Exploring Inner Ear and Brain Connectivity through Perilymph Sampling for Early Detection of Neurological Diseases: A Provocative Proposal
Abstract
:1. Introduction
2. Cerebrospinal Fluid
3. Perilymph
4. The Inner Ear
5. The Potential Bridging Role of Perilymph in Future Neuro-Otological Practice
6. Risk, Limitations, and Solution for Perilymph Sampling
7. Procedures and Techniques for Perilymph Sampling via a Microneedle
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Sabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016, 139 (Suppl. 2), 136–153. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Koyama, Y.; Shimada, S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front. Aging Neurosci. 2022, 14, 903455. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia states and nomenclature: A field at its crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef]
- O’Malley, J.T.; Nadol, J.B., Jr.; McKenna, M.J. Anti CD163+, Iba1+, and CD68+ Cells in the Adult Human Inner Ear: Normal Distribution of an Unappreciated Class of Macrophages/Microglia and Implications for Inflammatory Otopathology in Humans. Otol. Neurotol. 2016, 37, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Di Stadio, A.; De Luca, P.; Koohi, N.; Kaski, D.; Ralli, M.; Giesemann, A.; Hartung, H.P.; Altieri, M.; Messineo, D.; Warnecke, A.; et al. Neuroinflammatory disorders of the brain and inner ear: A systematic review of auditory function in patients with migraine, multiple sclerosis, and neurodegeneration to support the idea of an innovative window of discovery. Front. Neurol. 2023, 14, 1204132. [Google Scholar] [CrossRef]
- Bisogno, A.; Scarpa, A.; Di Girolamo, S.; De Luca, P.; Cassandro, C.; Viola, P.; Ricciardiello, F.; Greco, A.; Vincentiis, M.; Ralli, M.; et al. Hearing Loss and Cognitive Impairment: Epidemiology, Common Pathophysiological Findings, and Treatment Considerations. Life 2021, 11, 1102. [Google Scholar] [CrossRef]
- Warnecke, A.; Prenzler, N.K.; Schmitt, H.; Daemen, K.; Keil, J.; Dursin, M.; Lenarz, T.; Falk, C.S. Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea. Front. Neurol. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.; Warnecke, A.; Lenarz, T.; Schmitt, H.; Gunewardena, S.; Staecker, H. Feasibility of microRNA profiling in human inner ear perilymph. Neuroreport 2018, 29, 894–901. [Google Scholar] [CrossRef]
- Wichova, H.; Shew, M.; Nelson-Brantley, J.; Warnecke, A.; Prentiss, S.; Staecker, H. MicroRNA Profiling in the Perilymph of Cochlear Implant Patients: Identifying Markers that Correlate to Audiological Outcomes. J. Am. Acad. Audiol. 2021, 32, 627–635. [Google Scholar]
- Yang, J.; Hamade, M.; Wu, Q.; Wang, Q.; Axtell, R.; Giri, S.; Mao-Draayer, Y. Current and Future Biomarkers in Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 5877. [Google Scholar] [CrossRef]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.H.; Tennagels, S.; Gold, R.; Gerwert, K.; Beyer, L.; Tönges, L. Update on CSF Biomarkers in Parkinson’s Disease. Biomolecules 2022, 12, 329. [Google Scholar] [CrossRef]
- Salt, A.N.; Kellner, C.; Hale, S. Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hear. Res. 2003, 182, 24–33. [Google Scholar] [CrossRef]
- Peter, M.S.; Warnecke, A.; Staecker, H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. J. Clin. Med. 2022, 11, 316. [Google Scholar] [CrossRef]
- Sakka, L.; Coll, G.; Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011, 128, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Spector, R.; Robert Snodgrass, S.; Johanson, C.E. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp. Neurol. 2015, 273, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Damkier, H.H.; Brown, P.D.; Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 2013, 93, 1847–1892. [Google Scholar] [CrossRef]
