Behavioral and Psychiatric Disorders in Syndromic Autism
Abstract
:1. Introduction
2. Classical Genetic Syndromes
- Genetic Syndromes Frequently Associated with Autism Spectrum Disorder
- Fragile X Syndrome
- Tuberous Sclerosis Complex
- Phelan–McDermid Syndrome
- Prader–Willi Syndrome
- Angelman Syndrome
- DiGeorge Syndrome
- Phenylketonuria
- Down Syndrome
- Rett Syndrome
- Williams Syndrome
- Burnside–Butler Syndrome
- Cornelia de Lange Syndrome
2.1. Fragile X Syndrome
2.2. Tuberous Sclerosis Complex
2.3. Phelan–McDermid Syndrome
2.4. Prader–Willi Syndrome
2.5. Angelman Syndrome
2.6. DiGeorge Syndrome
2.7. Phenylketonuria
2.8. Down Syndrome
2.9. Rett Syndrome
2.10. Williams Syndrome
2.11. Burnside–Butler Syndrome
2.12. Cornelia de Lange Syndrome
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Jenner, L.; Richards, C.; Howard, R.; Moss, J. Heterogeneity of Autism Characteristics in Genetic Syndromes: Key Considerations for Assessment and Support. Curr. Dev. Disord. Rep. 2023, 10, 132–146. [Google Scholar] [CrossRef]
- Chang, J.; Gilman, S.R.; Chiang, A.H.; Sanders, S.J.; Vitkup, D. Genotype to phenotype relationships in autism spectrum disorders. Nat. Neurosci. 2015, 18, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Rafi, S.K.; Manzardo, A.M. High-resolution chromosome ideogram representation of currently recognized genes for autism spectrum disorders. Int. J. Mol. Sci. 2015, 16, 6464–6495. [Google Scholar] [CrossRef]
- Genovese, A.; Butler, M.G. Clinical Assessment, Genetics, and Treatment Approaches in Autism Spectrum Disorder (ASD). Int. J. Mol. Sci. 2020, 21, 4726. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2000. MMWR. Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lintas, C.; Persico, A.M. Autistic phenotypes and genetic testing: State-of-the-art for the clinical geneticist. J. Med. Genet. 2009, 46, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Beaudet, A.L. Autism: Highly heritable but not inherited. Nat. Med. 2007, 13, 534–536. [Google Scholar] [CrossRef]
- Ziats, C.A.; Patterson, W.G.; Friez, M. Syndromic Autism Revisited: Review of the Literature and Lessons Learned. Pediatr. Neurol. 2021, 114, 21–25. [Google Scholar] [CrossRef]
- Hagerman, R.; Au, J.; Hagerman, P. FMR1 premutation and full mutation molecular mechanisms related to autism. J. Neurodev. Disord. 2011, 3, 211–224. [Google Scholar] [CrossRef]
- Sitzmann, A.F.; Hagelstrom, R.T.; Tassone, F.; Hagerman, R.J.; Butler, M.G. Rare FMR1 gene mutations causing fragile X syndrome: A review. Am. J. Med. Genet. Part A 2018, 176, 11–18. [Google Scholar] [CrossRef]
- Dhillon, S.; Hellings, J.A.; Butler, M.G. Genetics and mitochondrial abnormalities in autism spectrum disorders: A review. Curr. Genom. 2011, 12, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.S.; Wassman, E.R.; Baxter, A.L.; Hensel, C.H.; Martin, M.M.; Prasad, A.; Twede, H.; Vanzo, R.J.; Butler, M.G. Chromosomal Microarray Analysis of Consecutive Individuals with Autism Spectrum Disorders Using an Ultra-High Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders. Int. J. Mol. Sci. 2016, 17, 2070. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, B.A.; Scherer, S.W. Syndromic autism spectrum disorders: Moving from a clinically defined to a molecularly defined approach. Dialog- Clin. Neurosci. 2017, 19, 353–371. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Butler, M.G. The Autism Spectrum: Behavioral, Psychiatric and Genetic Associations. Genes 2023, 14, 677. [Google Scholar] [CrossRef] [PubMed]
- Sztainberg, Y.; Zoghbi, H.Y. Lessons learned from studying syndromic autism spectrum disorders. Nat. Neurosci. 2016, 19, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, G.; Yule, W. Behavioural Phenotypes; Clin in Devel Med; Mac Keith Press: London, UK, 1995; Volume 138. [Google Scholar]
- Dawson, G.; Webb, S.; Schellenberg, G.D.; Dager, S.; Friedman, S.; Aylward, E.; Richards, T. Defining the broader phenotype of autism: Genetic, brain, and behavioral perspectives. Dev. Psychopathol. 2002, 14, 581–611. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Ellerbeck, K. Autism Spectrum Disorder: A Review of Behavioral and Psychiatric Challenges Across the Lifespan. SN Compr. Clin. Med. 2022, 4, 217. [Google Scholar] [CrossRef]
- Shaffer, R.C.; Reisinger, D.L.; Schmitt, L.M.; Lamy, M.; Dominick, K.C.; Smith, E.G.; Coffman, M.C.; Esbensen, A.J. Systematic Review: Emotion Dysregulation in Syndromic Causes of Intellectual and Developmental Disabilities. J. Am. Acad. Child Adolesc. Psychiatry 2023, 62, 518–557. [Google Scholar] [CrossRef] [PubMed]
- Thurm, A.; Farmer, C.; Salzman, E.; Lord, C.; Bishop, S. State of the field: Differentiating intellectual disability from autism spectrum disorder. Front. Psychiatry 2019, 10, 526. [Google Scholar] [CrossRef]
- Cornish, K.; Turk, J.; Hagerman, R. The fragile X continuum: New advances and perspectives. J. Intellect. Disabil. Res. 2008, 52 Pt 6, 469–482. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/omim/ (accessed on 1 February 2024).
- Devys, D.; Lutz, Y.; Rouyer, N.; Bellocq, J.-P.; Mandel, J.-L. The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat. Genet. 1993, 4, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B., Jr.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Primers 2017, 3, 17065. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, N.A.; AlJahdali, I.A.; Abumansour, I.S.; Azher, Z.A.; Falemban, A.H.; Madani, W.M.; Alosaimi, W.; Alghamdi, G.; Sindi, I.A. Phenotypic variability to medication management: An update on fragile X syndrome. Hum. Genom. 2023, 17, 60. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, W.E.; Kidd, S.A.; Andrews, H.F.; Budimirovic, D.B.; Esler, A.; Haas-Givler, B.; Stackhouse, T.; Riley, C.; Peacock, G.; Sherman, S.L.; et al. Autism Spectrum Disorder in Fragile X Syndrome: Cooccurring Conditions and Current Treatment. Pediatrics 2017, 139 (Suppl. 3), S194–S206. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.; Howlin, P. Autism spectrum disorders in genetic syndromes: Implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J. Intellect. Disabil. Res. 2009, 53, 852–873. [Google Scholar] [CrossRef]
- Huddleston, L.B.; Visootsak, J.; Sherman, S.L. Cognitive aspects of Fragile X syndrome. WIREs Cogn. Sci. 2014, 5, 501–508. [Google Scholar] [CrossRef]
- Kenneson, A.; Warren, S.T. The Female and the Fragile X Reviewed. Semin. Reprod. Med. 2001, 19, 159–166. [Google Scholar] [CrossRef]
- Gabis, L.V.; Baruch, Y.K.; Jokel, A.; Raz, R. Psychiatric and autistic comorbidity in fragile X syndrome across ages. J. Child Neurol. 2011, 26, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.; Abucayan, F.; Hagerman, R.; Tassone, F.; Hessl, D. Anxiety disorders in fragile X premutation carriers: Preliminary characterization of probands and non-probands. Intractable Rare Dis. Res. 2015, 4, 123–130. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Protic, D.; Rajaratnam, A.; Salcedo-Arellano, M.J.; Aydin, E.Y.; Schneider, A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front. Psychiatry 2018, 9, 564. [Google Scholar] [CrossRef]
