COCHLEA: Longitudinal Cognitive Performance of Older Adults with Hearing Loss and Cochlear Implants at 4.5-Year Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Demographic Characteristics
2.2.2. Cognitive Performance and Dementia Diagnosis
2.2.3. Audiological Assessment
2.2.4. Speech Perception Benefit
2.2.5. Genetic Screening
2.2.6. Medical Health History
2.2.7. Mood
2.2.8. Living Arrangements/Living Alone/Social Isolation
2.2.9. Health-Related Quality of Life
2.3. Statistical Analysis
2.3.1. Cognitive Trajectories of the CI and AIBL Groups
2.3.2. Device Use and Cognitive Trajectories
2.3.3. Comparative Cognitive Performance: CI Versus AIBL Groups
2.3.4. Comparative Cognitive Performance: CI vs. AIBL Group with HL Only
2.3.5. Sensitivity Analysis of Differences in Education Between the CI and AIBL Groups
2.3.6. Relations Between Baseline and Follow-Up Cognitive Performance
3. Results
3.1. Participant Characteristics
3.2. CI Usage and Speech Perception Benefits
3.3. Cognitive Performance
3.3.1. Baseline Cognitive Performance
3.3.2. Cognitive Trajectories of the CI and AIBL Groups
3.3.3. Device Use and Cognitive Trajectories
3.3.4. Comparative Cognitive Performance: CI Versus AIBL Groups
3.3.5. Sensitivity Analyses for Differences in Education Between the CI and AIBL Groups
3.3.6. Relations Between Baseline and Follow-Up Cognitive Performance
3.3.7. The Effect of Attrition on Cognitive Performance Outcomes
3.3.8. Dementia Outcomes
4. Discussion
4.1. Strengths and Limitations
4.2. Future Directions
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivations of Trajectory Equations
Appendix B. Analysis of Withdrawals
Reason | Baseline | 18 mth | 36 mth | 54 mth |
---|---|---|---|---|
Incomplete baseline | 12 | 0 | 0 | 0 |
Unresponsive to follow-up | 5 | 0 | 0 | 0 |
Death | 2 | 2 | 1 | 0 |
Dementia/neurological deterioration | 0 | 0 | 1 | 0 |
Ill health (physical) | 5 | 3 | 0 | 0 |
Poor CI outcomes/non-user | 5 | 1 | 0 | 0 |
Other | 4 | 0 | 2 | 2 |
Inappropriate recruit | 2 | 0 | 0 | 0 |
Closure of test site | 5 | 3 | 0 | 0 |
Total | 40 | 9 | 4 | 2 |
GML | ONB | DET | IDN | OCL | |
---|---|---|---|---|---|
Intercept | 60.562 | 2.966 | 2.655 | 2.797 | 0.924 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
18 mth | −9.412 | −0.024 | −0.001 | −0.004 | −0.004 |
p | 0.036 * | 0.050 | 0.965 | 0.695 | 0.796 |
36 mth | −15.554 | −0.039 | −0.021 | −0.026 | −0.020 |
p | 0.015 * | 0.004 * | 0.245 | 0.028 | 0.331 |
54 mth | −14.322 | −0.055 | −0.004 | −0.019 | 0.008 |
p | 0.024 * | 0.002 * | 0.847 | 0.134 | 0.759 |
Age-70 | 1.022 | 0.004 | 0.005 | 0.003 | 0.001 |
p | 0.160 | 0.036 | 0.059 | 0.045 | 0.678 |
Female | 12.973 | −0.023 | −0.036 | −0.025 | 0.040 |
p | 0.141 | 0.324 | 0.130 | 0.151 | 0.103 |
Higher Ed | −6.009 | −0.023 | −0.040 | −0.018 | −0.009 |
p | 0.438 | 0.300 | 0.088 | 0.271 | 0.690 |
R2 | 0.10 | 0.12 | 0.13 | 0.13 | 0.05 |
Mean dep | 59.00 | 2.94 | 2.63 | 2.78 | 0.94 |
SD dep | 30.97 | 0.08 | 0.10 | 0.06 | 0.10 |
References
- WHO. World Report on Hearing; Geneva. 2021. Available online: https://www.who.int/publications/i/item/world-report-on-hearing (accessed on 17 September 2024).
- Haile, L.M.; Kamenov, K.; Briant, P.S.; Orji, A.U.; Steinmetz, J.D.; Abdoli, A.; Abdollahi, M.; Abu-Gharbieh, E.; Afshin, A.; Ahmed, H. Hearing loss prevalence and years lived with disability, 1990–2019: Findings from the Global Burden of Disease Study 2019. Lancet 2021, 397, 996–1009. [Google Scholar] [CrossRef]
- Loughrey, D.G.; Kelly, M.E.; Kelley, G.A.; Brennan, S.; Lawlor, B.A. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: A systematic review and meta-analysis. JAMA Otolaryngol.—Head Neck Surg. 2018, 144, 115–126. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet Standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Metter, E.; O’Brien, R.; Resnick, S.; Zonderman, A.; Ferrucci, L. Hearing loss and incident dementia. Arch. Neurol. 2011, 68, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.-C.; Proctor, D.; Soni, J.; Pikett, L.; Livingston, G.; Lewis, G.; Schilder, A.; Bamiou, D.; Mandavia, R.; Omar, R.; et al. Adult-onset hearing loss and incident cognitive impairment and dementia—A systematic review and meta-analysis of cohort studies. Ageing Res. Rev. 2024, 98, 102346. [Google Scholar] [CrossRef] [PubMed]
- National Council on Aging. Hearing Loss Statistics 2024: More Common. Than You Might. Think. 2023. Available online: https://www.ncoa.org/adviser/hearing-aids/hearing-loss-statistics/ (accessed on 27 May 2024).