- Damkier, H.H.; Brown, P.D.; Praetorius, J. Epithelial pathways in choroid plexus electrolyte transport. Physiology 2010, 25, 239–249. [Google Scholar] [CrossRef]
- Blennow, K.; Zetterberg, H. The past and future of Alzheimer’s disease fluid biomarkers. J. Alzehimers Dis. 2018, 62, 1125–1140. [Google Scholar] [CrossRef]
- Koníčková, D.; Menšíková, K.; Tučková, L.; Hényková, E.; Strnad, M.; Friedecký, D.; Stejskal, D.; Matěj, R.; Kaňovský, P. Biomarkersof Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines 2022, 10, 1760. [Google Scholar] [CrossRef]
- Huang, J.; Khademi, M.; Fugger, L.; Lindhe, Ö.; Novakova, L.; Axelsson, M.; Malmeström, C.; Constantinescu, C.; Lycke, J.; Piehl, F.; et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc. Natl. Acad. Sci. USA 2020, 117, 12952–12960. [Google Scholar] [CrossRef]
- Olesen, M.N.; Soelberg, K.; Debrabant, B.; Nilsson, A.C.; Lillevang, S.T.; Grauslund, J.; Brandslund, I.; Madsen, J.S.; Paul, F.; Smith, T.J.; et al. Cerebrospinal fluid biomarkers for predicting development of multiple sclerosis in acute optic neuritis: A population-based prospective cohort study. J. Neuroinflamm. 2019, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Bosher, S.K.; Warren, R.L. Observations on the electrochemistry of the cochlear endolymph of the rat: A quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc. R. Soc. Lond. B Biol. Sci. 1968, 171, 227–247. [Google Scholar] [CrossRef] [PubMed]
- Sauer, G.; Richter, C.P.; Klinke, R. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph. Hear. Res. 1999, 129, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ferrary, E.; Tran Ba Huy, P.; Roinel, N.; Bernard, C.; Amiel, C. Calcium and the inner ear fluids. Acta Otolaryngol. Suppl. 1988, 460, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, K. The blood-perilymph barrier. Arch. Otorhinolaryngol. 1980, 228, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Mavel, S.; Lefèvre, A.; Bakhos, D.; Dufour-Rainfray, D.; Blasco, H.; Emond, P. Validation of metabolomics analysis of human perilymph fluid using liquid chromatography-mass spectroscopy. Hear. Res. 2018, 367, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Edvardsson Rasmussen, J.; Laurell, G.; Rask-Andersen, H.; Bergquist, J.; Eriksson, P.O. The proteome of perilymph in patients with vestibular schwannoma. A possibility to identify biomarkers for tumor associated hearing loss? PLoS ONE 2018, 13, e0198442. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-C.; Ren, Y.; Lysaght, A.C.; Kao, S.-Y.; Stankovic, K.M. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS ONE 2019, 14, e0218292. [Google Scholar] [CrossRef]
- Trinh, T.T.; Blasco, H.; Emond, P.; Andres, C.; Lefevre, A.; Lescanne, E.; Bakhos, D. Relationship between Metabolomics Profile of Perilymph in Cochlear-Implanted Patients and Duration of Hearing Loss. Metabolites 2019, 9, 262. [Google Scholar] [CrossRef]
- de Vries, I.; Schmitt, H.; Lenarz, T.; Prenzler, N.; Alvi, S.; Staecker, H.; Durisin, M.; Warnecke, A. Detection of BDNF-Related Proteins in Human Perilymph in Patients With Hearing Loss. Front. Neurosci. 2019, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.; Wichova, H.; St Peter, M.; Warnecke, A.; Staecker, H. Distinct MicroRNA Profiles in the Perilymph and Serum of Patients With Menière’s Disease. Front. Neurol. 2021, 12, 646928. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, H.A.; Pich, A.; Prenzler, N.K.; Lenarz, T.; Harre, J.; Staecker, H.; Durisin, M.; Warnecke, A. Personalized Proteomics for Precision Diagnostics in Hearing Loss: Disease-Specific Analysis of Human Perilymph by Mass Spectrometry. ACS Omega 2021, 6, 21241–21254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Dieken, A.; Staecker, H.; Schmitt, H.; Harre, J.; Pich, A.; Roßberg, W.; Lenarz, T.; Durisin, M.; Warnecke, A. Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas. Front. Cell Dev. Biol. 2022, 10, 847157. [Google Scholar] [CrossRef] [PubMed]