- Rosset, C.; Netto, C.B.O.; Ashton-Prolla, P. TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: A review. Genet. Mol. Biol. 2017, 40, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.P.; Şahïn, M. Tuberous sclerosis: A review of the past, present, and future. Turk. J. Med. Sci. 2020, 50, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.; Chakraborty, R.; Mahajan, Z.; Sharma, A.; Sethi, S.K.; Raina, R. Renal Manifestations of Tuberous Sclerosis Complex. J. Kidney Cancer VHL 2020, 7, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.C.; Thomas, H.V.; Murphy, K.C.; Sampson, J.R. Genotype and psychological phenotype in tuberous sclerosis. J. Med. Genet. 2004, 41, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, P.; Moavero, R.; de Vries, P.J. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015, 14, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, P.; Bombardieri, R.; Jozwiak, S. Tuberous sclerosis. Lancet 2008, 372, 657–668. [Google Scholar] [CrossRef]
- Toldo, I.; Brasson, V.; Miscioscia, M.; Pelizza, M.F.; Manara, R.; Sartori, S.; Mantegazza, G.; Vecchi, M.; Nosadini, M.; Gatta, M. Tuberous sclerosis-associated neuropsychiatric disorders: A paediatric cohort study. Dev. Med. Child Neurol. 2019, 61, 168–173. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Tarasewicz, A.; Jóźwiak, S.; Dębska-Ślizień, A.; Szurowska, E. Tuberous Sclerosis Complex associated neuropsychiatric disorders. Psychiatr. Polska 2022, 57, 823–842. [Google Scholar] [CrossRef] [PubMed]
- Raznahan, A.; Joinson, C.; O’callaghan, F.; Osborne, J.P.; Bolton, P.F. Psychopathology in tuberous sclerosis: An overview and findings in a population-based sample of adults with tuberous sclerosis. J. Intellect. Disabil. Res. 2006, 50, 561–569. [Google Scholar] [CrossRef]
- Muzykewicz, D.A.; Newberrym, P.; Danforth, N.; Halpern, E.F.; Thiele, E.A. Psychiatric comorbid conditions in a clinic pop-ulation of 241 patients with tuberous sclerosis complex. Epilepsy Behav. 2007, 11, 506–513. [Google Scholar] [CrossRef]
- de Vries, P.J.; Heunis, T.-M.; Vanclooster, S.; Chambers, N.; Bissell, S.; Byars, A.W.; Flinn, J.; Gipson, T.T.; van Eeghen, A.M.; Waltereit, R.; et al. International consensus recommendations for the identification and treatment of tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). J. Neurodev. Disord. 2023, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Cammarata-Scalisi, F.; Callea, M.; Martinelli, D.; Willoughby, C.E.; Tadich, A.C.; Castillo, M.A.; Lacruz-Rengel, M.A.; Medina, M.; Grimaldi, P.; Bertini, E.; et al. Clinical and Genetic Aspects of Phelan–McDermid Syndrome: An Interdisciplinary Approach to Management. Genes 2022, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Costales, J.L.; Kolevzon, A. Phelan–McDermid Syndrome and SHANK3: Implications for Treatment. Neurotherapeutics 2015, 12, 620–630. [Google Scholar] [CrossRef] [PubMed]
- van Balkom, I.D.; Burdeus-Olavarrieta, M.; Cooke, J.; de Cuba, A.G.; Turner, A.; European Phelan-McDermid Syndrome consortium; Vogels, A.; Maruani, A. Consensus recommendations on mental health issues in Phelan-McDermid syndrome. Eur. J. Med. Genet. 2023, 66, 104770. [Google Scholar] [CrossRef] [PubMed]
- Durand, C.M.; Betancur, C.; Boeckers, T.M.; Bockmann, J.; Chaste, P.; Fauchereau, F.; Nygren, G.; Rastam, M.; Gillberg, I.C.; Anckarsater, H.; et al. Mutations in the gene encoding the synaptic scaf-folding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007, 39, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, R.J.; Ruiter, S.A.J.; van den Heuvel, E.R.; Flapper, B.C.T.; Van Ravenswaaij-Arts, M.A. Developmental phenotype in Phelan-McDermid (22q13 deletion) syndrome: A systemic and prospective study in 34 children. J. Neurodev. Disord. 2016, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Landlust, A.M.; Visser, L.; Flapper, B.C.T.; Ruiter, S.A.J.; Zwanenburg, R.J.; van Ravenswaaij-Arts, C.M.A.; van Balkom, I.D.C. Understanding Behavior in Phelan-McDermid Syndrome. Front. Psychiatry 2022, 13, 836807. [Google Scholar] [CrossRef] [PubMed]
- Burdeus-Olavarrieta, M.; San José-Cáceres, A.; García-Alcón, A.; González-Peñas, J.; Hernández-Jusdado, P.; Parellada-Redondo, M. Characterisation of the clinical phenotype in Phelan-McDermid syndrome. J. Neurodev. Disord. 2021, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Kolevzon, A.; Delaby, E.; Berry-Kravis, E.; Buxbaum, J.D.; Betancur, C. Neuropsychiatric decompensation in adolescents and adults with Phelan-McDermid syndrome: A systematic review of the literature. Mol. Autism 2019, 10, 50. [Google Scholar] [CrossRef]
- Kohlenberg, T.M.; Trelles, M.P.; Mclarney, B.; Betancur, C.; Thurm, A.; Kolevzon, A. Psychiatric illness and regression in individuals with Phelan-McDermid syndrome. J. Neurodev. Disord. 2020, 12, 7. [Google Scholar] [CrossRef]
- Dyar, B.; Meaddough, E.; Sarasua, S.M.; Rogers, C.; Phelan, K.; Boccuto, L. Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome. Genes 2021, 12, 1192. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes 2020, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, D.L.P.; Lemoine, P.; Ehlinger, V.; Molinas, C.; Diene, G.; Valette, M.; Pinto, G.; Coupaye, M.; Poitou-Bernert, C.; Thuilleaux, D.; et al. Causes of death in Prader-Willi syndrome: Lessons from 11 years’ experience of a national reference center. Orphanet J. Rare Dis. 2019, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G. Prader-Willi syndrome: Current understanding of cause and diagnosis. Am. J. Med. Genet. 1990, 35, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Thompson, T. Prader-Willi Syndrome: Clinical and Genetic Findings. Endocrinologist 2000, 10 (Suppl. 1), 3S–16S. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Manzardo, A.M.; Forster, J.L. Prader-Willi Syndrome: Clinical Genetics and Diagnostic Aspects with Treatment Approaches. Curr. Pediatr. Rev. 2016, 12, 136–166. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G. Prader-Willi Syndrome: Obesity due to Genomic Imprinting. Curr. Genom. 2011, 12, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Hossain, W.A.; Cowen, N.; Bhatnagar, A. Chromosomal Microarray Study in Prader-Willi Syndrome. Int. J. Mol. Sci. 2023, 24, 1220. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Miller, J.L.; Forster, J.L. Prader-Willi Syndrome–Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr. Pediatr. Rev. 2019, 15, 207–244. [Google Scholar] [CrossRef]
- Strom, S.P.; Hossain, W.A.; Grigorian, M.; Li, M.; Fierro, J.; Scaringe, W.; Yen, H.-Y.; Teguh, M.; Liu, J.; Gao, H.; et al. A Streamlined Approach to Prader-Willi and Angelman Syndrome Molecular Diagnostics. Front. Genet. 2021, 12, 608889. [Google Scholar] [CrossRef]
- Angulo, M.A.; Butler, M.G.; Cataletto, M.E. Prader-Willi syndrome: A review of clinical, genetic, and endocrine findings. J. Endocrinol. Investig. 2015, 38, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, D.J.; Miller, J.L.; Cassidy, S.B. Prader-Willi Syndrome. 1998 Oct 6 [Updated 2023 Nov 2]. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1330/ (accessed on 5 January 2024).