- Gopinath, B.; Wang, J.J.; Schneider, J.; Burlutsky, G.; Snowdon, J.; McMahon, C.M.; Leeder, S.R.; Mitchell, P. Depressive Symptoms in Older Adults with Hearing Impairments: The Blue Mountains Study. J. Am. Geriatr. Soc. 2009, 57, 1306–1308. [Google Scholar] [CrossRef]
- Huang, C.-Q.; Dong, B.-R.; Lu, Z.-C.; Yue, J.-R.; Liu, Q.-X. Chronic diseases and risk for depression in old age: A meta-analysis of published literature. Ageing Res. Rev. 2010, 9, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.-G. Trends in Cochlear Implants. Trends Amplif. 2004, 8, 1–34. [Google Scholar] [CrossRef]
- Dowell, R.C. Evidence about the effectiveness of cochlear implants for adults. In Evidence-Based Practice in Audiology; Plural Publishing: San Diego, CA, USA, 2012; pp. 141–165. [Google Scholar]
- Budenz, C.L.; Cosetti, M.K.; Coelho, D.H.; Birenbaum, B.; Babb, J.; Waltzman, S.B.; Roehm, P.C. The Effects of Cochlear Implantation on Speech Perception in Older Adults. J. Am. Geriatr. Soc. 2011, 59, 446–453. [Google Scholar] [CrossRef]
- Lopez, E.M.; Dillon, M.; Park, L.R.; Rooth, M.A.; Richter, M.E.; Thompson, N.J.; O’Connell, B.P.; Pillsbury, H.C.; Brown, K.D. Influence of Cochlear Implant Use on Perceived Listening Effort in Adult and Pediatric Cases of Unilateral and Asymmetric Hearing Loss. Otol. Neurotol. 2021, 42, e1234–e1241. [Google Scholar] [CrossRef]
- Crowson, M.G.; Semenov, Y.R.; Tucci, D.L.; Niparko, J.K. Quality of Life and Cost-Effectiveness of Cochlear Implants: A Narrative Review. Audiol. Neurotol. 2017, 22, 236–258. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroeke, T.; Andries, E.; Lammers, M.J.; Van de Heyning, P.; Hofkens-Van den Brandt, A.; Vanderveken, O.; Van Rompaey, V.; Mertens, G. Cognitive Changes Up to 4 Years After Cochlear Implantation in Older Adults: A Prospective Longitudinal Study Using the RBANS-H. Ear Hear. 2024. [Google Scholar] [CrossRef]
- Sorkin, D.L.; Buchman, C.A. Cochlear implant access in six developed countries. Otol. Neurotol. 2016, 37, e161–e164. [Google Scholar] [CrossRef]
- Holder, J.T.; Reynolds, S.M.; Sunderhaus, L.W.; Gifford, R.H. Current Profile of Adults Presenting for Preoperative Cochlear Implant Evaluation. Trends Hear. 2018, 22, 2331216518755288. [Google Scholar] [CrossRef]
- Australian Hearing. Australian Hearing’s Research Shows Lack of Awareness of Consequences of Untreated Hearing Loss. Hear. Rev. 2017, 3. [Google Scholar]
- Fulton, S.E.; Lister, J.J.; Bush, A.L.H.; Edwards, J.D.; Andel, R. Mechanisms of the hearing–cognition relationship. Semin. Hear. 2015, 36, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, T.D.; Lad, M.; Kumar, S.; Holmes, E.; McMurray, B.; Maguire, E.A.; Billig, A.J.; Sedley, W. How can hearing loss cause dementia? Neuron 2020, 108, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Sugiura, S.; Nishita, Y.; Saji, N.; Sone, M.; Ueda, H. Age-related hearing loss and cognitive decline—The potential mechanisms linking the two. Auris Nasus Larynx 2019, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kirschen, R.M.; Leaver, A.M. Hearing function moderates age-related changes in brain morphometry in the HCP Aging Cohort. bioRxiv 2024. [Google Scholar] [CrossRef]
- Lin, F.; Ferrucci, L.; An, Y.; Goh, J.; Doshi, J.; Metter, E.; Davatzikos, C.; Kraut, M.; Resnick, S. Association of hearing impairment with brain volume changes in older adults. NeuroImage 2014, 90, 84–92. [Google Scholar] [CrossRef]
- Armstrong, N.M.; An, Y.; Doshi, J.; Erus, G.; Ferrucci, L.; Davatzikos, C.; Deal, J.A.; Lin, F.R.; Resnick, S.M. Association of midlife hearing impairment with late-life temporal lobe volume loss. JAMA Otolaryngol.—Head Neck Surg. 2019, 145, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Williams, O.; Landman, B.; Deal, J.; Lin, F.; Resnick, S. Association of poorer hearing with longitudinal change in cerebral white matter microstructure. JAMA Otolaryngol.—Head Neck Surg. 2020, 146, 1035–1042. [Google Scholar] [CrossRef]
- Campbell, J.; Sharma, A. Frontal Cortical Modulation of Temporal Visual Cross-Modal Re-organization in Adults with Hearing Loss. Brain Sci. 2020, 10, 498. [Google Scholar] [CrossRef]
- Cardon, G.; Sharma, A. Somatosensory cross-modal reorganization in adults with age-related, early-stage hearing loss. Front. Hum. Neurosci. 2018, 12, 172. [Google Scholar] [CrossRef]
- Lin, F.; Pike, J.R.; Albert, M.S.; Arnold, M.; Burgard, S.; Chisholm, T.; Couper, D.; Deal, J.A.; Goman, A.M.; Glynn, N.W.; et al. Hearing intervention versus health education control to reduce cognitive decline in older adults with hearing loss in the USA (ACHIEVE): A multicentre, randomised controlled trial. Lancet 2023, 402, 786–797. [Google Scholar] [CrossRef]
- Miller, G.; Miller, C.; Marrone, N.; Howe, C.; Fain, M.; Jacob, A. The impact of cochlear implantation on cognition in older adults: A systematic review of clinical evidence. BMC Geriatr. 2015, 15, 16. [Google Scholar] [CrossRef]
