyn, D.O.; Piradov, M.A. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front. Hum. Neurosci. 2015, 9, 303. [Google Scholar] [CrossRef] [PubMed]
- Overvliet, G.M.; Jansen, R.A.C.; van Balkom, A.J.L.M.; van Campen, D.C.; Oudega, M.L.; van der Werf, Y.D.; van Exel, E.; van den Heuvel, O.A.; Dols, A. Adverse Events of Repetitive Transcranial Magnetic Stimulation in Older Adults with Depression, a Systematic Review of the Literature. Int. J. Geriatr. Psychiatry 2021, 36, 383–392. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Valls-Solé, J.; Wassermann, E.M.; Hallett, M. Responses to Rapid-Rate Transcranial Magnetic Stimulation of the Human Motor Cortex. Brain 1994, 117 Pt 4, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Classen, J.; Gerloff, C.; Celnik, P.; Wassermann, E.M.; Hallett, M.; Cohen, L.G. Depression of Motor Cortex Excitability by Low-Frequency Transcranial Magnetic Stimulation. Neurology 1997, 48, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Chen, R.-S.; Rothwell, J.C.; Wen, H.-Y. The After-Effect of Human Theta Burst Stimulation Is NMDA Receptor Dependent. Clin. Neurophysiol. 2007, 118, 1028–1032. [Google Scholar] [CrossRef]
- Samoudi, A.M.; Tanghe, E.; Martens, L.; Joseph, W. Deep Transcranial Magnetic Stimulation: Improved Coil Design and Assessment of the Induced Fields Using MIDA Model. Biomed. Res. Int. 2018, 2018, 7061420. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.B.; Strober, M.; Tadayonnejad, R.; Bari, A.A.; Feusner, J.D. Neurosurgery and Neuromodulation for Anorexia Nervosa in the 21st Century: A Systematic Review of Treatment Outcomes. Eat. Disord. 2022, 30, 26–53. [Google Scholar] [CrossRef] [PubMed]
- Andersson, P.; Jamshidi, E.; Ekman, C.-J.; Tedroff, K.; Björkander, J.; Sjögren, M.; Lundberg, J.; Jokinen, J.; Desai Boström, A.E. Anorexia Nervosa With Comorbid Severe Depression: A Systematic Scoping Review of Brain Stimulation Treatments. J. ECT 2023, 39, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.; Maloney, E.; Rennalls, S.J.; Bartholdy, S.; Kekic, M.; McClelland, J.; Campbell, I.C.; Schmidt, U.; O’Daly, O.G. A Pilot Study Exploring the Effect of Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment on Cerebral Blood Flow and Its Relation to Clinical Outcomes in Severe Enduring Anorexia Nervosa. J. Eat. Disord. 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, S.; Gay, A.; Jaussent, I.; Sigaud, T.; Billard, S.; Attal, J.; Seneque, M.; Galusca, B.; Thiebaut, S.; Massoubre, C.; et al. Improving Decision-Making and Cognitive Impulse Control in Bulimia Nervosa by rTMS: An Ancillary Randomized Controlled Study. Int. J. Eat. Disord. 2018, 51, 1103–1106. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Boggio, P.S.; Fregni, F.; Pascual-Leone, A. Treatment of Depression with Transcranial Direct Current Stimulation (tDCS): A Review. Exp. Neurol. 2009, 219, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.M.; Shivakumar, V.; Bose, A.; Subramaniam, A.; Nawani, H.; Chhabra, H.; Kalmady, S.V.; Narayanaswamy, J.C.; Venkatasubramanian, G. Transcranial Direct Current Stimulation in Schizophrenia. Clin. Psychopharmacol. Neurosci. 2013, 11, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Yoo, W.-K. Neuromodulation for Addiction by Transcranial Direct Current Stimulation: Opportunities and Challenges. Ann. Neurosci. 2016, 23, 241–245. [Google Scholar] [CrossRef]