- Butler, M.G. Single gene and syndromic causes of obesity: Illustrative examples. Prog. Mol. Biol. Transl. Sci. 2016, 140, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Matthews, N.A.; Patel, N.; Surampalli, A.; Gold, J.-A.; Khare, M.; Thompson, T.; Cassidy, S.B.; Kimonis, V.E. Impact of genetic subtypes of Prader–Willi syndrome with growth hormone therapy on intelligence and body mass index. Am. J. Med. Genet. Part A 2019, 179, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Lee, P.; Whitman, B. Management of Prader-Willi Syndrome, 4th ed.; Springer Publishers: New York, NY, USA, 2022. [Google Scholar]
- Manzardo, A.M.; Loker, J.; Heinemann, J.; Loker, C.; Butler, M.G. Survival trends from the Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet Med. 2018, 20, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Manzardo, A.M.; Heinemann, J.; Loker, C.; Loker, J. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genet. Med. 2017, 19, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G. Management of obesity in Prader-Willi syndrome. Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Kimonis, V.E.; Tamura, R.; Gold, J.-A.; Patel, N.; Surampalli, A.; Manazir, J.; Miller, J.L.; Roof, E.; Dykens, E.; Butler, M.G.; et al. Early Diagnosis in Prader–Willi Syndrome Reduces Obesity and Associated Co-Morbidities. Genes 2019, 10, 898. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Faggiano, F.; Maiorino, M.I.; Parrillo, M.; Pugliese, G.; Ruggeri, R.M.; Scarano, E.; Savastano, S.; Colao, A.; et al. Obesity in Prader–Willi syndrome: Physiopathological mechanisms, nutritional and pharmacological approaches. J. Endocrinol. Investig. 2021, 44, 2057–2070. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.A.; Germani, T.; Haqq, A.M.; Zwaigenbaum, L. Autism spectrum disorder in Prader–Willi syndrome: A systematic review. Am. J. Med. Genet. Part A 2015, 167, 2936–2944. [Google Scholar] [CrossRef]
- Butler, M.G.; Bittel, D.C.; Kibiryeva, N.; Talebizadeh, Z.; Thompson, T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 2004, 113 Pt 1, 565–573. [Google Scholar] [CrossRef]
- Dykens, E.M.; Roof, E.; Hunt-Hawkins, H.; Dankner, N.; Lee, E.B.; Shivers, C.M.; Daniell, C.; Kim, S.-J. Diagnoses and characteristics of autism spectrum disorders in children with Prader-Willi syndrome. J. Neurodev. Disord. 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Zarcone, J.; Napolitano, D.; Peterson, C.; Breidbord, J.; Ferraioli, S.; Caruso-Anderson, M.; Holsen, L.; Butler, M.G.; Thompson, T. The relationship between compulsive behaviour and academic achievement across the three genetic subtypes of Prader–Willi syndrome. J. Intellect. Disabil. Res. 2007, 51, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.; Caixàs, A.; Dimitropoulos, A.; Dykens, E.; Duis, J.; Einfeld, S.; Gallagher, L.; Holland, A.; Rice, L.; Roof, E.; et al. Behavioral features in Prader-Willi syndrome (PWS): Consensus paper from the International PWS Clinical Trial Consortium. J. Neurodev. Disord. 2021, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Ayet-Roger, A.; Joga-Elvira, L.; Caixàs, A.; Corripio, R. Cognitive and Adaptive Effects of Early Growth Hormone Treatment in Prader–Willi Syndrome Patients: A Cohort Study. J. Clin. Med. 2022, 11, 1592. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Hartin, S.N.; Hossain, A.W.; Manzardo, A.M.; Kimonis, V.; Dykens, E.; Gold, J.A.; Kim, S.-J.; Weisensel, N.; Tamura, R.; et al. Molecular genetic classification in Prader-Willi syndrome: A multisite cohort study. J. Med. Genet. 2019, 56, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Siemensma, E.; Tummers-de Lind van Wijngaarden, R.; Festen, D.; Troeman, Z.; van Alfen-van der Velden, A.; Otten, B.; Rotteveel, J.; Odink, R.; Bindels-de Heus, G.; van Leeuwen, M.; et al. Beneficial Effects of Growth Hormone Treatment on Cognition in Children with Prader-Willi Syndrome: A Randomized Controlled Trial and Longitudinal Study. J. Clin. Endocrinol. Metab. 2012, 97, 2307–2314. [Google Scholar] [CrossRef] [PubMed]
- Donze, S.H.; Damen, L.; Mahabier, E.F.; Hokken-Koelega, A.C. Cognitive functioning in children with Prader–Willi syndrome during 8 years of growth hormone treatment. Eur. J. Endocrinol. 2020, 182, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Feighan, S.; Hughes, M.; Maunder, K.; Roche, E.; Gallagher, L. A profile of mental health and behaviour in Prader–Willi syndrome. J. Intellect. Disabil. Res. 2020, 64, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Bittel, D.C.; Kibiryeva, N.; Butler, M.G. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics 2006, 118, e1276–e1283. [Google Scholar] [CrossRef]
- Shriki-Tal, L.; Avrahamy, H.; Pollak, Y.; Gross-Tsur, V.; Genstil, L.; Hirsch, H.; Benarroch, F. Psychiatric disorders in a cohort of individuals with Prader–Willi syndrome. Eur. Psychiatry 2017, 44, 47–52. [Google Scholar] [CrossRef]
- Shelkowitz, E.; Gantz, M.G.; Ridenour, T.A.; Scheimann, A.O.; Strong, T.; Bohonowych, J.; Duis, J. Neuropsychiatric features of Prader–Willi syndrome. Am. J. Med. Genet. Part A 2022, 188, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Sasson, A.; Rusciano, V.; Wakimoto, Y.; Pinkhasov, A.; Angulo, M. Cycloid Psychosis Comorbid with Prader–Willi Syndrome: A Case Series. Am. J. Med. Genet. Part A 2019, 179, 1241–1245. [Google Scholar] [CrossRef]
- Cooper, S.-A.; Smiley, E.; Morrison, J.; Allan, L.; Williamson, A.; Finlayson, J.; Jackson, A.; Mantry, D. Psychosis and adults with intellectual disabilities. Prevalence, incidence, and related factors. Soc. Psychiatry Psychiatr. Epidemiol. 2007, 42, 530–536. [Google Scholar] [CrossRef]
- Magenis, R.E.; Brown, M.G.; Lacy, D.A.; Budden, S.; LaFranchi, S. Is Angelman syndrome an alternate result of del(15)(q11q13)? Am. J. Med. Genet. 1987, 28, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Palmer, C. Parental origin of chromosome 15 deletion in Prader-Willi syndrome. Lancet 1983, 321, 1285–1286. [Google Scholar] [CrossRef] [PubMed]
- Greer, P.L.; Hanayama, R.; Bloodgood, B.L.; Mardinly, A.R.; Lipton, D.M.; Flavell, S.W.; Kim, T.-K.; Griffith, E.C.; Waldon, Z.; Maehr, R.; et al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 2010, 140, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Duis, J. Chromosome 15 imprinting disorders: Genetic laboratory methodology and approaches. Front. Pediatr. 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Driscoll, D.J.; Dagli, A.I. Clinical and genetic aspects of Angelman syndrome. Genet. Med. 2010, 12, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.; Jones, C.; Groves, L.; Moss, J.; Oliver, C. Prevalence of Autism Spectrum Disorder Phenomenology in Genetic Disorders: A Systematic Review and MetaAnalysis. Lancet Psychiatry 2015, 2, 909–916. [Google Scholar] [CrossRef]
- Yang, L.; Shu, X.; Mao, S.; Wang, Y.; Du, X.; Zou, C. Genotype–Phenotype Correlations in Angelman Syndrome. Genes 2021, 12, 987. [Google Scholar] [CrossRef]
- Pelc, K.; Boyd, S.G.; Cheron, G.; Dan, B. Epilepsy in Angelman syndrome. Seizure 2008, 17, 211–217. [Google Scholar] [CrossRef]
- Dan, B.; Pelc, K.; Cheron, G. Behavior and neuropsychiatric manifestations in Angelman syndrome. Neuropsychiatr. Dis. Treat. 2008, 4, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, R.; Carrozzo, R.; Rinaldi, R.; Bonanni, P. Angelman Syndrome: Etiology, clinical features, diagnosis, and man-agement of symptoms. Pediatr. Drugs 2003, 5, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Hart, H. ‘Puppet’ children. A report on three cases (1965). Dev. Med. Child. Neurol. 2008, 50, 564. [Google Scholar] [CrossRef] [PubMed]
- Bonello, D.; Camilleri, F.; Calleja-Agius, J. Angelman Syndrome: Identification and Management. Neonatal Netw. 2017, 36, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Bird, L. Angelman syndrome: Review of clinical and molecular aspects. Appl. Clin. Genet. 2014, 7, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Buiting, K.; Williams, C.; Horsthemke, B. Angelman syndrome—Insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 2016, 12, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Beaudet, A.L.; Clayton-Smith, J.; Knoll, J.H.; Kyllerman, M.; Laan, L.A.; Magenis, R.E.; Moncla, A.; Schinzel, A.A.; Summers, J.A.; et al. Angelman syndrome 2005: Updated consensus for diagnostic criteria. Am. J. Med. Genet. Part A 2006, 140, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Walz, N.C.; Benson, B.A. Behavioral phenotypes in children with down syndrome, Prader-Willi syndrome, and Angelman syndromes. J. Dev. Phys. Disabil. 2002, 14, 307–321. [Google Scholar] [CrossRef]
- Ishmael, H.A.; Begleiter, M.L.; Butler, M.G. Drowning as a cause of death in Angelman syndromes. Am. J. Ment. Retard. 2002, 107, 69–70. [Google Scholar] [CrossRef]
- Keary, C.J.; Thom, R.P.; McDougle, C.J. Stimulant intolerance in children with Angelman syndrome with hyperactivity: A case series. Psychiatr. Genet. 2021, 32, 80–86. [Google Scholar] [CrossRef]