- Hamerschmidt, R.; Santos, V.M.; Goncalves, F.M.; Delcenserie, A.; Champoux, F.; de Araujo, C.M.; de Lacerda, A.B.M. Changes in cognitive performance after cochlear implantation in adults and older adults: A systematic review and meta-analysis. Int. J. Audiol. 2023, 62, 521–532. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Jo, E.; Jun, S.B.; Sung, J.E. Effects of cochlear implantation on cognitive decline in older adults: A systematic review and meta-analysis. Heliyon 2023, 9, e19703. [Google Scholar] [CrossRef]
- Mertens, G.; Andries, E.; Claes, A.; Topsakal, V.; Van de Heyning, P.; Van Rompaey, V.; Calvino, M.; Cuadrado, I.; Muñoz, E.; Gavilán, J. Cognitive improvement after cochlear implantation in older adults with severe or profound hearing impairment: A Prospective, Longitudinal, Controlled, Multicenter Study. Ear Hear. 2021, 42, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Roesch, S.; Pletzer, B.; Lukaschyk, J.; Lesinski-Schiedat, A.; Illg, A. Can Cochlear Implantation in Older Adults Reverse Cognitive Decline Due to Hearing Loss? Ear Hear. 2021, 42, 1560–1576. [Google Scholar] [CrossRef]
- Vasil, K.; Ray, C.; Lewis, J.; Stefancin, E.; Tamati, T.; Moberly, A. How Does Cochlear Implantation Lead to Improvements on a Cognitive Screening Measure? J. Speech Lang. Hear. Res. 2021, 64, 1053–1061. [Google Scholar] [CrossRef]
- Ohta, Y.; Imai, T.; Maekawa, Y.; Morihana, T.; Osaki, Y.; Sato, T.; Okazaki, S.; Hanamoto, M.; Suwa, K.; Takeya, Y. The effect of cochlear implants on cognitive function in older adults: A prospective, longitudinal 2-year follow-up study. Auris Nasus Larynx 2022, 49, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Cosetti, M.K.; Pinkston, J.B.; Flores, J.M.; Friedmann, D.R.; Jones, C.B.; Roland Jr, J.T.; Waltzman, S.B. Neurocognitive testing and cochlear implantation: Insights into performance in older adults. Clin. Interv. Aging 2016, 11, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Jayakody, D.M.P.; Friedland, P.; Nel, E.; Martins, R.; Atlas, M.; Sohrabi, H. Imapct of cochlear implantation on cognitive functions of older adults. Otol. Neurotol. 2017, 38, e289–e295. [Google Scholar] [CrossRef] [PubMed]
- Mosnier, I.; Bebear, J.; Marx, M.; Fraysse, B.; Truy, E.; Lina-Granade, G.; Mondain, M.; Sterkers-Artières, F.; Bordure, P.; Robier, A.; et al. Improvement of cognitive function after cochlear implantation in elderly patients. JAMA Otolaryngol.—Head Neck Surg. 2015, 141, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Gurgel, R.K.; Duff, K.; Foster, N.L.; Urano, K.A.; deTorres, A. Evaluating the impact of cochlear implantation on cognitive function in older adults. Laryngoscope 2021, 132, S1–S15. [Google Scholar] [CrossRef] [PubMed]
- Zhan, K.Y.; Lewis, J.H.; Vasil, K.J.; Tamati, T.N.; Harris, M.S.; Pisoni, D.B.; Kronenberger, W.G.; Ray, C.; Moberly, A.C. Cognitive functions in adults receiving cochlear implants: Predictors of speech recognition and changes after implantation. Otol. Neurotol. 2020, 41, e322–e329. [Google Scholar] [CrossRef]
- WHO. Deafness and Hearing Loss. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 18 October 2024).
- Fowler, C.; Rainey-Smith, S.R.; Bird, S.; Bomke, J.; Bourgeat, P.; Brown, B.M.; Burnham, S.C.; Bush, A.I.; Chadunow, C.; Collins, S. Fifteen years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2021, 5, 443–468. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Falleti, M.G.; Maruff, P.; Collie, A.; Darby, D.G. Practice effects associated with the repeated assessment of cognitive function using the Cogstate Battery at 10-minute, one week and one month test-retest intervals. J. Clin. Exper Neuropsychol. 2006, 28, 1095–1112. [Google Scholar] [CrossRef] [PubMed]
- Maruff, P.; Thomas, E.; Cysique, L.; Brew, B.; Collie, A.; Snyder, P.; Pietrzak, R.H. Validity of the CogState Brief Battery: Relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch. Clin. Neuropsychol. 2009, 24, 165–178. [Google Scholar] [CrossRef]
- Maruff, P.; Lim, Y.Y.; Darby, D.; Ellis, K.A.; Pietrzak, R.H.; Snyder, P.J.; Bush, A.I.; Szoeke, C.; Schembri, A.; Ames, D.; et al. Clinical utility of the cogstate brief battery in identifying cognitive impairment in mild cognitive impairment and Alzheimer’s disease. BMC Psychol. 2013, 1, 30. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, J.; Maruff, P.; Woodward, M.; Moore, L.; Fredrickson, A.; Sach, J.; Darby, D. Evaluation of the Usability of a Brief Computerized Cognitive Screening Test in Older People for Epidemiological Studies. Neuroepidemiology 2009, 34, 65–75. [Google Scholar] [CrossRef]
- Hammers, D.; Spurgeon, E.; Ryan, K.; Persad, C.; Heidebrink, J.; Barbas, N.; Albin, R.; Frey, K.; Darby, D.; Giordani, B. Reliability of Repeated Cognitive Assessment of Dementia Using a Brief Computerized Battery. Am. J. Alzheimer’s Dis. Other Dement. 2011, 26, 326–333. [Google Scholar] [CrossRef]