- Thomson, S.; Madani, G. The windows of the inner ear. Clin. Radiol. 2014, 69, e146–e152. [Google Scholar] [CrossRef] [PubMed]
- Stenfelt, S.; Hato, N.; Goode, R.L. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J. Acoust. Soc. Am. 2004, 115, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Persson, F.; Bjar, N.; Hermansson, A.; Gisselsson-Solen, M. Hearing loss after bacterial meningitis, a retrospective study. Acta Otolaryngol. 2022, 142, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Worsøe, L.; Cayé-Thomasen, P.; Brandt, C.T.; Thomsen, J.; Østergaard, C. Factors associated with the occurrence of hearing loss after pneumococcal meningitis. Clin. Infect. Dis. 2010, 51, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yang, F.; Zhang, J.; Xu, L.; Jia, L.; Zhao, D.; Liu, W.; Li, H. Case Report: Anti-NMDA Receptor Encephalitis With Bilateral Hearing Loss as the Initial Symptom. Front. Neurol. 2021, 12, 648911. [Google Scholar] [CrossRef]
- Di Stadio, A.; Ralli, M. Systemic Lupus Erythematosus and hearing disorders: Literature review and meta-analysis of clinical and temporal bone findings. J. Int. Med. Res. 2017, 45, 1470–1480. [Google Scholar] [CrossRef]
- Sturman, C.J.; Frampton, C.M.; Ten Cate, W.J. Hearing Loss Asymmetry due to Chronic Occupational Noise Exposure. Otol. Neurotol. 2018, 39, e627–e634. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Xu, K. Macrophage-related immune responses in inner ear: A potential therapeutic target for sensorineural hearing loss. Front. Neurosci. 2024, 17, 1339134. [Google Scholar] [CrossRef] [PubMed]
- Di Stadio, A.; Dipietro, L.; Ralli, M.; Meneghello, F.; Minni, A.; Greco, A.; Stabile, M.R.; Bernitsas, E. Sudden hearing loss as an early detector of multiple sclerosis: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4611–4624. [Google Scholar] [PubMed]
- Di Stadio, A.; Ralli, M. Inner ear involvement in multiple sclerosis: An underestimated condition? Mult. Scler. 2018, 24, 1264–1265. [Google Scholar] [CrossRef] [PubMed]
- Adunka, O.F.; Mlot, S.; Suberman, T.A.; Campbell, A.P.; Surowitz, J.; Buchman, C.A.; Fitzpatrick, D.C. Intracochlear Recordings of Electrophysiological Parameters Indicating Cochlear Damage. Otol. Neurotol. 2010, 31, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, H.A.; Pich, A.; Schröder, A.; Scheper, V.; Lilli, G.; Reuter, G.; Lenarz, T. Proteome Analysis of Human Perilymph Using an Intraoperative Sampling Method. J. Proteome Res. 2017, 16, 1911–1923. [Google Scholar] [CrossRef] [PubMed]
- Early, S.; Moon, I.S.; Bommakanti, K.; Hunter, I.; Stankovic, K.M. A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear. Hear. Res. 2019, 381, 107761. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.; Aksit, A.; Szeto, B.; Feng, S.J.; Ji, X.; Soni, R.K.; Olson, E.S.; Kysar, J.W.; Lalwani, A.K. Anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the round window membrane. Hear. Res. 2023, 432, 108739. [Google Scholar] [CrossRef]
- Szeto, B.; Aksit, A.; Valentini, C.; Yu, M.; Werth, E.G.; Goeta, S.; Tang, C.; Brown, L.M.; Olson, E.S.; Kysar, J.W.; et al. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear. Res. 2021, 400, 108141. [Google Scholar] [CrossRef]