- Grebe, S.C.; Limon, D.L.; McNeel, M.M.; Guzick, A.; Peters, S.U.; Tan, W.-H.; Sadhwani, A.; Bacino, C.A.; Bird, L.M.; Samaco, R.C.; et al. Anxiety in Angelman Syndrome. Am. J. Intellect. Dev. Disabil. 2022, 127, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Swillen, A.; Devriendt, K.; Vantrappen, G.; Vogels, A.; Rommel, N.; Fryns, J.P.; Eyskens, B.; Gewillig, M.; Dumoulin, M. Familial deletions of chromosome 22q11: The Leuven experience. Am. J. Med. Genet. 1998, 80, 531–532. [Google Scholar] [CrossRef]
- Sergi, C.; Serpi, M.; Müller-Navia, J.; Schnabel, A.P.; Hagl, S.; Otto, H.F.; Ulmer, E.H. CATCH 22 syndrome: Report of 7 infants with follow-up data and review of the recent advancements in the genetic knowledge of the locus 22q11. Pathologica 1999, 91, 166–172. [Google Scholar] [PubMed]
- Bassett, A.S.; Chow, E.W.; Husted, J.; Weksberg, R.; Caluseriu, O.; Webb, G.D.; Gatzoulis, M.A. Clinical features of 78 adults with 22q11 Deletion Syndrome. Am. J. Med. Genet. Part A 2005, 138, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Robin, N.H.; Taylor, C.J.; McDonald-McGinn, D.M.; Zackai, E.H.; Bingham, P.; Collins, K.J.; Earl, D.; Gill, D.; Granata, T.; Guerrini, R.; et al. Polymicrogyria and deletion 22q11.2 syndrome: Window to the etiology of a common cortical malformation. Am. J. Med. Genet. Part A 2006, 140, 2416–2425. [Google Scholar] [CrossRef]
- Vorstman, J.A.; Morcus, M.E.; Duijff, S.N.; Klaassen, P.W.; Boer, J.A.H.-D.; Beemer, F.A.; Swaab, H.; Kahn, R.S.; van Engeland, H. The 22q11.2 Deletion in Children: High rate of autistic disorders and early onset of psychotic symptoms. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Ring, H.A.; Bullmore, E.T.; Wheelwright, S.; Ashwin, C.; Williams, S.C. The amygdala theory of autism. Neurosci. Biobehav. Rev. 2000, 24, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Munson, J.; Dawson, G.; Abbott, R.; Faja, S.; Webb, S.J.; Friedman, S.D.; Shaw, D.; Artru, A.; Dager, S.R. Amygdalar volume and behavioral development in autism. Arch. Gen. Psychiatry 2006, 63, 686–693. [Google Scholar] [CrossRef] [PubMed]
- De Smedt, B.; Devriendt, K.; Fryns, J.; Vogels, A.; Gewillig, M.; Swillen, A. Intellectual abilities in a large sample of children with Velo–Cardio–Facial Syndrome: An update. J. Intellect. Disabil. Res. 2007, 51, 666–670. [Google Scholar] [CrossRef]
- Gerdes, M.; Solot, C.; Wang, P.P.; Moss, E.; Larossa, D.; Randall, P.; Goldmuntz, E.; Clark, B.J.; Driscoll, D.A.; Jawad, A.; et al. Cognitive and behavior profile of preschool children with chromosome 22q11.2 deletion. Am. J. Med.Genet. 1999, 85, 127–133. [Google Scholar] [CrossRef]
- Bayat, M.; Bayat, A. Neurological manifestation of 22q11.2 deletion syndrome. Neurol. Sci. 2022, 43, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Wither, R.G.; Borlot, F.; MacDonald, A.; Butcher, N.J.; Chow, E.W.C.; Bassett, A.S.; Andrade, D.M. 22q11.2 deletion syndrome lowers seizure threshold in adult patients without epilepsy. Epilepsia 2017, 58, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Boot, E.; Bassett, A.S.; Marras, C. 22q11.2 Deletion Syndrome–Associated Parkinson’s Disease. Mov. Disord. Clin. Pract. 2019, 6, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Butcher, N.J.; Boot, E.; Lang, A.E.; Andrade, D.; Vorstman, J.; McDonald-McGinn, D.; Bassett, A.S. Neuropsychiatric expression and catatonia in 22q11.2 deletion syndrome: An overview and case series. Am. J. Med. Genet. Part A 2018, 176, 2146–2159. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.M.; Antshel, K.M.; Fremont, W.P.; Kates, W.R. Behavioral and Psychiatric Phenotypes in 22q11.2 Deletion Syndrome. J. Dev. Behav. Pediatr. 2015, 36, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Antshel, K.M.; Stallone, K.; Abdulsabur, N.; Shprintzen, R.; Roizen, N.; Higgins, A.M.; Kates, W.R. Temperament in velocardiofacial syndrome. J. Intellect. Disabil. Res. 2007, 51 Pt 3, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Niklasson, L.; Gillberg, C. The neuropsychology of 22q11 deletion syndrome. A neuropsychiatric study of 100 individuals. Res. Dev. Disabil. 2010, 31, 185–194. [Google Scholar] [CrossRef]
- Arnsten, A.F. The Emerging Neurobiology of Attention Deficit Hyperactivity Disorder: The Key Role of the Prefrontal Association Cortex. J. Pediatr. 2009, 154, I-S43. [Google Scholar] [CrossRef] [PubMed]
- Halleland, H.; Lundervold, A.; Halmøy, A.; Haavik, J.; Johansson, S. Association between Catechol O-methyltransferase (COMT) haplotypes and severity of hyperactivity symptoms in Adults. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150B, 403–410. [Google Scholar] [CrossRef]
- Fung, W.L.A.; McEvilly, R.; Fong, J.; Silversides, C.; Chow, E.W.C.; Bassett, A.S.; Lowther, C.; Merico, D.; Costain, G.; van Amelsvoort, T.; et al. Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome. Am. J. Psychiatry 2010, 167, 998. [Google Scholar] [CrossRef]
- Ching, C.R.; Gutman, B.A.; Sun, D.; Reina, J.V.; Ragothaman, A.; Isaev, D.; Zavaliangos-Petropulu, A.; Lin, A.; Jonas, R.K.; Kushan, L.; et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: Results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am. J. Psychiatry 2014, 171, 627–639. [Google Scholar] [CrossRef]
- Shprintzen, R.J.; Goldberg, R.; Golding-Kushner, K.J.; Marion, R.W. Late-onset psychosis in the velo-cardio-facial syndrome. Am. J. Med. Genet. 1992, 42, 141–142. [Google Scholar] [CrossRef] [PubMed]
- Bassett, A.S.; Chow, E.W.; Weksberg, R. Chromosomal abnormalities and schizophrenia. Am. J. Med. Genet. 2000, 97, 45–51. [Google Scholar] [CrossRef]
- Kolar, D.; Krajcovic, B.; Kleteckova, L.; Kuncicka, D.; Vales, K.; Brozka, H. Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia. Schizophr. Bull. 2023, 49, 1637–1653. [Google Scholar] [CrossRef] [PubMed]
- Bassett, A.S.; Chow, E.W.; AbdelMalik, P.; Gheorghiu, M.; Husted, J.; Weksberg, R.; Ching, C.R.; Gutman, B.A.; Sun, D.; Reina, J.V.; et al. The schizophrenia phenotype in 22q11 deletion syndrome. Am. J. Psychiatry 2003, 160, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Fung, W.L.A.; Butcher, N.J.; Costain, G.; Andrade, D.M.; Boot, E.; Chow, E.W.; Chung, B.; Cytrynbaum, C.; Faghfoury, H.; Fishman, L.; et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet. Med. 2015, 17, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Vorstman, J.A.S.; Breetvelt, E.J.; Duijff, S.N.; Eliez, S.; Schneider, M.; Jalbrzikowski, M.; Armando, M.; Vicari, S.; Shashi, V.; Hooper, S.R.; et al. Cognitive Decline Preceding the Onset of Psychosis in Patients With 22q11.2 Deletion Syndrome. JAMA Psychiatry 2015, 72, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Gothelf, D.; Schneider, M.; Green, T.; Debbané, M.; Frisch, A.; Glaser, B.; Zilkha, H.; Schaer, M.; Weizman, A.; Eliez, S. Risk factors and the evolution of psychosis in 22q11.2 deletion syndrome: A longitudinal 2-site study. J. Am. Acad. Child Adolesc. Psychiatry 2013, 52, 1192–1203.e3. [Google Scholar] [CrossRef] [PubMed]
- Blau, N.; van Spronsen, F.J.; Levy, H.L. Phenylketonuria. Lancet 2010, 376, 1417–1427. [Google Scholar] [CrossRef]
- van Wegberg, A.M.; Trefz, F.; Gizewska, M.; Ahmed, S.; Chabraoui, L.; Zaki, M.S.; Maillot, F.; van Spronsen, F.J.; Ahring, K.; Al Mutairi, F.; et al. Undiagnosed Phenylketonuria Can Exist Everywhere: Results From an International Survey. J. Pediatr. 2021, 239, 231–234.e2. [Google Scholar] [CrossRef]
- Ashe, K.; Kelso, W.; Farrand, S.; Panetta, J.; Fazio, T.; De Jong, G.; Walterfang, M. Psychiatric and Cognitive Aspects of Phenylketonuria: The Limitations of Diet and Promise of New Treatments. Front. Psychiatry 2019, 10, 561. [Google Scholar] [CrossRef] [PubMed]
- Rouse, B.; Azen, C.; Koch, R. Maternal Phenylketonuria Collaborative Study (MPKUCS) offspring: Facial anomalies, malformations, and early neurological sequelae. Am. J. Med. Genet. 1997, 69, 89–95. [Google Scholar] [CrossRef]
- Baieli, S.; Pavone, L.; Meli, C.; Fiumara, A.; Coleman, M. Autism and phenylketonuria. J. Autism Dev. Disord. 2003, 33, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, A.O. Genetic causes of syndromic and non-syndromic autism. Dev. Med. Child Neurol. 2010, 52, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Bilder, D.A.; Noel, J.K.; Baker, E.R.; Irish, W.; Chen, Y.; Merilainen, M.J.; Prasad, S.; Winslow, B.J. Systematic review and meta-analysis of neuropsychiatric symptoms and executive functioning in adults with phenylketonuria. Dev. Neuropsychol. 2016, 41, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Waisbren, S.E.; Noel, K.; Fahrbach, K.; Cella, C.; Frame, D.; Dorenbaum, A.; Levy, H. Phenylalanine blood levels and clinical outcomes in phenylketonuria: A systematic literature review and meta-analysis. Mol. Genet. Metab. 2007, 92, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lindegren, M.L.; Krishnaswami, S.; Fonnesbeck, C.; Reimschisel, T.; Fisher, J.; Jackson, K.; Shields, T.; Sathe, N.A.; McPheeters, M.L. Adjuvant Treatment for Phenylketonuria (PKU); AHRQ Comparative Effectiveness Reviews; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012.