- Kiely, K.M.; Gopinath, B.; Mitchell, P.; Browning, C.J.; Anstey, K.J. Evaluating a Dichotomized Measure of Self-Reported Hearing Loss Against Gold Standard Audiometry: Prevalence Estimates and Age Bias in a Pooled National Data set. J. Aging Health 2012, 24, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Dowell, R.C. The case for earlier cochlear implantation in postlingually deaf adults. Int. J. Audiol. 2016, 55 (Suppl. S2), S51–S56. [Google Scholar] [CrossRef]
- Emrani, S.; Arain, H.A.; DeMarshall, C.; Nuriel, T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review. Alzheimer’s Res. Ther. 2020, 12, 141. [Google Scholar] [CrossRef]
- Hunsberger, H.C.; Pinky, P.D.; Smith, W.; Suppiramaniam, V.; Reed, M.N. The role of APOE4 in Alzheimer’s disease: Strategies for future therapeutic interventions. Neuronal Signal. 2019, 3. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-R.; Xu, W.; Zhang, W.; Wang, H.-F.; Ou, Y.-N.; Qu, Y.; Shen, X.-N.; Chen, S.-D.; Wu, K.-M.; Zhao, Q.-H.; et al. Modifiable risk factors for incident dementia and cognitive impairment: An umbrella review of evidence. J. Affect. Disord. 2022, 314, 160–167. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Lubben, J. Assessing social networks among elderly populations. Fam. Community Health 1988, 11, 42–52. [Google Scholar] [CrossRef]
- Horsman, J.; Furlong, W.; Feeny, D.; Torrance, G. The Health Utilities Index (HUI®): Concepts, measurement properties and applications. Health Qual. Life Outcomes 2003, 1, 54. [Google Scholar] [CrossRef]
- Völter, C.; Götze, L.; Haubitz, I.; Müther, J.; Dazert, S.; Thomas, J.P. Impact of cochlear implantation on neurocognitive subdomains in adult cochlear implant recipients. Audiol. Neurotol. 2021, 26, 236–245. [Google Scholar] [CrossRef]
- Völter, C.; Götze, L.; Bajewski, M.; Dazert, S.; Thomas, J.P. Cognition and Cognitive Reserve in Cochlear Implant Recipients. Front. Aging Neurosci. 2022, 14, 838214. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.W.; Clark, G.; Whitford, L.A.; Seligman, P.M.; Staller, S.J.; Shipp, D.B.; Shallop, J.K.; Everingham, C.; Menapace, C.M.; Arndt, P.L.; et al. Evaluation of a new spectral strategy for the Nucleus 22 channel cochlear implant system. Otol. Neurotol. 1994, 15 (Suppl. S2), 15–27. [Google Scholar]
- Skinner, M.W.; Arndt, P.L.; Staller, S.J. Nucleus 24 advanced encoder conversion study: Performance versus preference. Ear Hear. 2002, 23, 2S–17S. [Google Scholar] [CrossRef] [PubMed]
- Fallon, J.B.; Irvine, D.R.F.; Shepherd, R.K. Cochlear implants and brain plasticity. Hear. Res. 2008, 238, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Klinke, R.; Kral, A.; Heid, S.; Tillein, J.; Hartmann, R. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 1999, 285, 1729–1733. [Google Scholar] [CrossRef] [PubMed]
- Glick, H.A.; Sharma, A. Cortical Neuroplasticity and Cognitive Function in Early-Stage, Mild-Moderate Hearing Loss: Evidence of Neurocognitive Benefit From Hearing Aid Use. Front. Neurosci. 2020, 14, 93. [Google Scholar] [CrossRef]
- Lazeyras, F.; Boëx, C.; Sigrist, A.; Seghier, M.L.; Cosendai, G.; Terrier, F.; Pelizzone, M. Functional MRI of Auditory Cortex Activated by Multisite Electrical Stimulation of the Cochlea. NeuroImage 2002, 17, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, A.; Benatti, A.; Velardita, C.; Favaro, D.; Padoan, E.; Severi, D.; Pagliaro, M.; Bovo, R.; Vallesi, A.; Gabelli, C. Aging, cognitive decline and hearing loss: Effects of auditory rehabilitation and training with hearing aids and cochlear implants on cognitive function and depression among older adults. Audiol. Neurotol. 2016, 21 (Suppl. S1), 21–28. [Google Scholar] [CrossRef]
- Baldwin, C.; Ash, I. Impact of sensory acuity on auditory working memory span in young and older adults. Psychol. Aging 2011, 26, 85–91. [Google Scholar] [CrossRef]
- Madashetty, S.; Palaniswamy, H.P.; Rajashekhar, B. The Impact of Age-Related Hearing Loss on Working Memory among Older Individuals: An Event-Related Potential Study. Dement. Geriatr. Cogn. Disord. Extra 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Ren, F.; Ma, W.; Li, M.; Sun, H.; Xin, Q.; Zong, W.; Chen, W.; Wang, G.; Gao, F.; Zhao, B. Gray Matter Atrophy Is Associated With Cognitive Impairment in Patients With Presbycusis: A Comprehensive Morphometric Study. Front. Neurosci. 2018, 12, 744. [Google Scholar] [CrossRef]