- Leong, S.; Feng, S.J.; Aksit, A.; Olson, E.S.; Kysar, J.W.; Lalwani, A.K. Microneedles Facilitate Small-Volume Intracochlear Delivery Without Physiologic Injury in Guinea Pigs. Otol. Neurotol. 2023, 44, 513–519. [Google Scholar] [CrossRef]
- Fujita, T.; Shin, J.E.; Cunnane, M.; Fujita, K.; Henein, S.; Psaltis, D.; Stankovic, K.M. Surgical Anatomy of the Human Round Window Region: Implication for Cochlear Endoscopy Through the External Auditory Canal. Otol. Neurotol. 2016, 37, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Cardoso, L.; Lalwani, A.K.; Kysar, J.W. A dual wedge microneedle for sampling of perilymph solution via round window membrane. Biomed. Microdevices 2016, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Aksit, A.; Rastogi, S.; Nadal, M.L.; Parker, A.M.; Lalwani, A.K.; West, A.C.; Kysar, J.W. Drug delivery device for the inner ear: Ultra-sharp fully metallic microneedles. Drug Deliv. Transl. Res. 2021, 11, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Aksit, A.; Szeto, B.; Li, R.L.; Lalwani, A.K.; Kysar, J.W. Pyrolyzed Ultrasharp Glassy Carbon Microneedles. Adv. Eng. Mater. 2022, 24, 2270046. [Google Scholar] [CrossRef] [PubMed]
- Emre, I.E.; Cingi, C.; Bayar Muluk, N.; Nogueira, J.F. Endoscopic ear surgery. J. Otol. 2020, 15, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.; Grammatica, A.; Alicandri-Ciufelli, M.; Genovese, E.; Presutti, L. Endoscopic cochlear implant procedure. Eur. Arch. Otorhinolaryngol. 2014, 271, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.; Carner, M.; Rubini, A.; Nogueira, J.F.; Masotto, B.; Alicandri-Ciufelli, M.; Presutti, L. The Fully Endoscopic Acoustic Neuroma Surgery. Otolaryngol. Clin. N. Am. 2016, 49, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Attikuris Medical. Available online: http://www.attikourismedical.com/product/endoscopy-surgical/surgical/semirigid-micro-endoscopy-polydiagnost/ (accessed on 10 May 2024).
- Mood, Z.A.; Daniel, S.J. Use of a microendoscope for transtympanic drug delivery to the round window membrane in chinchillas. Otol. Neurotol. 2012, 33, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
- Di Stadio, A.; Ralli, M.; Roccamatisi, D.; Scarpa, A.; Della Volpe, A.; Cassandro, C.; Ricci, G.; Greco, A.; Bernitsas, E. Hearing loss and dementia: Radiologic and biomolecular basis of their shared characteristics. A systematic review. Neurol. Sci. 2021, 42, 579–588. [Google Scholar] [CrossRef]
- Paciello, F.; Pisani, A.; Rolesi, R.; Montuoro, R.; Mohamed-Hizam, V.; Boni, G.; Ripoli, C.; Galli, J.; Sisto, R.; Fetoni, A.R.; et al. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity. J. Neuroinflamm. 2024, 21, 4. [Google Scholar] [CrossRef]
- Ma, J.H.; Lee, E.; Yoon, S.H.; Min, H.; Oh, J.H.; Hwang, I.; Sung, Y.; Ryu, J.H.; Bok, J.; Yu, J.W. Therapeutic effect of NLRP3 inhibition on hearing loss induced by systemic inflammation in a CAPS-associated mouse model. EBioMedicine 2022, 82, 104184. [Google Scholar] [CrossRef] [PubMed]
- Severini, C.; Barbato, C.; Di Certo, M.G.; Gabanella, F.; Petrella, C.; Di Stadio, A.; de Vincentiis, M.; Polimeni, A.; Ralli, M.; Greco, A. Alzheimer’s Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr. Neuropharmacol. 2021, 19, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Sagers, J.E.; Sahin, M.I.; Moon, I.; Ahmed, S.G.; Stemmer-Rachamimov, A.; Brenner, G.J.; Stankovic, K.M. NLRP3 inflammasome activation in human vestibular schwannoma: Implications for tumor-induced hearing loss. Hear. Res. 2019, 381, 107770. [Google Scholar] [CrossRef] [PubMed]
- Voet, S.; Prinz, M.; van Loo, G. Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends Mol. Med. 2019, 25, 112–123. [Google Scholar] [CrossRef]