- Anderson, P.J.; Leuzzi, V. White matter pathology in phenylketonuria. Mol. Genet. Metab. 2010, 99 (Suppl. 1), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Van Wegberg, A.M.J.; Macdonald, A.; Ahring, K.; BéLanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Brumm, V.; Bilder, D.; Waisbren, S. Psychiatric symptoms and disorders in phenylketonuria. Mol. Genet. Metab. 2010, 99, S59–S63. [Google Scholar] [CrossRef]
- Bilder, D.A.; Burton, B.K.; Coon, H.; Leviton, L.; Ashworth, J.; Lundy, B.D.; Vespa, H.; Bakian, A.V.; Longo, N. Psychiatric symptoms in adults with phenylketonuria. Mol. Genet. Metab. 2013, 108, 155–160. [Google Scholar] [CrossRef]
- Beckhauser, M.T.; Vieira, M.B.M.; Iser, B.M.; De Luca, G.R.; Masruha, M.R.; Lin, J.; Streck, E.L. Attention Deficit Disorder with Hyperactivity Symptoms in Early-Treated Phenylketonuria Patients. Iran J. Child Neurol. 2020, 14, 93–103. [Google Scholar] [PubMed]
- Bilder, D.A.; Kobori, J.A.; Cohen-Pfeffer, J.L.; Johnson, E.M.; Jurecki, E.R.; Grant, M.L. Neuropsychiatric comorbidities in adults with phenylketonuria: A retrospective cohort study. Mol. Genet. Metab. 2017, 121, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Manti, F.; Nardecchia, F.; Chiarotti, F.; Carducci, C.; Carducci, C.; Leuzzi, V. Psychiatric disorders in adolescent and young adult patients with phenylketonuria. Mol. Genet. Metab. 2016, 117, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.; O’Driscoll, M.; MacDonald, A. Living with Phenylketonuria: Lessons from the PKU community. Mol. Genet. Metab. Rep. 2018, 17, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.H.; Andrews-Hanna, J.R.; Wager, T.D.; Pizzagalli, D.A. Large-scale network dysfunction in major depressive dis-order: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry 2015, 72, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Hoedt, A.E.T.; de Sonneville, L.M.J.; Francois, B.; ter Horst, N.M.; Janssen, M.C.H.; Rubio-Gozalbo, M.E.; Wijburg, F.A.; Hollak, C.E.M.; Bosch, A.M. High phenylalanine levels directly affect mood and sustained attention in adults with phenylketonuria: A randomised, double-blind, placebo-controlled, crossover trial. J. Inherit. Metab. Dis. 2011, 34, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Pogarell, O.; Koch, W.; Karch, S.; Dehning, S.; Müller, N.; Tatsch, K.; Poepperl, G.; Möller, H.-J. Dopaminergic neurotransmission in patients with schizophrenia in relation to positive and negative symptoms. Pharmacopsychiatry 2012, 45 (Suppl. 1), S36–S41. [Google Scholar] [CrossRef]
- Okusaga, O.; Muravitskaja, O.; Fuchs, D.; Ashraf, A.; Hinman, S.; Giegling, I.; Hartmann, A.M.; Konte, B.; Friedl, M.; Schiffman, J.; et al. Elevated levels of plasma phenylalanine in schizophrenia: A guanosine triphosphate cyclohydrolase-1 metabolic pathway abnormality? PLoS ONE 2014, 9, e85945. [Google Scholar] [CrossRef]
- Bull, M.J. Down Syndrome. New Engl. J. Med. 2020, 382, 2344–2352. [Google Scholar] [CrossRef]
- Shimada, A. Profile of Down syndrome–associated malignancies: Epidemiology, clinical features and therapeutic aspects. Pediatr. Hematol. Onco.l J. 2021, 6, 63–72. [Google Scholar] [CrossRef]
- Spinazzi, N.A.; Santoro, J.D.; Pawlowski, K.; Anzueto, G.; Howe, Y.J.; Patel, L.R.; Baumer, N.T. Co-occurring conditions in children with Down syndrome and autism: A retrospective study. J. Neurodev. Disord. 2023, 15, 9. [Google Scholar] [CrossRef]
- Hamner, T.; Hepburn, S.; Zhang, F.; Fidler, D.; Rosenberg, C.R.; Robins, D.L.; Lee, N.R. Cognitive Profiles and Autism Symptoms in Comorbid Down Syndrome and Autism Spectrum Disorder. J. Dev. Behav. Pediatr. 2020, 41, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Nunnally, A.D.; Nguyen, V.; Anglo, C.; Sterling, A.; Edgin, J.; Sherman, S.; Berry-Kravis, E.; Soriano, L.d.H.; Abbeduto, L.; Thurman, A.J. Symptoms of Autism Spectrum Disorder in Individuals with Down Syndrome. Brain Sci. 2021, 11, 1278. [Google Scholar] [CrossRef]
- Fortea, J.; Zaman, S.H.; Hartley, S.; Rafii, M.S.; Head, E.; Carmona-Iragui, M. Alzheimer’s disease associated with Down syndrome: A genetic form of dementia. Lancet Neurol. 2021, 20, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Dykens, E.M.; Shah, B.; Sagun, J.; Beck, T.; King, B.H. Maladaptive behaviour in children and adolescents with Down’s syndrome. J. Intellect. Disabil. Res. 2002, 46, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Wilson, G.N. Behavioral assessment of children with Down syndrome using the Reiss psychopathology scale. Am. J. Med. Genet. Part A 2003, 118A, 210–216. [Google Scholar] [CrossRef]
- Rivelli, A.; Fitzpatrick, V.; Chaudhari, S.; Chicoine, L.; Jia, G.; Rzhetsky, A.; Chicoine, B. Prevalence of Mental Health Conditions among 6078 Individuals with Down Syndrome in the United States. J. Patient-Centered Res. Rev. 2022, 9, 58–63. [Google Scholar] [CrossRef]
- Dykens, E.M.; Shah, B.; Davis, B.; Baker, C.; Fife, T.; Fitzpatrick, J. Psychiatric disorders in adolescents and young adults with Down syndrome and other intellectual disabilities. J. Neurodev. Disord. 2015, 7, 9. [Google Scholar] [CrossRef]
- Townend, G.S.; Ehrhart, F.; van Kranen, H.J.; Wilkinson, M.; Jacobsen, A.; Roos, M.; Willighagen, E.L.; van Enckevort, D.; Evelo, C.T.; Curfs, L.M.G. MECP2 variation in Rett syndrome-An overview of current coverage of genetic and phenotype data within existing databases. Hum. Mutat. 2018, 39, 914–924. [Google Scholar] [CrossRef]
- Fu, C.; Armstrong, D.; Marsh, E.; Lieberman, D.; Motil, K.; Witt, R.; Standridge, S.; Nues, P.; Lane, J.; Dinkel, T.; et al. Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr. Open 2020, 4, e000717. [Google Scholar] [CrossRef]
- Kerr, A.M.; Armstrong, D.D.; Prescott, R.J.; Doyle, D.; Kearney, D.L. Rett syndrome: Analysis of deaths in the British survey. Eur. Child Adolesc. Psychiatry 1997, 6 (Suppl. 1), 71–74. [Google Scholar] [PubMed]
- Neul, J.L. The relationship of Rett syndrome and MECP2 disorders to autism. Dialog- Clin. Neurosci. 2012, 14, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Wulffaert, J.; Van Berckelaer-Onnes, I.A.; Scholte, E.M. Autistic disorder symptoms in Rett syndrome. Autism 2009, 13, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Djukic, A.; McDermott, M.V. Social Preferences in Rett Syndrome. Pediatr. Neurol. 2012, 46, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Young, D.J.; Bebbington, A.; Anderson, A.; Ravine, D.; Ellaway, C.; Kulkarni, A.; De Klerk, N.; Kaufmann, W.E.; Leonard, H. The diagnosis of autism in a female: Could it be Rett syndrome? Eur. J. Pediatr. 2008, 167, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Zappella, M.; Meloni, I.; Longo, I.; Canitano, R.; Hayek, G.; Rosaia, L.; Mari, F.; Renieri, A. Study of MECP2 gene in Rett syndrome variants and autistic girls. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2003, 119, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Berger-Sweeney, J. Cognitive deficits in Rett syndrome: What we know and what we need to know to treat them. Neurobiol. Learn. Mem. 2011, 96, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Tarquinio, D.C.; Hou, W.; Berg, A.; Kaufmann, W.E.; Lane, J.B.; Skinner, S.A.; Motil, K.J.; Neul, J.L.; Percy, A.K.; Glaze, D.G. Longitudinal course of epilepsy in Rett syndrome and related disorders. Brain 2016, 140, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Lanzarini, E.; Santosh, P. Autonomic dysfunction and sudden death in patients with Rett syndrome: A systematic review. J. Psychiatry Neurosci. 2020, 45, 150–181. [Google Scholar] [CrossRef]