- Altmann, G. Cognitive Models of Speech Processing: Psycholinguistic and Computational Perspectives; The MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Pisoni, D.B.; Remez, R.E. The Handbook of Speech Perception; Wiley Online Library: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Pisoni, D.B.; Broadstock, A.; Wucinich, T.; Safdar, N.; Miller, K.; Hernandez, L.R.; Vasil, K.; Boyce, L.; Davies, A.; Harris, M.S.; et al. Verbal Learning and Memory After Cochlear Implantation in Postlingually Deaf Adults: Some New Findings with the CVLT-II. Ear Hear. 2018, 39, 720–745. [Google Scholar] [CrossRef]
- Großmann, W. Listening with an Ageing Brain–a Cognitive Challenge. Laryngo-Rhino-Otologie 2023, 102 (Suppl. S1), S12. [Google Scholar] [CrossRef]
- Pichora-Fuller, M.K.; Kramer, S.E.; Eckert, M.A.; Edwards, B.; Hornsby, B.W.Y.; Humes, L.E.; Lemke, U.; Lunner, T.; Matthen, M.; Mackersie, C.L.; et al. Hearing Impairment and Cognitive Energy: The Framework for Understanding Effortful Listening (FUEL). Ear Hear. 2016, 37, 5S–27S. [Google Scholar] [CrossRef]
- Friesen, L.M.; Shannon, R.V.; Baskent, D.; Wang, X. Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 2001, 110, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. Major Issues in Cognitive Aging; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Schaie, K.W. What Can We Learn From Longitudinal Studies of Adult Development? Res. Hum. Dev. 2005, 2, 133–158. [Google Scholar] [CrossRef]
- Lin, F. Hearing Loss and Cognition Among Older Adults in the United States. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66A, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Schretlen, D.J.; Munro, C.A.; Anthony, J.C.; Pearlson, G.D. Examining the range of normal intraindividual variability in neuropsychological test performance. J. Int. Neuropsychol. Soc. 2003, 9, 864–870. [Google Scholar] [CrossRef]
- Jeffay, E.; Binder, L.M.; Zakzanis, K.K. Marked Intraindividual Cognitive Variability in a Sample of Healthy Graduate Students. Psychol. Inj. Law. 2021, 14, 171–183. [Google Scholar] [CrossRef]
- Giraud, A.L.; Price, C.J.; Graham, J.M.; Truy, E.; Frackowiak, R.S. Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 2001, 30, 657–663. [Google Scholar] [CrossRef]
- Herzog, J.A.; Buchman, C.A.; Kallogjeri, D.; Chen, S.; Wick, C.; Durakovic, N.; Shew, M.A. Cognitive Assessment in Elderly Cochlear Implant Recipients: Long-Term Analysis. Laryngoscope 2022, 133, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- Mosnier, I.; Vanier, A.; Bonnard, D.; Lina Granade, G.; Truy, E.; Bordure, P.; Godey, B.; Marx, M.; Lescanne, E.; Venail, F.; et al. Long-Term Cognitive Prognosis of Profoundly Deaf Older Adults After Hearing Rehabilitation Using Cochlear Implants. J. Am. Geriatr. Soc. 2018, 66, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.E.; Naples, J.G.; Hwa, T.; Larrow, D.C.; Campbell, F.M.; Qiu, M.; Castellanos, I.; Moberly, A.C. Emerging Relations among Cognitive Constructs and Cochlear Implant Outcomes: A Systematic Review and Meta-Analysis. Otolaryngol.—Head Neck Surg. 2023, 169, 792–810. [Google Scholar] [CrossRef]
- Völter, C.; Götze, L.; Dazert, S.; Thomas, J.P.; Kamin, S.T. Longitudinal trajectories of memory among middle-aged and older people with hearing loss: The influence of cochlear implant use on cognitive functioning. Front. Aging Neurosci. 2023, 15, 1220184. [Google Scholar] [CrossRef]
- Sanders, M.E.; Kant, E.; Smit, A.L.; Stegeman, I. The effect of hearing aids on cognitive function: A systematic review. PLoS ONE 2021, 16, e0261207. [Google Scholar] [CrossRef]
- Chia, E.-M.; Wang, J.J.; Rochtina, E.C.R.; Newall, P.; Mitchell, P. Hearing Impairment and Health-Related Quality of Life: The Blue Mountains Hearing Study. Ear Hear. 2007, 28, 187–195. [Google Scholar] [CrossRef]
CI Participants | AIBL Participants | CI vs. AIBL (p-Value) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 18 Months | 36 Months | 54 Months | Baseline | 18 Months | 36 Months | ||||
Age (years) | ||||||||||
n | 101 | 54 | 37 | 25 | 100 | 47 | 17 | |||
Mean | 73.18 | 74.97 | 75.01 | 76.07 | 74.39 | 75.21 | 77.31 | 0.118 | 0.812 | 0.064 |
Median | 72.7 | 74.3 | 74.4 | 75.7 | 74.5 | 74.9 | 77.4 | |||
S.D. | 6.6 | 6.2 | 5.0 | 4.0 | 4.0 | 3.8 | 3.6 | |||
Min | 61.3 | 63.3 | 64.8 | 69.0 | 67.0 | 68.4 | 71.4 | |||
Max | 90.1 | 91.7 | 84.8 | 83.0 | 84.8 | 83.0 | 84.0 | |||
BPTA | ||||||||||
n | 96 | 45 | 18 | 15 | 100 | 36 | 16 | |||
Mean | 76.93 | 81.75 | 75.97 | 75.17 | 20.96 | 21.46 | 22.66 | 0.000 | 0.000 | 0.000 |
Median | 77.5 | 82.5 | 77.5 | 81.2 | 21.2 | 20.6 | 21.9 | |||
SD | 18.8 | 20.6 | 21.8 | 19.4 | 8.4 | 8.5 | 7.8 | |||
Min | 27.5 | 42.5 | 47.5 | 48.8 | 3.8 | 6.2 | 8.8 | |||
Max | 118.8 | 130 | 116.2 | 103.8 | 43.8 | 40 | 33.8 | |||
WPTA | ||||||||||
n | 96 | 0 | 0 | 0 | 100 | 36 | 16 | |||
Mean | 98.78 | 25.65 | 25.97 | 27.03 | 0.000 | |||||
Median | 96.2 | 25 | 25.6 | 26.9 | ||||||
SD | 15.5 | 11.2 | 8.7 | 8.8 | ||||||
Min | 63.8 | 8.8 | 13.8 | 11.2 | ||||||
HUI-3 Hearing disability | ||||||||||
n | 97 | 53 | 36 | 20 | ||||||
Mean | 0.44 | 0.62 | 0.58 | 0.67 | ||||||
Median | 0.3 | 0.7 | 0.7 | 0.7 | ||||||