- Acevedo, N.; Bosanac, P.; Pikoos, T.; Rossell, S.; Castle, D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci. 2021, 11, 948. [Google Scholar] [CrossRef]
- Stein, D.J.; Fernandes Medeiros, L.; Caumo, W.; Torres, I.L. Transcranial Direct Current Stimulation in Patients with Anxiety: Current Perspectives. Neuropsychiatr. Dis. Treat. 2020, 16, 161–169. [Google Scholar] [CrossRef]
- Kekic, M.; Boysen, E.; Campbell, I.C.; Schmidt, U. A Systematic Review of the Clinical Efficacy of Transcranial Direct Current Stimulation (tDCS) in Psychiatric Disorders. J. Psychiatr. Res. 2016, 74, 70–86. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability Changes Induced in the Human Motor Cortex by Weak Transcranial Direct Current Stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Phillipou, A.; Abel, L.A.; Castle, D.J.; Gurvich, C.; Hughes, M.E.; Rossell, S.L. Midbrain Dysfunction in Anorexia Nervosa. Psychiatry Res. Neuroimaging 2019, 283, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Gordon, G.; Williamson, G.; Gkofa, V.; Schmidt, U.; Brockmeyer, T.; Campbell, I. Participants’ Experience of Approach Bias Modification Training with Transcranial Direct Current Stimulation as a Combination Treatment for Binge Eating Disorder. Eur. Eat. Disord. Rev. 2021, 29, 969–984. [Google Scholar] [CrossRef] [PubMed]
- McClintock, S.M.; Brandon, A.R.; Husain, M.M.; Jarrett, R.B. A Systematic Review of the Combined Use of Electroconvulsive Therapy and Psychotherapy for Depression. J. ECT 2011, 27, 236–243. [Google Scholar] [CrossRef]
- Perugi, G.; Medda, P.; Toni, C.; Mariani, M.G.; Socci, C.; Mauri, M. The Role of Electroconvulsive Therapy (ECT) in Bipolar Disorder: Effectiveness in 522 Patients with Bipolar Depression, Mixed-State, Mania and Catatonic Features. Curr. Neuropharmacol. 2017, 15, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Mathur, N.; Malhotra, A.K.; Braga, R.J. Electroconvulsive Therapy and Schizophrenia: A Systematic Review. Mol. Neuropsychiatry 2019, 5, 75–83. [Google Scholar] [CrossRef]
- Li, M.; Yao, X.; Sun, L.; Zhao, L.; Xu, W.; Zhao, H.; Zhao, F.; Zou, X.; Cheng, Z.; Li, B.; et al. Effects of Electroconvulsive Therapy on Depression and Its Potential Mechanism. Front. Psychol. 2020, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Pacilio, R.M.; Livingston, R.K.; Gordon, M.R. The Use of Electroconvulsive Therapy in Eating Disorders: A Systematic Literature Review and Case Report. J. ECT 2019, 35, 272–278. [Google Scholar] [CrossRef]
- Israël, M.; Steiger, H.; Kolivakis, T.; McGregor, L.; Sadikot, A.F. Deep Brain Stimulation in the Subgenual Cingulate Cortex for an Intractable Eating Disorder. Biol. Psychiatry 2010, 67, e53–e54. [Google Scholar] [CrossRef]
- McLaughlin, N.C.R.; Didie, E.R.; Machado, A.G.; Haber, S.N.; Eskandar, E.N.; Greenberg, B.D. Improvements in Anorexia Symptoms after Deep Brain Stimulation for Intractable Obsessive-Compulsive Disorder. Biol. Psychiatry 2013, 73, e29–e31. [Google Scholar] [CrossRef] [PubMed]