- Buchanan, C.B.; Stallworth, J.L.; Scott, A.E.; Glaze, D.G.; Lane, J.B.; Skinner, S.A.; Tierney, A.E.; Percy, A.K.; Neul, J.L.; Kaufmann, W.E. Behavioral profiles in Rett syndrome: Data from the natural history study. Brain Dev. 2019, 41, 123–134. [Google Scholar] [CrossRef]
- Halbach, N.S.; Smeets, E.E.; Schrander-Stumpel, C.T.; Valk, H.H.v.S.L.d.; Maaskant, M.A.; Curfs, L.M. Aging in people with specific genetic syndromes: Rett syndrome. Am. J. Med. Genet. Part A 2008, 146, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, C.B.; Stallworth, J.L.; Joy, A.E.; Dixon, R.E.; Scott, A.E.; Beisang, A.A.; Benke, T.A.; Glaze, D.G.; Haas, R.H.; Heydemann, P.T.; et al. Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study. J. Neurodev. Disord. 2022, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Pober, B.R. Williams–Beuren Syndrome. N. Engl. J. Med. 2010, 362, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.A. Introduction: Williams syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010, 154C, 203–208. [Google Scholar] [CrossRef]
- Burn, J. Williams syndrome. J. Med. Genet. 1986, 23, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Grimm, T.; Wesselhoeft, H. Zur Genetik des Williams-Beuren-Syndroms und der isolierten Form der supravalvulären Aortenstenose. Untersuchungen von 128 Familien [The genetic aspects of Williams-Beuren syndrome and the isolated form of the supravalvular aortic stenosis. Investigation of 128 families (author’s transl)]. Z. Kardiol. 1980, 69, 168–172. [Google Scholar] [PubMed]
- Gosch, A.; Pankau, R. Social-emotional and behavioral adjustment in children with Williams-Beuren syndrome. Am. J. Med. Genet. 1994, 53, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, A.J.; Searcy, Y.M.; Jones, W.; Lord, C. Social interaction behaviors discriminate young children with autism and Williams syndrome. J. Am. Acad. Child Adolesc. Psychiatry 2007, 46, 323–331. [Google Scholar] [CrossRef]
- Järvinen, A.; Ng, R.; Bellugi, U. Autonomic response to approachability characteristics, approach behavior, and social functioning in Williams syndrome. Neuropsychologia 2015, 78, 159–170. [Google Scholar] [CrossRef]
- Niego, A.; Benítez-Burraco, A. Autism and Williams syndrome: Truly mirror conditions in the socio-cognitive domain? Int. J. Dev. Disabil. 2020, 68, 399–415. [Google Scholar] [CrossRef]
- Asada, K.; Itakura, S. Social phenotypes of autism spectrum disorders and Williams syndrome: Similarities and differences. Front. Psychol. 2012, 3, 247. [Google Scholar] [CrossRef] [PubMed]
- Mervis, C.B.; Klein-Tasman, B.P. Williams syndrome: Cognition, personality, and adaptive behavior. Ment. Retard. Dev. Disabil. Res. Rev. 2000, 6, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.H.; Lense, M.D.; Dykens, E.M. Longitudinal trajectories of intellectual and adaptive functioning in adolescents and adults with Williams syndrome. J. Intellect. Disabil. Res. 2016, 60, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.J.; Gray, K.M.; Howlin, P.; Taffe, J.; Tonge, B.J.; Einfeld, S.L. The developmental trajectory of disruptive behavior in Down syndrome, fragile X syndrome, Prader-Willi syndrome and Williams syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2015, 169, 182–187. [Google Scholar] [CrossRef] [PubMed]
- John, A.E.; Mervis, C.B. Sensory modulation impairments in children with Williams syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2010, 154C, 266–276. [Google Scholar] [CrossRef]
- Woodruff-Borden, J.; Kistler, D.J.; Henderson, D.R.; Crawford, N.A.; Mervis, C.B. Longitudinal course of anxiety in children and adolescents with Williams syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010, 154C, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Leyfer, O.T.; Woodruff-Borden, J.; Klein-Tasman, B.P.; Fricke, J.S.; Mervis, C.B. Prevalence of psychiatric disorders in 4 to 16-year-olds with Williams syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2006, 141B, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Green, T.; Avda, S.; Dotan, I.; Zarchi, O.; Basel-Vanagaite, L.; Zalsman, G.; Weizman, A.; Gothelf, D. Phenotypic psychiatric characterization of children with Williams syndrome and response of those with ADHD to methylphenidate treatment. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2012, 159B, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Dykens, E. Anxiety, fears, and phobias in persons with Williams syndrome. Dev. Neuropsychol. 2003, 23, 291–316. [Google Scholar]
- Riby, D.M.; Hanley, M.; Kirk, H.; Clark, F.; Little, K.; Fleck, R.; Janes, E.; Kelso, L.; O’kane, F.; Cole-Fletcher, R.; et al. The interplay between anxiety and social functioning in Williams syndrome. J. Autism Dev. Disord. 2014, 44, 1220–1229. [Google Scholar] [CrossRef]
- Burnside, R.D.; Pasion, R.; Mikhail, F.M.; Carroll, A.J.; Robin, N.H.; Youngs, E.L.; Gadi, I.K.; Keitges, E.; Jaswaney, V.L.; Papenhausen, P.R.; et al. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: A susceptibility region for neurological dysfunction including developmental and language delay. Hum. Genet. 2011, 130, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G. Clinical and genetic aspects of the 15q11.2 BP1–BP2 microdeletion disorder. J. Intellect. Disabil. Res. 2017, 61, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Rafi, S.K.; Butler, M.G. The 15q11.2 BP1-BP2 Microdeletion (Burnside–Butler) Syndrome: In Silico Analyses of the Four Coding Genes Reveal Functional Associations with Neurodevelopmental Phenotypes. Int. J. Mol. Sci. 2020, 21, 3296. [Google Scholar] [CrossRef] [PubMed]