SD | 0.2 | 0.2 | 0.2 | 0.1 | ||||||
Min | 0 | 0 | 0 | 0.3 | ||||||
Max | 0.9 | 1 | 0.7 | 0.7 | ||||||
Normal hearing | ||||||||||
n | 96 | 45 | 18 | 15 | 100 | 36 | 16 | |||
No. (%) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 47 (47) | 18 (50) | 8 (50) | 0.000 | 0.000 | 0.002 |
Female | ||||||||||
n | 101 | 54 | 37 | 25 | 100 | 47 | 17 | |||
No. (%) | 42 (41.6) | 22 (40.7) | 19 (51.4) | 10 (40.0) | 55 (55.0) | 27 (57.4) | 10 (58.8) | 0.057 | 0.096 | 0.619 |
Education > 15 years | ||||||||||
n | 98 | 54 | 37 | 25 | 100 | 47 | 17 | |||
No. (%) | 48 (49.0) | 29 (53.7) | 17 (45.9) | 14 (56.0) | 72 (72.0) | 27 (57.4) | 10 (58.8) | 0.001 | 0.709 | 0.392 |
Cardiovascular condition | ||||||||||
n | 97 | 53 | 36 | 19 | 95 | 33 | 12 | |||
No. (%) | 73 (75.3) | 39 (73.6) | 26 (72.2) | 15 (78.9) | 44 (46.3) | 17 (51.5) | 7 (58.3) | 0.00 | 0.044 | 0.417 |
Ever smoker | ||||||||||
n | 97 | 15 | 13 | 19 | 47 | 26 | 9 | |||
No. (%) | 37 (38.1) | 5 (33.3) | 1 (7.7) | 5 (26.3) | 17 (36.2) | 10 (38.5) | 1 (11.1) | 0.820 | 0.750 | 0.804 |
1 apolipoprotein E (APOE) ε4 allele | ||||||||||
n | 59 | 46 | 34 | 25 | 99 | 46 | 17 | |||
No. (%) | 17 (28.8) | 11 (23.9) | 8 (23.5) | 6 (24) | 28 (28.3) | 16 (34.8) | 4 (23.5) | 0.944 | 0.257 | 1.00 |
2 apolipoprotein E (APOE) ε4 alleles | ||||||||||
n | 59 | 46 | 34 | 25 | 99 | 46 | 17 | |||
No. (%) | 3 (5.1) | 2 (4.3) | 1 (2.9) | 0 (0) | 1 (1.0) | 1 (2.2) | 0 (0) | 0.187 | 0.562 | 0.325 |
Diabetes | ||||||||||
n | 97 | 53 | 36 | 20 | 96 | 32 | 11 | |||
No. (%) | 14 (14.4) | 9 (17) | 4 (11.1) | 3 (15) | 5 (5.2) | 2 (6.2) | 2 (18.2) | 0.031 | 0.117 | 0.603 |
Falls | ||||||||||
n | 97 | 53 | 36 | 20 | 96 | 33 | 11 | |||
No. (%) | 14 (14.4) | 9 (17.0) | 4 (11.1) | 1 (5.0) | 7 (7.3) | 3 (9.1) | 3 (27.3) | 0.112 | 0.281 | 0.303 |
Living arrangements | ||||||||||
Own or rented home with spouse/others | ||||||||||
n | 98 | 54 | 37 | 25 | 97 | 46 | 16 | |||
No. (%) | 69 (70.4) | 37 (68.5) | 25 (67.6) | 20 (80) | 73 (75.3) | 36 (78.3) | 12 (75) | 0.449 | 0.274 | 0.590 |
Own or rented home alone | ||||||||||
n | 98 | 54 | 37 | 25 | 97 | 46 | 16 | |||
No. (%) | 21 (21.4) | 13 (24.1) | 9 (24.3) | 5 (20) | 24 (24.7) | 10 (21.7) | 4 (25) | 0.585 | 0.784 | 0.960 |
Residential aged care | ||||||||||
n | 98 | 54 | 37 | 25 | 97 | 46 | 16 | |||
No. (%) | 1 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.320 | ||
Home of relative | ||||||||||
n | 98 | 54 | 37 | 25 | 97 | 46 | 16 | |||
No. (%) | 2 (2) | 1 (1.9) | 1 (2.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.158 | 0.322 | 0.324 |
Other (retirement village, motor home) | ||||||||||
n | 98 | 54 | 37 | 25 | 97 | 46 | 16 | |||
No. (%) | 5 (5.1) | 3 (5.6) | 2 (5.4) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.025 | 0.083 | 0.160 |
Living alone | ||||||||||
n | 98 | 54 | 37 | 25 | 97 | 46 | 16 | |||
No. (%) | 21 (21.4) | 13 (24.1) | 9 (24.3) | 5 (20.0) | 24 (24.7) | 10 (21.7) | 4 (25.0) | 0.585 | 0.784 | 0.960 |
Anxiety | ||||||||||
n | 97 | 53 | 36 | 20 | 95 | 33 | 11 | |||
No. (%) | 18 (18.6) | 4 (7.5) | 3 (8.3) | 1 (5.0) | 7 (7.4) | 3 (9.1) | 1 (9.1) | 0.021 | 0.806 | 0.942 |
Socially isolated | ||||||||||
n | 78 | 53 | 36 | 20 | ||||||
No. (%) | 0 (0) | 1 (1.9) | 1 (2.8) | 0 (0) | ||||||
Depression | ||||||||||
n | 97 | 53 | 36 | 20 | 96 | 32 | 11 | |||
No. (%) | 13 (13.4) | 3 (5.7) | 2 (5.6) | 0 (0) | 7 (7.3) | 0 (0) | 2 (18.2) | 0.165 | 0.083 | 0.343 |
Retired | ||||||||||
n | 98 | 52 | 35 | 19 | 96 | 33 | 12 | |||
No. (%) | 77 (78.6) | 47 (90.4) | 33 (94.3) | 16 (84.2) | 85 (88.5) | 31 (93.9) | (100.0) | 0.061 | 0.549 | 0.160 |
p-Values | |||||||
---|---|---|---|---|---|---|---|
Baseline | 18 mths | 36 mths | 54 mths | Baseline vs. 18 mths | 18 vs. 36 mths | 36 vs. 54 mths | |
CI usage (hrs/day) | |||||||
n | 54 | 36 | 21 | ||||
Mean | 12.1 | 12.8 | 12.4 | 0.045 | 0.554 | ||
Median | 12.8 | 13.5 | 13.1 | ||||
S.D. | 2.9 | 2.9 | 3.5 | ||||
Min | 3.3 | 1.5 | 0 | ||||
Max | 17 | 19.8 | 17 | ||||
CI usage (% of a 14 h day) | |||||||
>90% | 51.9 | 72.2 | 61.9 | ||||
60–90% | 37 | 19.4 | 33.3 | ||||
30–60% | 9.3 | 5.6 | 0 | ||||
<30% | 1.9 | 2.8 | 4.8 | ||||
CVC Words (% correct) | |||||||
n | 95 | 51 | 32 | 23 | |||
Mean | 42.83 | 70.71 | 73.75 | 78.13 | 0.000 | 0.306 | 0.264 |
Median | 40 | 74 | 78 | 80 | |||
S.D. | 26.2 | 21.2 | 16.2 | 14.8 | |||
Min | 0 | 22 | 34 | 24 | |||
Max | 94 | 98 | 94 | 96 | |||
CVC Phonemes (% correct) | |||||||
n | 95 | 51 | 32 | 23 | |||
Mean | 65.85 | 85.41 | 86.8 | 91.01 | 0.000 | 0.540 | 0.121 |
Median | 67 | 90 | 92 | 92 | |||
S.D. | 21.8 | 13 | 12.3 | 8.7 | |||
Min | 0.1 | 51 | 38 | 55 | |||
Max | 97 | 99 | 97 | 98 | |||
SRT | |||||||
n | 87 | 51 | 32 | 22 | |||
Mean | 10.94 | 5.05 | 4.31 | 3.66 | 0.000 | 0.111 | 0.328 |
Median | 9.5 | 4.6 | 3.9 | 3.6 | |||
S.D. | 7.2 | 3.4 | 2.8 | 2.3 | |||
Min | −0.9 | −0.6 | −1.1 | −1.1 | |||