- Lipsman, N.; Woodside, D.B.; Giacobbe, P.; Hamani, C.; Carter, J.C.; Norwood, S.J.; Sutandar, K.; Staab, R.; Elias, G.; Lyman, C.H.; et al. Subcallosal Cingulate Deep Brain Stimulation for Treatment-Refractory Anorexia Nervosa: A Phase 1 Pilot Trial. Lancet 2013, 381, 1361–1370. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, S.; Li, D.; Lin, Z.; Zhang, C.; Wang, T.; Pan, S.; Zhang, J.; Cao, C.; Jin, H.; et al. Deep Brain Stimulation of the Nucleus Accumbens for Treatment-Refractory Anorexia Nervosa: A Long-Term Follow-up Study. Brain Stimul. 2020, 13, 643–649. [Google Scholar] [CrossRef]
- Wu, H.; Van Dyck-Lippens, P.J.; Santegoeds, R.; van Kuyck, K.; Gabriëls, L.; Lin, G.; Pan, G.; Li, Y.; Li, D.; Zhan, S.; et al. Deep-Brain Stimulation for Anorexia Nervosa. World Neurosurg. 2013, 80, S29.e1–S29.e10. [Google Scholar] [CrossRef]
- Wang, J.; Chang, C.; Geng, N.; Wang, X.; Gao, G. Treatment of Intractable Anorexia Nervosa with Inactivation of the Nucleus Accumbens Using Stereotactic Surgery. Ster. Stereotact. Funct. Neurosurg. 2013, 91, 364–372. [Google Scholar] [CrossRef]
- Shivacharan, R.S.; Rolle, C.E.; Barbosa, D.A.N.; Cunningham, T.N.; Feng, A.; Johnson, N.D.; Safer, D.L.; Bohon, C.; Keller, C.; Buch, V.P.; et al. Pilot Study of Responsive Nucleus Accumbens Deep Brain Stimulation for Loss-of-Control Eating. Nat. Med. 2022, 28, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Schaltenbrand, G.; Wahren, W. Atlas for Stereotaxy of the Human Brain; Georg Thieme Publishers: Stuttgart, Germany, 1977. [Google Scholar]
- Barbier, J.; Gabriëls, L.; van Laere, K.; Nuttin, B. Successful Anterior Capsulotomy in Comorbid Anorexia Nervosa and Obsessive-Compulsive Disorder: Case Report. Neurosurgery 2011, 69, E745–E751; discussion E751. [Google Scholar] [CrossRef] [PubMed]
- Lipsman, N.; Lam, E.; Volpini, M.; Sutandar, K.; Twose, R.; Giacobbe, P.; Sodums, D.J.; Smith, G.S.; Woodside, D.B.; Lozano, A.M. Deep Brain Stimulation of the Subcallosal Cingulate for Treatment-Refractory Anorexia Nervosa: 1 Year Follow-up of an Open-Label Trial. Lancet Psychiatry 2017, 4, 285–294. [Google Scholar] [CrossRef]
- Blomstedt, P.; Naesström, M.; Bodlund, O. Deep Brain Stimulation in the Bed Nucleus of the Stria Terminalis and Medial Forebrain Bundle in a Patient with Major Depressive Disorder and Anorexia Nervosa. Clin. Case Rep. 2017, 5, 679–684. [Google Scholar] [CrossRef]
- Manuelli, M.; Franzini, A.; Galentino, R.; Bidone, R.; Dell’Osso, B.; Porta, M.; Servello, D.; Cena, H. Changes in Eating Behavior after Deep Brain Stimulation for Anorexia Nervosa. A Case Study. Eat. Weight. Disord. 2020, 25, 1481–1486. [Google Scholar] [CrossRef]
- Arroteia, I.F.; Husch, A.; Baniasadi, M.; Hertel, F. Impressive Weight Gain after Deep Brain Stimulation of Nucleus Accumbens in Treatment-Resistant Bulimic Anorexia Nervosa. BMJ Case Rep. 2020, 13, e239316. [Google Scholar] [CrossRef]
- Villalba Martínez, G.; Justicia, A.; Salgado, P.; Ginés, J.M.; Guardiola, R.; Cedrón, C.; Polo, M.; Delgado-Martínez, I.; Medrano, S.; Manero, R.M.; et al. A Randomized Trial of Deep Brain Stimulation to the Subcallosal Cingulate and Nucleus Accumbens in Patients with Treatment-Refractory, Chronic, and Severe Anorexia Nervosa: Initial Results at 6 Months of Follow Up. J. Clin. Med. 2020, 9, 1946. [Google Scholar] [CrossRef]
- de Vloo, P.; Lam, E.; Elias, G.J.; Boutet, A.; Sutandar, K.; Giacobbe, P.; Woodside, D.B.; Lipsman, N.; Lozano, A. Long-Term Follow-up of Deep Brain Stimulation for Anorexia Nervosa. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1135–1136. [Google Scholar] [CrossRef]
