Approach–Avoidance Bias in Virtual and Real-World Simulations: Insights from a Systematic Review of Experimental Setups
Abstract
:1. Introduction
Approach–Avoidance Bias
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Study Records
2.4.1. Data Management
2.4.2. Selection Process
2.4.3. Data Collection Process
2.5. Data Items
2.6. Risk of Bias
2.7. Data Synthesis
3. Results
3.1. Study Selection
3.2. Studies Characteristics
3.3. Risk of Bias Results
3.4. Paradigm Characteristics
3.5. Technical Characteristics
3.6. Limitations and Future Direction
4. Discussion
4.1. How Homogeneous Is the Study of the AAB Using VR?
4.2. From Healthy Subjects to Clinical Populations
4.3. Mapping the Terrain: An Examination of the Relationships Between Characteristics of the AAB Research Using VR
4.4. Understanding the AAB Beyond the Distance Mechanism?
4.5. Integrating (Neuro)Physiology into AAB Studies Using VR
4.6. Critical Challenges and Opportunities for Advancement on Studying the AAB in VR
4.7. General Recommendations for Translating the AAB into VR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
AAB | Approach and Avoidance Bias |
AAT | Approach–Avoidance Task |
AIB | Automatic Implicit Bias |
CBM | Cognitive-Bias Modification |
ECG | Electrocardiogram |
EEG | Electroencephalogram |
FAA | Frontal Alpha Asymmetry |
fNIRS | Functional Near Infrared Spectroscopy |
GSR | Galvanic Skin Response |
HMD | Head-Mounted Display |
IAPS | International Affective Picture System |
ISEE | Image Stimuli for Emotion Elicitation |
JBI | Joanna Briggs Institute |
MoBI | Mobile Brain/Body Imaging |
NAPS | Nencki Affective Picture System |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-analyses |
SAM | Self-Assessment Mannequin |
SRC | Stimulus–Response Compatibility |
VR | Virtual Reality |
References
- Degner, J.; Steep, L.; Schmidt, S.; Steinicke, F. Assessing Automatic Approach-Avoidance Behavior in an Immersive Virtual Environment. Front. Virtual Real. 2021, 2, 761142. [Google Scholar] [CrossRef]
- McNaughton, N.; DeYoung, C.G.; Corr, P.J. Chapter 2—Approach/Avoidance. In Neuroimaging Personality, Social Cognition, and Character; Absher, J.R., Cloutier, J., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 25–49. ISBN 9780128009352. [Google Scholar]
- Aupperle, R.L.; Melrose, A.J.; Francisco, A.; Paulus, M.P.; Stein, M.B. Neural Substrates of Approach-Avoidance Conflict Decision-Making. Hum. Brain Mapp. 2015, 36, 449–462. [Google Scholar] [CrossRef]
- Eiler, T.J.; Grünewald, A.; Machulska, A.; Klucken, T.; Jahn, K.; Niehaves, B.; Gethmann, C.F.; Brück, R. A Preliminary Evaluation of Transferring the Approach Avoidance Task into Virtual Reality. In Proceedings of the Information Technology in Biomedicine; Springer International Publishing: Cham, Switzerland, 2019; pp. 151–163. [Google Scholar]
- Kenrick, D.T.; Shiota, M.N. Approach and Avoidance Motivation(s): An Evolutionary Perspective. In Handbook of Approach and Avoidance Motivation; Elliot, A.J., Ed.; Psychology Press: New York, NY, USA, 2008; Volume 664, pp. 273–288. [Google Scholar]
- Fridland, E.; Wiers, C.E. Addiction and Embodiment. Phenomenol. Cogn. Sci. 2018, 17, 15–42. [Google Scholar] [CrossRef]