Max | 21 | 15 | 11 | 9.3 |
CI | AIBL | CI vs. AIBL (p-Value) | |
---|---|---|---|
Baseline | |||
Executive function | |||
n | 101 | ||
Mean | 66.74 | ||
Median | 56 | ||
S.D. | 43.8 | ||
Min | 22 | ||
Max | 336 | ||
Working memory | |||
n | 101 | 100 | |
Mean | 2.95 | 2.93 | 0.030 |
Median | 3.0 | 2.9 | |
S.D. | 0.1 | 0.1 | |
Min | 2.8 | 2.7 | |
Max | 3.2 | 3.1 | |
Psychomotor function | |||
n | 101 | 100 | |
Mean | 2.62 | 2.54 | 0.000 |
Median | 2.6 | 2.5 | |
S.D. | 0.1 | 0.1 | |
Min | 2.4 | 2.4 | |
Max | 2.9 | 2.8 | |
Visual attention | |||
n | 101 | 100 | |
Mean | 2.78 | 2.74 | 0.000 |
Median | 2.8 | 2.7 | |
S.D. | 0.1 | 0.1 | |
Min | 2.6 | 2.6 | |
Max | 3.0 | 2.9 | |
Visual learning | |||
n | 101 | 100 | |
Mean | 0.94 | 1.0 | 0.000 |
Median | 0.9 | 1.0 | |
S.D. | 0.1 | 0.1 | |
Min | 0.6 | 0.7 | |
Max | 1.2 | 1.2 | |
MMSE | |||
n | 99 | 97 | |
Mean | 27.98 | 28.65 | 0.017 |
Median | 28 | 29 | |
S.D. | 2.4 | 1.4 | |
Min | 11 | 24 | |
Max | 30 | 30 |
CI Group Cognition Trajectories | |||||
---|---|---|---|---|---|
Executive Function | Working Memory | Psychomotor Function | Visual Attention | Visual Learning | |
Intercept | 56.381 | 2.962 | 2.626 | 2.784 | 0.932 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
18 mths | −9.825 | −0.016 | 0.030 | 0.007 | 0.000 |
p | 0.064 | 0.129 | 0.049 | 0.436 | 0.993 |
36 mths | −14.673 | −0.026 | 0.009 | −0.009 | −0.015 |
p | 0.006 | 0.049 | 0.596 | 0.391 | 0.408 |
54 mths | −17.579 | −0.050 | 0.018 | −0.008 | 0.022 |
p | 0.003 | 0.002 | 0.373 | 0.487 | 0.359 |
Age | 2.049 | 0.004 | 0.004 | 0.003 | −0.002 |
p | 0.003 | 0.005 | 0.007 | 0.007 | 0.181 |
Female | 11.278 | −0.024 | −0.028 | −0.021 | 0.025 |
p | 0.106 | 0.196 | 0.126 | 0.127 | 0.192 |
Higher Ed | −2.560 | −0.014 | −0.028 | −0.010 | 0.006 |
p | 0.700 | 0.404 | 0.113 | 0.468 | 0.758 |
R2 | 0.14 | 0.11 | 0.12 | 0.10 | 0.04 |
Mean Dep | 61.89 | 2.94 | 2.63 | 2.78 | 0.94 |
SD Dep | 36.99 | 0.09 | 0.10 | 0.07 | 0.10 |
AIBL Group Cognition Trajectories—Whole Group | |||||
---|---|---|---|---|---|
Executive Function | Working Memory | Psychomotor Function | Visual Attention | Visual Learning | |
Intercept | 2.911 | 2.535 | 2.745 | 1.030 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | |
18 mths | −0.008 | 0.039 | 0.032 | 0.013 | |
p | 0.460 | 0.009 | 0.001 | 0.364 | |
36 mths | 0.002 | 0.099 | 0.061 | 0.014 | |
p | 0.928 | 0.000 | 0.015 | 0.524 | |
Age | 0.007 | 0.004 | 0.003 | −0.006 | |
p | 0.000 | 0.032 | 0.070 | 0.006 | |
Female | 0.000 | 0.017 | −0.016 | 0.017 | |
p | 0.982 | 0.294 | 0.187 | 0.378 | |
Higher Ed | −0.017 | −0.030 | −0.014 | −0.012 | |
p | 0.302 | 0.086 | 0.255 | 0.565 | |
R2 | 0.12 | 0.22 | 0.17 | 0.07 | |
Mean Dep | 2.93 | 2.57 | 2.76 | 1.01 | |
SD Dep | 0.08 | 0.10 | 0.07 | 0.10 | |
AIBL Group Cognition Trajectories—Participants with HL only | |||||
Intercept | 2.929 | 2.531 | 2.750 | 1.038 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | |
18 mths | −0.004 | 0.047 | 0.026 | 0.005 | |
p | 0.762 | 0.015 | 0.036 | 0.768 | |
36 mths | −0.011 | 0.089 | 0.033 | -0.018 | |
p | 0.669 | 0.001 | 0.305 | 0.508 | |
Age-70 | 0.007 | 0.008 | 0.005 | -0.008 | |
p | 0.004 | 0.004 | 0.020 | 0.010 | |
Female | −0.033 | −0.003 | −0.030 | 0.018 | |
p | 0.077 | 0.908 | 0.072 | 0.473 | |
Higher Ed | −0.035 | −0.050 | −0.028 | 0.008 | |
p | 0.059 | 0.050 | 0.113 | 0.786 | |
R2 | 0.22 | 0.31 | 0.22 | 0.12 | |
Mean Dep | 2.93 | 2.57 | 2.76 | 1.01 | |
SD Dep | 0.08 | 0.10 | 0.07 | 0.10 |
Executive Function | Working Memory | Psychomotor Function | Visual Attention | Visual Learning | |
---|---|---|---|---|---|
Intercept | 56.372 | 2.961 | 2.626 | 2.783 | 0.932 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
18 mth | −5.138 | −0.004 | 0.047 | 0.017 | −0.006 |
p | 0.406 | 0.765 | 0.006 | 0.130 | 0.716 |
36 mth | −17.979 | −0.025 | 0.017 | −0.013 | −0.015 |
p | 0.003 | 0.137 | 0.373 | 0.267 | 0.526 |
54 mth | −14.082 | −0.049 | 0.035 | −0.001 | −0.008 |
p | 0.032 | 0.02 | 0.181 | 0.921 | 0.785 |
High CI Use, 18 mth | −19.56 | −0.052 | −0.07 | −0.041 | 0.026 |
p | 0.016 | 0.019 | 0.013 | 0.000 | 0.354 |
High CI Use, 36 mth | 11.42 | −0.001 | −0.013 | 0.022 | 0.001 |
p | 0.184 | 0.979 | 0.796 | 0.435 | 0.978 |
High CI Use, 54 mth | −6.758 | 0.028 | −0.029 | −0.002 | 0.066 |
Age-70 | 2.061 | 0.004 | 0.004 | 0.003 | −0.002 |
p | 0.003 | 0.002 | 0.005 | 0.003 | 0.181 |
Female | 11.184 | −0.022 | −0.03 | −0.021 | 0.022 |
p | 0.116 | 0.197 | 0.097 | 0.127 | 0.263 |
Higher Ed | −2.539 | −0.014 | −0.028 | −0.008 | 0.009 |
p | 0.705 | 0.384 | 0.101 | 0.531 | 0.63 |
R2 | 0.16 | 0.12 | 0.15 | 0.12 | 0.04 |
Mean dep | 62.18 | 2.95 | 2.63 | 2.78 | 0.94 |
SD dep | 37.31 | 0.09 | 0.10 | 0.07 | 0.10 |
CI vs. AIBL Trajectories | ||||
---|---|---|---|---|
Working Memory | Psychomotor Function | Visual Attention | Visual Learning | |
18 mths | 0.006 | 0.042 | 0.039 | 0.000 |