- Scaife, J.C.; Eraifej, J.; Green, A.L.; Petric, B.; Aziz, T.Z.; Park, R.J. Deep Brain Stimulation of the Nucleus Accumbens in Severe Enduring Anorexia Nervosa: A Pilot Study. Front. Behav. Neurosci. 2022, 16, 842184. [Google Scholar] [CrossRef]
- Pérez, V.; Villalba-Martínez, G.; Elices, M.; Manero, R.M.; Salgado, P.; Ginés, J.M.; Guardiola, R.; Cedrón, C.; Polo, M.; Delgado-Martínez, I.; et al. Cognitive and Quality-of-Life Related Factors of Body Mass Index (BMI) Improvement after Deep Brain Stimulation in the Subcallosal Cingulate and Nucleus Accumbens in Treatment-Refractory Chronic Anorexia Nervosa. Eur. Eat. Disord. Rev. 2022, 30, 353–363. [Google Scholar] [CrossRef]
- Baldermann, J.C.; Hahn, L.; Dembek, T.A.; Kohl, S.; Kuhn, J.; Visser-Vandewalle, V.; Horn, A.; Huys, D. Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus. Brain Sci. 2019, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Roslin, M.; Kurian, M. The Use of Electrical Stimulation of the Vagus Nerve to Treat Morbid Obesity. Epilepsy Behav. 2001, 2, S11–S16. [Google Scholar] [CrossRef]
- Burneo, J.G.; Faught, E.; Knowlton, R.; Morawetz, R.; Kuzniecky, R. Weight Loss Associated with Vagus Nerve Stimulation. Neurology 2002, 59, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Pardo, J.; Sheikh, S.; Kuskowski, M.; Surerus-Johnson, C.; Hagen, M.; Lee, J.; Rittberg, B.; Adson, D. Weight Loss during Chronic, Cervical Vagus Nerve Stimulation in Depressed Patients with Obesity. Int. J. Obes. 2007, 31, 1756–1759. [Google Scholar] [CrossRef] [PubMed]
- Peschel, S.K.V.; Feeling, N.R.; Vögele, C.; Kaess, M.; Thayer, J.F.; Koenig, J. A Systematic Review on Heart Rate Variability in Bulimia Nervosa. Neurosci. Biobehav. Rev. 2016, 63, 78–97. [Google Scholar] [CrossRef]
- Melis, Y.; Apicella, E.; Macario, M.; Dozio, E.; Bentivoglio, G.; Mendolicchio, L. Trans-Auricular Vagus Nerve Stimulation in the Treatment of Recovered Patients Affected by Eating and Feeding Disorders and Their Comorbidities. Psychiatr. Danub. 2020, 32, 42–46. [Google Scholar]
- Ogbonnaya, S.; Kaliaperumal, C. Vagal Nerve Stimulator: Evolving Trends. J. Nat. Sci. Biol. Med. 2013, 4, 8–13. [Google Scholar] [CrossRef]
- Meyer, P.-W.; Müller, L.E.; Zastrow, A.; Schmidinger, I.; Bohus, M.; Herpertz, S.C.; Bertsch, K. Heart Rate Variability in Patients with Post-Traumatic Stress Disorder or Borderline Personality Disorder: Relationship to Early Life Maltreatment. J. Neural Transm. 2016, 123, 1107–1118. [Google Scholar] [CrossRef]
- Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage Clin. 2015, 8, 1–31. [Google Scholar] [CrossRef] [PubMed]
- George, M.S.; Nahas, Z.; Molloy, M.; Speer, A.M.; Oliver, N.C.; Li, X.-B.; Arana, G.W.; Risch, S.C.; Ballenger, J.C. A Controlled Trial of Daily Left Prefrontal Cortex TMS for Treating Depression. Biol. Psychiatry 2000, 48, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Alonso, P.; Pujol, J.; Cardoner, N.; Benlloch, L.; Deus, J.; Menchón, J.M.; Capdevila, A.; Vallejo, J. Right Prefrontal Repetitive Transcranial Magnetic Stimulation in Obsessive-Compulsive Disorder: A Double-Blind, Placebo-Controlled Study. Am. J. Psychiatry 2001, 158, 1143–1145. [Google Scholar] [CrossRef]