- Noble, K.V.; Liu, T.; Matthews, L.J.; Schulte, B.A.; Lang, H. Age-Related Changes in Immune Cells of the Human Cochlea. Front. Neurol. 2019, 10, 895. [Google Scholar] [CrossRef]
CSF Biomarkers | MS | AD |
---|---|---|
TNF-α | x | |
IL-10 | x | |
IL-1β | x | x |
NF-L | x | x |
IL-9 | x | |
Apolipoprotein C-I | x | |
Apolipoprotein A-II | x | |
Anti-NF-L antibodies | x | |
Fibulin 1 | x | |
A1AC | x | |
A2MG | x | |
IgG oligoclonal bands (OCB) | x | |
k-FLC | x | |
k-FLC index | x | |
CXCL13 | x | |
YKL-40 (CHI3L1) | x | |
GFAP | x | x |
miR-142-3p | x | |
MCP-1 (CCL2) | x | |
CXCL10 | x | |
BACE1 | x | |
Tau protein (t-tau) | x | |
Aβ40 | x | |
Aβ42 | x | |
TREM2 | x |
Years | Number of Subjects | Cause of Hearing Loss | Perilympatic Components Analyzed | Results | |
---|---|---|---|---|---|
Mavel et al. [27] | 2018 | 23 | CMV; trauma; MD | Metabolome | A fingerprinting was obtained from 98 robust metabolites |
Edvardsson Rasmussen et al. [28] | 2018 | 16 | VS | Proteome | Alpha-2-HS-glycoprotein, P02765, was shown to be an independent variable for tumor-associated hearing loss |
Lin et al. [29] | 2019 | 5 | MD | Proteome | A total of 228 proteins were identified that were common across the samples from patients with Meniere’s disease, showing 38 proteins with significantly differential abundance |
Thrin et al. [30] | 2019 | 19 | n/a | Metabolome | A total of 106 different metabolites were identified; metabolomic profiles were significantly different for subjects with ≤12 or >12 years of hearing loss |
de Vires et al. [31] | 2019 | 38 | MD, CMV, EVA, CHARGE, meningitis | Proteome | (1) BDNF is expressed in cochleartissue in normal hearing individuals; (2) there was overall a decreased level of expression of BDNF-regulated proteins in profoundly hearing-impaired patients compared to patients with some residual hearing |
Warnecke et al. [7] | 2019 | 43 | n/a | Proteome | Multiplex protein analyses are feasible in very small samples (1 microL or less); higher IGFBP1 levels were measured in patients with complete loss of auditory function compared to patients with residual hearing |
Shew et al. [32] | 2021 | 10 | MD | miRNA | In the perilymph of patients with MD, authors identified 16 differentially expressed miRNAs |
Schmitt et al. [33] | 2021 | 31 | MD, OS, EVA | Proteome | Overall, 895 different proteins were found in allsamples; based on quantification values, a disease-specific protein distributionin the perilymph was demonstrated |
van Dieken et al. [34] | 2022 | 38 | n/a | Proteome | Authors proposed a human protein atlas of the cochlea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stadio, A.; Ralli, M.; Kaski, D.; Koohi, N.; Gioacchini, F.M.; Kysar, J.W.; Lalwani, A.K.; Warnecke, A.; Bernitsas, E. Exploring Inner Ear and Brain Connectivity through Perilymph Sampling for Early Detection of Neurological Diseases: A Provocative Proposal. Brain Sci. 2024, 14, 621. https://doi.org/10.3390/brainsci14060621
Di Stadio A, Ralli M, Kaski D, Koohi N, Gioacchini FM, Kysar JW, Lalwani AK, Warnecke A, Bernitsas E. Exploring Inner Ear and Brain Connectivity through Perilymph Sampling for Early Detection of Neurological Diseases: A Provocative Proposal. Brain Sciences. 2024; 14(6):621. https://doi.org/10.3390/brainsci14060621
Chicago/Turabian StyleDi Stadio, Arianna, Massimo Ralli, Diego Kaski, Nehzat Koohi, Federico Maria Gioacchini, Jeffrey W. Kysar, Anil K. Lalwani, Athanasia Warnecke, and Evanthia Bernitsas. 2024. "Exploring Inner Ear and Brain Connectivity through Perilymph Sampling for Early Detection of Neurological Diseases: A Provocative Proposal" Brain Sciences 14, no. 6: 621. https://doi.org/10.3390/brainsci14060621