p | 0.550 | 0.003 | 0.000 | 0.986 |
36 mths | 0.024 | 0.104 | 0.067 | −0.025 |
p | 0.284 | 0.000 | 0.004 | 0.266 |
18 mths CI | −0.014 | −0.018 | −0.028 | −0.006 |
p | 0.341 | 0.381 | 0.021 | 0.738 |
36 mths CI | −0.027 | −0.087 | −0.060 | 0.003 |
p | 0.275 | 0.001 | 0.017 | 0.927 |
CI vs. AIBL trajectories (AIBL participants with HL only) | ||||
18 mths | −0.001 | 0.047 | 0.032 | −0.006 |
p | 0.950 | 0.008 | 0.004 | 0.683 |
36 mths | 0.011 | 0.105 | 0.054 | −0.016 |
p | 0.670 | 0.000 | 0.071 | 0.438 |
18 mths CI | −0.007 | −0.023 | −0.021 | −0.001 |
p | 0.633 | 0.317 | 0.124 | 0.978 |
36 mths CI | −0.014 | −0.088 | −0.047 | −0.007 |
p | 0.616 | 0.002 | 0.134 | 0.785 |
CI vs. AIBL (Whole Group) Trajectories | ||||
---|---|---|---|---|
Working Memory | Psychomotor Function | Visual Attention | Visual Learning | |
18 mths | 0.003 | 0.070 | 0.050 | −0.001 |
p | 0.864 | 0.000 | 0.000 | 0.941 |
36 mths | 0.067 | 0.181 | 0.125 | −0.009 |
p | 0.096 | 0.000 | 0.000 | 0.822 |
18 mths CI | 0.004 | −0.037 | −0.040 | −0.019 |
p | 0.876 | 0.255 | 0.010 | 0.420 |
36 mths CI | −0.055 | −0.172 | −0.118 | −0.019 |
p | 0.206 | 0.000 | 0.001 | 0.682 |
Higher Ed 18 mths AIBL | 0.006 | −0.048 | −0.019 | 0.002 |
p | 0.764 | 0.073 | 0.293 | 0.939 |
Higher Ed 36 mths AIBL | −0.074 | −0.130 | −0.099 | −0.028 |
p | 0.109 | 0.000 | 0.020 | 0.571 |
Higher Ed 18 mths CI | −0.026 | −0.018 | 0.002 | 0.025 |
p | 0.186 | 0.576 | 0.912 | 0.322 |
Higher Ed 36 mths CI | −0.031 | 0.021 | 0.000 | 0.010 |
p | 0.139 | 0.450 | 0.995 | 0.750 |
CI vs. AIBL (HL Only) Trajectories | ||||
18 mths | 0.016 | 0.067 | 0.048 | −0.016 |
p | 0.214 | 0.014 | 0.005 | 0.334 |
36 mths | 0.068 | 0.181 | 0.136 | −0.032 |
p | 0.172 | 0.000 | 0.011 | 0.458 |
18 mths CI | −0.010 | −0.034 | −0.038 | −0.004 |
p | 0.636 | 0.380 | 0.048 | 0.854 |
36 mths CI | −0.056 | −0.173 | −0.129 | 0.004 |
p | 0.285 | 0.000 | 0.020 | 0.937 |
Higher Ed 18 mths AIBL | −0.027 | −0.032 | −0.025 | 0.016 |
p | 0.178 | 0.366 | 0.265 | 0.547 |
Higher Ed 36 mths AIBL | −0.091 | −0.122 | −0.132 | 0.026 |
p | 0.108 | 0.005 | 0.024 | 0.590 |
Higher Ed 18 mths CI | −0.026 | −0.018 | 0.002 | 0.025 |
p | 0.187 | 0.576 | 0.912 | 0.322 |
Higher Ed 36 mths CI | −0.031 | 0.021 | 0.000 | 0.010 |
p | 0.140 | 0.450 | 0.995 | 0.750 |
Timepoint | Working Memory | Psychomotor Function | Visual Attention | Visual Learning |
---|---|---|---|---|
18 mths | 18.114 | 9.507 | 16.643 | 5.132 |
p | 0.001 | 0.095 | 0.011 | 0.033 |
18 mths CI | −2.209 | 7.366 | −2.211 | 0.275 |
p | 0.746 | 0.335 | 0.802 | 0.896 |
36 mths | 22.366 | 8.917 | 9.087 | 1.294 |
p | 0.002 | 0.537 | 0.783 | 0.662 |
36 mths CI | −15.759 | −3.737 | 1.402 | −2.075 |
p | 0.070 | 0.802 | 0.966 | 0.381 |
Baseline: 18 mths | −0.442 | −0.490 | −0.444 | −0.385 |
p | 0.006 | 0.024 | 0.004 | 0.026 |
Baseline: 36 mths | −0.679 | −0.462 | −0.452 | −0.549 |
p | 0.000 | 0.364 | 0.558 | 0.008 |
Baseline: 18 mths CI | 0.060 | −0.245 | 0.045 | −0.059 |
p | 0.757 | 0.355 | 0.821 | 0.783 |
Baseline: 36 mths CI | 0.430 | 0.105 | −0.048 | 0.186 |
p | 0.077 | 0.843 | 0.950 | 0.425 |
Age-70 18 mths | 0.022 | 0.046 | 0.035 | −0.022 |
p | 0.326 | 0.055 | 0.019 | 0.261 |
Age-70 36 mths | 0.010 | 0.021 | 0.045 | 0.049 |
p | 0.697 | 0.463 | 0.106 | 0.052 |
Female 18 mths | −0.303 | −0.119 | −0.270 | 0.114 |
p | 0.082 | 0.537 | 0.134 | 0.535 |
Female 36 mths | −0.561 | 0.085 | −0.338 | 0.059 |
p | 0.010 | 0.748 | 0.126 | 0.823 |
Higher Ed 18 mths | −0.173 | −0.331 | −0.068 | 0.085 |
p | 0.317 | 0.091 | 0.694 | 0.637 |
Higher Ed 36 mths | −0.398 | −0.247 | −0.370 | 0.196 |
p | 0.055 | 0.361 | 0.190 | 0.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarant, J.Z.; Busby, P.A.; Schembri, A.J.; Briggs, R.J.S.; Masters, C.L.; Harris, D.C. COCHLEA: Longitudinal Cognitive Performance of Older Adults with Hearing Loss and Cochlear Implants at 4.5-Year Follow-Up. Brain Sci. 2024, 14, 1279. https://doi.org/10.3390/brainsci14121279
Sarant JZ, Busby PA, Schembri AJ, Briggs RJS, Masters CL, Harris DC. COCHLEA: Longitudinal Cognitive Performance of Older Adults with Hearing Loss and Cochlear Implants at 4.5-Year Follow-Up. Brain Sciences. 2024; 14(12):1279. https://doi.org/10.3390/brainsci14121279
Chicago/Turabian StyleSarant, Julia Z., Peter A. Busby, Adrian J. Schembri, Robert J. S. Briggs, Colin L. Masters, and David C. Harris. 2024. "COCHLEA: Longitudinal Cognitive Performance of Older Adults with Hearing Loss and Cochlear Implants at 4.5-Year Follow-Up" Brain Sciences 14, no. 12: 1279. https://doi.org/10.3390/brainsci14121279
APA StyleSarant, J. Z., Busby, P. A., Schembri, A. J., Briggs, R. J. S., Masters, C. L., & Harris, D. C. (2024). COCHLEA: Longitudinal Cognitive Performance of Older Adults with Hearing Loss and Cochlear Implants at 4.5-Year Follow-Up. Brain Sciences, 14(12), 1279. https://doi.org/10.3390/brainsci14121279