- Cohen, H.; Kaplan, Z.; Kotler, M.; Kouperman, I.; Moisa, R.; Grisaru, N. Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: A double-blind, placebo-controlled study. Am. J. Psychiatry 2004, 161, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, E.M.; Lisanby, S.H. Therapeutic application of repetitive transcranial magnetic stimulation: A review. Clin. Neurophysiol. 2001, 112, 367–1377. [Google Scholar] [CrossRef]
- Devoto, F.; Ferrulli, A.; Zapparoli, L.; Massarini, S.; Banfi, G.; Paulesu, E.; Luzi, L. Repetitive Deep TMS for the Reduction of Body Weight: Bimodal Effect on the Functional Brain Connectivity in “Diabesity”. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1860–1870. [Google Scholar] [CrossRef]
- Nahas, Z.; Teneback, C.; Chae, J.-H.; Mu, Q.; Molnar, C.; Kozel, F.A.; Walker, J.; Anderson, B.; Koola, J.; Kose, S.; et al. Serial Vagus Nerve Stimulation Functional MRI in Treatment-Resistant Depression. Neuropsychopharmacology 2007, 32, 1649–1660. [Google Scholar] [CrossRef]
- Bulik, C.M.; Sullivan, P.F.; Kendler, K.S. Medical and Psychiatric Morbidity in Obese Women with and without Binge Eating. Int. J. Eat. Disord. 2002, 32, 72–78. [Google Scholar] [CrossRef]
- Stunkard, A.J.; Costello Allison, K. Two Forms of Disordered Eating in Obesity: Binge Eating and Night Eating. Int. J. Obes. 2003, 27, 1–12. [Google Scholar] [CrossRef]
- Ehrlich, S.; Geisler, D.; Ritschel, F.; King, J.A.; Seidel, M.; Boehm, I.; Breier, M.; Clas, S.; Weiss, J.; Marxen, M.; et al. Elevated Cognitive Control over Reward Processing in Recovered Female Patients with Anorexia Nervosa. J. Psychiatry Neurosci. 2015, 40, 307–315. [Google Scholar] [CrossRef]
- Wagner, A.; Aizenstein, H.; Venkatraman, V.K.; Fudge, J.; May, J.C.; Mazurkewicz, L.; Frank, G.K.; Bailer, U.F.; Fischer, L.; Nguyen, V.; et al. Altered Reward Processing in Women Recovered From Anorexia Nervosa. Am. J. Psychiatry 2007, 164, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Radeloff, D.; Willmann, K.; Otto, L.; Lindner, M.; Putnam, K.; Leeuwen, S.V.; Kaye, W.H.; Poustka, F.; Wagner, A. High-Fat Taste Challenge Reveals Altered Striatal Response in Women Recovered from Bulimia Nervosa: A Pilot Study. World J. Biol. Psychiatry 2014, 15, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Ferrulli, A.; Macrì, C.; Terruzzi, I.; Massarini, S.; Ambrogi, F.; Adamo, M.; Milani, V.; Luzi, L. Weight Loss Induced by Deep Transcranial Magnetic Stimulation in Obesity: A Randomized, Double-Blind, Sham-Controlled Study. Diabetes Obes. Metab. 2019, 21, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Park, R.J.; Singh, I.; Pike, A.C.; Tan, J.O.A. Deep Brain Stimulation in Anorexia Nervosa: Hope for the Hopeless or Exploitation of the Vulnerable? The Oxford Neuroethics Gold Standard Framework. Front. Psychiatry 2017, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Maslen, H.; Pugh, J.; Savulescu, J. The Ethics of Deep Brain Stimulation for the Treatment of Anorexia Nervosa. Neuroethics 2015, 8, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Becerra, J.E.; Zorro, O.; Ruiz-Gaviria, R.; Castañeda-Cardona, C.; Otálora-Esteban, M.; Henao, S.; Navarrete, S.; Acevedo, J.C.; Rosselli, D. Economic Analysis of Deep Brain Stimulation in Parkinson Disease: Systematic Review of the Literature. World Neurosurg. 2016, 93, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Mirsaeedi-Farahani, K.; Halpern, C.H.; Baltuch, G.H.; Wolk, D.A.; Stein, S.C. Deep Brain Stimulation for Alzheimer Disease: A Decision and Cost-Effectiveness Analysis. J. Neurol. 2015, 262, 1191–1197. [Google Scholar] [CrossRef]