- Nebel, R.A.; Zhao, D.; Pedrosa, E.; Kirschen, J.; Lachman, H.M.; Zheng, D.; Abrahams, B.S. Reduced CYFIP1 in human neural progenitors results in dysregulation of schizophrenia and epilepsy gene networks. PLoS ONE 2016, 11, e0148039. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.I.; Ulfarsson, M.O.; Stefansson, H.; Gustafsson, O.; Walters, G.B.; Linden, D.E.; Wilkinson, L.S.; Drakesmith, M.; Owen, M.J.; Hall, J.; et al. Reciprocal white matter changes associated with copy number variation at 15q11.2 BP1-BP2: A diffusion tensor imaging study. Biol. Psychiatry 2019, 85, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.M.; Butler, M.G. The 15q11.2 BP1-BP2 microdeletion syndrome: A review. Int. J. Mol. Sci. 2015, 16, 4068–4082. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, I.; Shafer, R.L.; Hossain, W.A.; Gunewardena, S.; Veatch, O.J.; Mosconi, M.W.; Butler, M.G. Genomic, Clinical, and Behavioral Characterization of 15q11.2 BP1-BP2 Deletion (Burnside-Butler) Syndrome in Five Families. Int. J. Mol. Sci. 2021, 22, 1660. [Google Scholar] [CrossRef]
- Butler, M.G. Prader–Willi Syndrome and Chromosome 15q11.2 BP1-BP2 Region: A Review. Int. J. Mol. Sci. 2023, 24, 4271. [Google Scholar] [CrossRef] [PubMed]
- Boyle, C.A.; Boulet, S.; Schieve, L.A.; Cohen, R.A.; Blumberg, S.J.; Yeargin-Allsopp, M.; Visser, S.; Kogan, M.D. Trends in the Prevalence of Developmental Disabilities in US Children, 1997–2008. Pediatrics 2011, 127, 1034–1042. [Google Scholar] [CrossRef]
- Ulfarsson, O.M.; Walters, G.B.; Gustafsson, O.; Steinberg, S.; Silva, A.; Doyle, O.M.; Brammer, M.; Gudbjartsson, D.F.; Arnarsdottir, S.; Jonsdottir, A.G.; et al. 15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. Transl. Psychiatry 2017, 7, e1109. [Google Scholar] [CrossRef]
- Das, D.K.; Tapias, V.; D’Aiuto, L.; Chowdari, K.V.; Francis, L.; Zhi, Y.; Ghosh, A.; Surti, U.; Tischfield, J.; Sheldon, M.; et al. Genetic and morphological features of human iPSC-Derived neurons with chromosome 15q11.2 (BP1-BP2) deletions. Mol. Neuropsychiatry 2015, 1, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Penzes, P.; Cahill, M.E.; Jones, K.A.; VanLeeuwen, J.-E.; Woolfrey, K.M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 2011, 14, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.R.; Howrigan, D.P.; Merico, D.; Thiruvahindrapuram, B.; Wu, W.; Greer, D.S.; Antaki, D.; Shetty, A.; Holmans, P.A.; Pinto, D.; et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 2017, 49, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.; Dietterich, T.E.; Harner, M.K.; Bruno, L.M.; Filmyer, D.M.; Shaughnessy, A.R.; Lichtenstein, M.L.; Britt, A.M.; Biondi, T.F.; Crowley, J.J.; et al. Increased Prevalence of Rare Copy Number Variants in Treatment-Resistant Psychosis. Schizophr. Bull. 2023, 49, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; McCutcheon, R.; Agid, O.; De Bartolomeis, A.; Van Beveren, N.J.; Birnbaum, M.L.; Bloomfield, M.A.; Bressan, R.A.; Buchanan, R.W.; Carpenter, W.T.; et al. Treatment-resistant schizophrenia: Treatment response and resistance in psy-chosis (TRRIP) Working Group Consensus guidelines on diagnosis and terminology. Am. J. Psychiatry 2017, 174, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.; Lichtenstein, M.; Harner, M.K.; Crowley, J.J.; Filmyer, D.M.; Lázaro-Muñoz, G.; Dietterich, T.E.; Bruno, L.M.; Shaughnessy, R.A.; Biondi, T.F.; et al. Treatment-resistant psychotic symptoms and the 15q11.2 BP1–BP2 (Burnside-Butler) deletion syndrome: Case report and review of the literature. Transl. Psychiatry 2020, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Mannini, L.; Cucco, F.; Quarantotti, V.; Krantz, I.D.; Musio, A. Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome. Hum. Mutat. 2013, 34, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Gillis, L.A.; McCallum, J.; Kaur, M.; DeScipio, C.; Yaeger, D.; Mariani, A.; Kline, A.D.; Li, H.-H.; Devoto, M.; Jackson, L.G.; et al. NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations. Am. J. Hum. Genet. 2004, 75, 610–623. [Google Scholar] [CrossRef] [PubMed]
- De Lange, C. Sur un type nouveau de degeneration (Typus Amstelodamensis). Arch. Ned. Enfant. 1933, 36, 713–719. [Google Scholar]
- Jackson, L.; Kline, A.D.; Barr, M.A.; Koch, S. de Lange syndrome: A clinical review of 310 individuals. Am. J. Med. Genet. 1993, 47, 940–946. [Google Scholar] [CrossRef]
- Moss, J.; Howlin, P.; Magiati, I.; Oliver, C. Characteristics of autism spectrum disorder in Cornelia de Lange syndrome. J. Child Psychol. Psychiatry 2012, 53, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.; Berg, K.; Moss, J.; Arron, K.; Burbidge, C. Delineation of behavioral phenotypes in genetic syndromes: Comparison of autism spectrum disorder, affect and hyperactivity. J. Autism Dev. Disord. 2011, 41, 1019–1032. [Google Scholar] [CrossRef]
- Srivastava, S.; Landy-Schmitt, C.; Clark, B.; Kline, A.D.; Specht, M.; Grados, M.A. Autism traits in children and adolescents with Cornelia de Lange syndrome. Am. J. Med. Genet. Part A 2014, 164A, 1400–1410. [Google Scholar] [CrossRef]
- Srivastava, S.; Clark, B.; Landy-Schmitt, C.; Offermann, E.A.; Kline, A.D.; Wilkinson, S.T.; Grados, M.A. Repetitive and Self-injurious Behaviors in Children with Cornelia de Lange Syndrome. J. Autism Dev. Disord. 2021, 51, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Cochran, L.; Moss, J.; Nelson, L.; Oliver, C. Contrasting age related changes in autism spectrum disorder phenome-nology in Cornelia de Lange, Fragile X, and Cri du Chat syndromes: Results from a 2.5 year follow-up. Am. J. Med. Genet. C Semin. Med. Genet. 2015, 169, 188–197. [Google Scholar] [CrossRef]
- Berney, T.P.; Ireland, M.; Burn, J. Behavioural phenotype of Cornelia de Lange syndrome. Arch. Dis. Child. 1999, 81, 333–336. [Google Scholar] [CrossRef]
- Verrotti, A.; Agostinelli, S.; Prezioso, G.; Coppola, G.; Capovilla, G.; Romeo, A.; Striano, P.; Parisi, P.; Grosso, S.; Spalice, A.; et al. Epilepsy in patients with Cornelia de Lange syndrome: A clinical series. Seizure 2013, 22, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Huisman, S.; Mulder, P.A.; Redeker, E.; Bader, I.; Bisgaard, A.; Brooks, A.; Cereda, A.; Cinca, C.; Clark, D.; Cormier-Daire, V.; et al. Phenotypes and genotypes in individuals with SMC1A variants. Am. J. Med. Genet. Part A 2017, 173A, 2108–2125. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.; Fitzpatrick, D.; Welham, A.; Penhallow, J.; Oliver, C. Genotype-phenotype correlations in Cornelia de Lange syn-drome: Behavioral characteristics and changes with age. Am. J. Med. Genet. 2017, 173A, 1566–1574. [Google Scholar] [CrossRef]
- Richards, C.; Moss, J.; O’farrell, L.; Kaur, G.; Oliver, C. Social Anxiety in Cornelia de Lange Syndrome. J. Autism Dev. Disord. 2009, 39, 1155–1162. [Google Scholar] [CrossRef]
- Moss, J.; Howlin, P.; Oliver, C. The assessment and presentation of Autism Spectrum Disorder and associated characteristics in individuals with severe intellectual disability and genetic syndromes. In The Oxford Handbook of Intellectual Disability and Development; Burack, J., Hodapp, R., Iarocci, G., Zigler, E., Eds.; Oxford Library of Psychology; Oxford University Press: Oxford, UK, 2011; Available online: http://eprints.bham.ac.uk/1431/ (accessed on 5 January 2024).