- Simpson, K.N.; Welch, M.J.; Kozel, F.A.; Demitrack, M.A.; Nahas, Z. Cost-Effectiveness of Transcranial Magnetic Stimulation in the Treatment of Major Depression: A Health Economics Analysis. Adv. Ther. 2009, 26, 346–368. [Google Scholar] [CrossRef] [PubMed]
- Streatfeild, J.; Hickson, J.; Austin, S.B.; Hutcheson, R.; Kandel, J.S.; Lampert, J.G.; Myers, E.M.; Richmond, T.K.; Samnaliev, M.; Velasquez, K.; et al. Social and Economic Cost of Eating Disorders in the United States: Evidence to Inform Policy Action. Int. J. Eat. Disord. 2021, 54, 851–868. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Country of Study | Sample Size | Intervention Target | Stimulation Parameters | Disorder | Inclusion Criteria | BMI Criteria | BMI Outcome | Disease Severity Outcome |
---|---|---|---|---|---|---|---|---|---|
Israël, 2010 [101] | Canada | 1 | Bilateral SCC | Unilateral stimulation on right side at 130 Hz, 5 mA for 2 min on, 1 min off | Restrictive AN | N/A. Patient has a disease duration of 35 years | N/A | Stable BMI at 2 years (19.1) | EAT-26 was 1.04 and 1 at 2 and 3 years. Low EDE score at 3 years “comparable to normal population”. No QoL score. |
Barbier, 2011 [109] | Belgium | 1 | Bilateral ALIC, BNST | N/A | AN with comorbid OCD | N/A. Patient has a disease duration of 24 years | N/A | From an initial BMI of 13.1 kg/m2, BMI increased to 13.7 kg/m2 and 23.0 kg/m2 at 2-week and 3 month follow-up, respectively | The patient exhibited reduction in YBOCS, EDE, EDI, food phobia survey, MADRS, and an increase in global function scores. |
Lipsman, 2013 [103] | Canada | 6 | Bilateral SCC | Bilateral stimulation at 130 Hz and 5–7 volts with a pulse width of 90 μs | Restricting or binge–purge AN | Inclusion criteria: >2 years if increasingly medically unstable >3 years if relentless unresponsive >10 years if stable Actual: 4–37 years duration | ≥13 kg/m2 | 50% (3 of 6) patients had higher BMI at 9 months than baseline | YBC-EDS (preoccupations) changed from 23.7 preoperation to 17.7 at 6 months. YBC-EDS (rituals) changed from 29.3 to 19.0. Decreases in HAMD, BDI, YBOCS, and BAI. QoL score increased in those who gained weight. |
Lipsman, 2017 [110] | Canada | 16 | Bilateral SCC | Bilateral stimulation at 130 Hz and 5–7 volts with a pulse width of 90 μs | Restricting or binge–purge AN | Inclusion criteria: >2 years if increasingly medically unstable >3 years if relentless unresponsive >10 years if stable Actual: 4–37 years duration | ≥13 kg/m2 | BMI improved from 13.83 kg/m2 at baseline to 17.34 kg/m2 | Significant improvement in HAMD, BAI, and DERS at 12-month follow-up. No QoL measures reported. |
Wu, 2013 [105] | China | 4 | Bilateral Nacc | N/A | AN (subtype not specified) | >12 months duration of illness (range: 13–28 months) | None specified (range: 10–13.3) | Average 65% increase in BMI at 38-month follow-up | No AN-specific assessments reported. YBOCS and HAMA scores were reduced on average. No QoL measures were reported. |
Wang, 2013 [106] | China | 2 (6 more underwent RF ablation) | Bilateral Nacc | Bilateral stimulation at 135–185 Hz and 2.5 to 3.8 volts with a pulse width of 120–210 μs | AN | >2 years duration of illness | Not specified | Both DBS patients experienced increases in BMI from 13.1 kg/m2 to 18.0 kg/m2 and 12.9 kg/m2 to 20.8 kg/m2, respectively, at 1-year follow-up | No ED-specific scale. QoL: SF-36 improved in physical functioning, role-physical, bodily pain, social functioning, and role-emotional 1 year post-operation. General health, vitality, and mental health were improved at 6 months and 1 year post-operation. Social functioning: SDSS scores improved. |
Blomstedt, 2017 [111] | Sweden | 1 | Bilateral medial forebrain bundle, followed by bilateral bed nucleus of the stria terminalis | Bilateral medial forebrain bundle stimulation at 130 Hz and 2.8 to 3.0 volts with a pulse width of 60 μs Bilaterally bed nucleus stimulation at 130 Hz and 4.3 volts with a pulse width of 120 μs | AN and comorbid MDD | N/A. Duration of disease not specified. Originated during childhood for this 60-year-old patient | N/A | BMI marginally increased at 12 months from 16.2 kg/m2 to 16.5 kg/m2 under medial forebrain bundle stimulation. BMI marginally decreased from 14.5 kg/m2 to 14.3 kg/m2 under bed nucleus stimulation | Medial forebrain bundle stimulation improved MADRS, HAMA, and GAF scales, but worsened HAMD. Bed nucleus stimulation resulted in improvement in HAMD and GAF, with marginal improvement in MADRS, and worsening of HAMA. |
Manuelli, 2019 [112] | Italy | 1 | Bilateral bed nucleus of the stria terminalis | Bilateral stimulation at 130 Hz and 4 volts with a pulse width of 60 μs | AN | N/A. Patient has a disease duration of 18 years | N/A | BMI steadily increased monthly from an initial 16.31 kg/m2 to 18.98 kg/m2 at 6 months | Consistent improvement in BUT subscores, except for “depersonalization”, which showed variable changes. BITE, EAT-26, and YBOCS scores also consistently improved. QoL: SF-36 showed consistent monthly improvement. |
Liu, 2020 [104] | China | 28 | Bilateral Nacc | Bilateral stimulation at 160–180 Hz and 2.5–4.0 V with a pulse width of 120–150 μs | AN | >3 year duration of illness, resistance to medical treatment for at least 3 months | Not specified | BMI significantly improved from baseline of 13.01 kg/m2 to 15.29 kg/m2 and 17.73 kg/m2 at 6-month and 2-year follow-ups, respectively | No ED-specific scale. Significant decreases in YBOCS, HAMA, and HAMD at 6 months and 2 years. Significant increase in MMSE at 6 months and 2 years. Social functioning: SDSS improved from 11.14 to 8.64 at 6 months and 4.22 at 2 years after surgery. No QoL measures reported. |
Arroteia, 2020 [113] | Luxembourg | 1 | Bilateral Nacc | Bilateral stimulation at 204 Hz and 4.5 to 5.5 mA with a pulse width of 350 μs | Bulimic AN | Not specified | Not specified. Patient’s BMI 12.8 kg/m2 | 46.9% increase in weight at 12-month follow-up. At 14 months, binge eating and purging frequency increased, which persisted until 19 months. DBS explanted at 24 months due to infection | No ED-specific scale. No QoL or social functioning outcomes. Patient subjectively reported no change in behavior (anorexia/bulimia) but reported improvements in mood and energy. |