- Kline, A.D.; Grados, M.; Sponseller, P.; Levy, H.P.; Blagowidow, N.; Schoedel, C.; Rampolla, J.; Clemens, D.K.; Krantz, I.; Kimball, A.; et al. Natural history of aging in Cornelia de Lange syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2007, 145C, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, A.P.; Manzardo, A.M.; Butler, M.G. GeneAnalytics Pathways and Profiling of Shared Autism and Cancer Genes. Int. J. Mol. Sci. 2019, 20, 1166. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G. Pharmacogenetics and Psychiatric Care: A Review and Commentary. J. Ment. Health Clin. Psychol. 2018, 2, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Forster, J.; Duis, J.; Butler, M.G. Pharmacogenetic Testing of Cytochrome P450 Drug Metabolizing Enzymes in a Case Series of Patients with Prader-Willi Syndrome. Genes 2021, 12, 152. [Google Scholar] [CrossRef] [PubMed]
Genetic Syndrome | Gene(s) or Chromosome Region | Estimated Prevalence | Estimated Rate of ASD | Neuropsychological Correlates | Behavioral Concerns | Psychiatric Disorders |
---|---|---|---|---|---|---|
Fragile X Syndrome | FMR1 | 1 in 4000 male and 1 in 8000 female births | about 50% of males, 20% of females | IQ range from average to severe IDD, with IDD in 85% of males and 25% of females, with a general trajectory of decline in IQ score with increasing age in males, specific learning disorders are common | ADHD, self-injurious behaviors | Generalized anxiety disorder, specific phobia, social anxiety disorder or obsessive–compulsive disorder, depression |
Tuberous Sclerosis Complex | TSC1, TSC2 | 1 in 6000 births | 40% to 50% | IQ range from average to severe IDD, with IDD in 56%, with a greater likelihood of IDD with TSC2 mutations, seizures are common | ADHD, aggression, tantrums, eating problems, self-injurious behaviors, insomnia | Anxiety and depressive disorders |
Phelan–McDermid Syndrome | 22q13.3 del SHANK3 | 2.5–10 per million births | greater than 90% | Moderate-to-profound IDD is typical, seizures as well as periods of developmental regression or catatonia are common | Stereotypies, aggressive behaviors, recurrent self-injury, and repetitive self-stimulatory behaviors | Anxiety disorders, obsessive–compulsive disorder, depressive disorders, bipolar mood disorder, and schizophrenia spectrum disorders |
Prader–Willi Syndrome | 15q11-q13 SNRPN | 1/20,000–1/30,000 births | about 25% | Mild-to-moderate IDD is typical, those with mUPD compared with DEL have on average higher cognitive skills. Attentional deficits, cognitive rigidity, deficiencies in basic language skills, and impaired visuospatial abilities are common | Hyperphagia-driven behaviors (e.g., food obsessions, hoarding, or foraging), temper tantrums, aggression, self-injurious behaviors, and stubbornness, rigid inflexibility, repetitive, compulsive, ritualistic, or manipulative behaviors | Anxiety, depression, bipolar disorder, schizophrenia, with psychosis including a phenomenon called ‘cycloid psychosis’, much more common in the mUPD genetic subtype |
Angelman Syndrome | 15q11-q13 UBE3A | 1 in 15,000 births | about 30% | Severe IDD and seizures, with maternal deletion of 15q11-q13 most often associated with greater limitations in global development | ADHD, uncontrollable bouts of laughter can escalate into a nearly convulsive state, repetitive and stereotyped behaviors with the potential for causing self-injury | Anxiety including separation anxiety and specific phobias such as fear of noise or crowds |
DiGeorge Syndrome | 22q11.2 del (dozens of related genes, e.g., TBX1, PRODH, COMT, TUPLE1) | 1 in 6000 births | up to 50% | IQ ranges from average to mild IDD, specific learning disorders are common, with familial deletions showing a more severely affected phenotype compared to de novo deletions, seizures and Parkinson disease are common | ADHD, overactive, impulsive, irritable, emotionally labile, rigid, inflexible, shy, withdrawn, aggressive, disinhibited | Anxiety disorders including generalized anxiety disorder, separation anxiety disorder, social anxiety, panic disorder, specific phobias, and obsessive–compulsive disorder, and a remarkably elevated risk for psychosis, with psychotic disorders affecting 10% of adolescents and 30% of adults |
Phenyl- ketonuria | PAH | 1 in 12,000 births | 3% to 6% | IQ scores mostly in average range with early treatment though with increased rates of learning problems. Untreated PKU is characterized by mild-to-profound IDD microcephaly, seizures, motor deficits, developmental delays | ADHD, school problems, decreased motivation, less social competence, irritability, and low self-esteem | Anxiety disorders including generalized anxiety, panic disorder, specific phobias, and obsessive–compulsive disorder, mood disorders including depression, and psychotic disorders including schizophrenia spectrum disorder |
Down Syndrome | Trisomy 21 | 1 in 1000 pregnancies | up to 40% | Most often moderate IDD, with range from mild to severe, with the risk for seizures and early onset dementia increasing with age, with about 15% at age 40 years or older developing Alzheimer disease | Externalizing behaviors (aggression, conduct problems), internalizing behaviors (social withdrawal, secretiveness), impulsivity, attention problems (despite a lower incidence of ADHD per se), irritability, self-control, emotional withdrawal | Anxiety disorders including obsessive–compulsive disorder, mood disorders including depression, and psychotic disorders including schizophrenia, with females having a greater risk for psychotic disorders compared to other cohorts in which there is usually a lack of gender differences reported in psychosis |
Rett Syndrome | MECP2 | 1 in 10,000 female births | about 50% | Low average IQ to severe IDD, early neurological regression that affects motor, cognitive, and communication skills, epilepsy in most, increased risk of sudden death due to autonomic dysregulation | Internalizing (social withdrawal, anxiety, depression, mood lability) and externalizing (aggression), self-injurious behaviors, unprovoked outbursts of screaming, laughing, or uncontrollable crying spells | Social anxiety and severe persistent anxiety with generalized tension and panic attacks, generally more severe in individuals with mild MECP2 pathogenic variants, when compared to participants with either moderate or severe pathogenic variants |
Williams Syndrome | 7q11.23 del (dozens of related genes, e.g., ELN) | 1 in 20,000 births | about 20% | Mild-to-moderate IDD or learning disability, with strength in language, yet extreme weakness in visuospatial construction, problems with sensory integration, adaptive functioning declining over time | Attention problems, poor emotional self-control, low frustration tolerance, temper tantrums, and physical aggression | Social anxiety, separation anxiety, generalized anxiety disorder, obsessive–compulsive disorder, and specific phobias (often relating to noise stimuli and blood, injury, and injections, in contrast to more common phobias reported in typically developing peers) |
Burnside–Butler Syndrome | 15q11.2 BP1-BP2 del (NIPA1, NIPA2, CYFIP1, TUBGCP5) | Unknown | up to 50% | IQ ranges from average in about one-third to global developmental delay with IDD in two-thirds, increased incidence of memory problems, learning disorders, and seizures | ADHD, oppositional defiant disorder, self-injurious behaviors | Obsessive–compulsive disorder, psychotic disorders including schizophrenia |
Cornelia de Lange Syndrome | 5p13.2 (5 genes-NIPBL, RAD21, SMC3, HDAC8, SNC1A) | 1 in 10,000 to 30,000 births | up to 80% | Range from borderline intellectual functioning to profound IDD, with severe verbal communication deficits. Adaptive behavior is significantly impaired, and tends to worsen with age, more markedly in those with variants in NIPBL. Seizures are common | ADHD, hyperactivity, self-injury, daily aggression, and sleep disturbances, which correlate closely with the degree of learning impairment. Repetitive behaviors including ‘circling, twirling, whirling’ and hand posturing, self-injurious behaviors | Anxiety disorders including social anxiety with selective mutism, obsessive–compulsive behaviors which tend to worsen with age |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genovese, A.C.; Butler, M.G. Behavioral and Psychiatric Disorders in Syndromic Autism. Brain Sci. 2024, 14, 343. https://doi.org/10.3390/brainsci14040343
Genovese AC, Butler MG. Behavioral and Psychiatric Disorders in Syndromic Autism. Brain Sciences. 2024; 14(4):343. https://doi.org/10.3390/brainsci14040343
Chicago/Turabian StyleGenovese, Ann C., and Merlin G. Butler. 2024. "Behavioral and Psychiatric Disorders in Syndromic Autism" Brain Sciences 14, no. 4: 343. https://doi.org/10.3390/brainsci14040343