Villalba Martínez, 2020 [114] | Spain | 8 | Bilateral Nacc or SCC | Bilateral stimulation at 130 Hz with a pulse width of 90 µs Amplitude started at 3.5 mA and increased per patient tolerance | AN | Age of 18–60 years, >10 years duration of illness, and refractory to treatment (no response to ≥3 voluntary intensive treatments or clinical deterioration and rejection of further treatment with ≥2 involuntary hospital for nutritional rehabilitation) | ≥13 kg/m2. One patient presented with a lower BMI and received preoperative admission for optimization of BMI | No change in mean BMI at 6 months. However, when adjusting for need for preoperative optimization, there was revealed to be a ≥10% increase in BMI in 5 patients | Mean increases in SF-36 scores (QoL measure). |
De Vloo, 2021 [115] | Canada | 15 | Bilateral SCC | Bilateral stimulation at 130 Hz and 5.0–7.0 V with a pulse width of 90 µs | Restricting or binge–purge AN | Inclusion criteria: >2 years if increasingly medically unstable >3 years if relentless unresponsive >10 years if stable Actual: 4–37 years duration | ≥13 kg/m2 | Mean BMI increased significantly from 14.kg/m2 to 17.5 kg/m2 and 16.3 kg/m2 at 1- and 3-year follow-ups, respectively | Significant improvements in YBOCS, YBC-EDS, HAMD, BDI, and BAI. No improvement in QoL. |
Scaife, 2022 [116] | UK | 7 | Bilateral Nacc | Bilateral stimulation at 130 Hz and 3.5 to 4.5 volts | AN | >7 years duration of illness. Mean of 21 years (range 12–40 years) | BMI 13–16 kg/m2 | No significant change in BMI (15.2 kg/m2 to 15.3 kg/m2) at 12 months. 3/7 patients responded (defined as >35% increase in EDE) | At 12 months, mean EDE reduced from 4.2 to 3.4, (19.0% reduction), mean YBC-EDS reduced from 21.9 to 19.7 (10.0% reduction), and mean CIA reduced from 39.0 to 31.1 (20.3% reduction). HAMD and HAMA also decreased with an increase in SHAPS. QoL: WHO-QoL-Psych improved from 7.9 to 9.4 (18.9% increase). |
Shivacharan, 2022 [107] | USA | 2 | Bilateral Nacc | Responsive pulses delivered bilaterally at 125 Hz in two 5 s bursts; charge density of 0.5 μC cm−2 | BED and severe obesity | Failure of either 6 months of pharmacotherapy, 6 months of behavioral therapy, or gastric bypass therapy | BMI 45 to 60 | BMI loss of −2.2 kg/m2 (−4.5%) in Subject 1, −2.9 kg/m2 (−5.8%) in Subject 2 at 6-month follow-up | Reduced loss-of-control eating frequency (Subject 1: 80% decrease; Subject 2: 87% decrease). No QoL or social functioning scales reported. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Lo, Y.T.; Cavaleri, J.; Bergosh, M.; Ipe, J.; Briggs, R.G.; Jann, K.B.; Murray, S.B.; Mason, X.L.; Liu, C.Y.; et al. Neuromodulation of Eating Disorders: A Review of Underlying Neural Network Activity and Neuromodulatory Treatments. Brain Sci. 2024, 14, 200. https://doi.org/10.3390/brainsci14030200
Wu K, Lo YT, Cavaleri J, Bergosh M, Ipe J, Briggs RG, Jann KB, Murray SB, Mason XL, Liu CY, et al. Neuromodulation of Eating Disorders: A Review of Underlying Neural Network Activity and Neuromodulatory Treatments. Brain Sciences. 2024; 14(3):200. https://doi.org/10.3390/brainsci14030200
Chicago/Turabian StyleWu, Kevin, Yu Tung Lo, Jonathon Cavaleri, Matthew Bergosh, Jennifer Ipe, Robert G. Briggs, Kay B. Jann, Stuart B. Murray, Xenos L. Mason, Charles Y. Liu, and et al. 2024. "Neuromodulation of Eating Disorders: A Review of Underlying Neural Network Activity and Neuromodulatory Treatments" Brain Sciences 14, no. 3: 200. https://doi.org/10.3390/brainsci14030200