- Lang, P.J. The Emotion Probe. Studies of Motivation and Attention. Am. Psychol. 1995, 50, 372–385. [Google Scholar] [CrossRef]
- Loijen, A.; Vrijsen, J.N.; Egger, J.I.M.; Becker, E.S.; Rinck, M. Biased Approach-Avoidance Tendencies in Psychopathology: A Systematic Review of Their Assessment and Modification. Clin. Psychol. Rev. 2020, 77, 101825. [Google Scholar] [CrossRef] [PubMed]
- Elliot, A.J. The Hierarchical Model of Approach-Avoidance Motivation. Motiv. Emot. 2006, 30, 111–116. [Google Scholar] [CrossRef]
- Krieglmeyer, R.; De Houwer, J.; Deutsch, R. On the Nature of Automatically Triggered Approach–avoidance Behavior. Emot. Rev. 2013, 5, 280–284. [Google Scholar] [CrossRef]
- Phaf, R.H.; Mohr, S.E.; Rotteveel, M.; Wicherts, J.M. Approach, Avoidance, and Affect: A Meta-Analysis of Approach-Avoidance Tendencies in Manual Reaction Time Tasks. Front. Psychol. 2014, 5, 378. [Google Scholar] [CrossRef] [PubMed]
- Zech, H.G.; Rotteveel, M.; van Dijk, W.W.; van Dillen, L.F. A Mobile Approach-Avoidance Task. Behav. Res. Methods 2020, 52, 2085–2097. [Google Scholar] [CrossRef]
- Chen, M.; Bargh, J.A. Consequences of Automatic Evaluation: Immediate Behavioral Predispositions to Approach or Avoid the Stimulus. Personal. Soc. Psychol. Bull. 1999, 25, 215–224. [Google Scholar] [CrossRef]
- Czeszumski, A.; Albers, F.; Walter, S.; König, P. Let Me Make You Happy, and I’ll Tell You How You Look Around: Using an Approach-Avoidance Task as an Embodied Emotion Prime in a Free-Viewing Task. Front. Psychol. 2021, 12, 604393. [Google Scholar] [CrossRef]
- Solzbacher, J.; Czeszumski, A.; Walter, S.; König, P. Evidence for the Embodiment of the Automatic Approach Bias. Front. Psychol. 2022, 13, 797122. [Google Scholar] [CrossRef]
- Kaspar, K.; Gameiro, R.R.; König, P. Feeling Good, Searching the Bad: Positive Priming Increases Attention and Memory for Negative Stimuli on Webpages. Comput. Human Behav. 2015, 53, 332–343. [Google Scholar] [CrossRef]
- Kaspar, K.; Hloucal, T.-M.; Kriz, J.; Canzler, S.; Gameiro, R.R.; Krapp, V.; König, P. Emotions’ Impact on Viewing Behavior under Natural Conditions. PLoS ONE 2013, 8, e52737. [Google Scholar] [CrossRef]
- Ferrari, G.R.A.; Möbius, M.; Becker, E.S.; Spijker, J.; Rinck, M. Working Mechanisms of a General Positivity Approach-Avoidance Training: Effects on Action Tendencies as Well as on Subjective and Physiological Stress Responses. J. Behav. Ther. Exp. Psychiatry 2018, 59, 134–141. [Google Scholar] [CrossRef]
- Livermore, J.J.A.; Klaassen, F.H.; Bramson, B.; Hulsman, A.M.; Meijer, S.W.; Held, L.; Klumpers, F.; de Voogd, L.D.; Roelofs, K. Approach-Avoidance Decisions Under Threat: The Role of Autonomic Psychophysiological States. Front. Neurosci. 2021, 15, 621517. [Google Scholar] [CrossRef]
- Grossman, P.; Taylor, E.W. Toward Understanding Respiratory Sinus Arrhythmia: Relations to Cardiac Vagal Tone, Evolution and Biobehavioral Functions. Biol. Psychol. 2007, 74, 263–285. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef]
- Porges, S.W.; Doussard-Roosevelt, J.A.; Maiti, A.K. Vagal Tone and the Physiological Regulation of Emotion. Monogr. Soc. Res. Child Dev. 1994, 59, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Holleman, G.A.; Hooge, I.T.C.; Kemner, C.; Hessels, R.S. The Reality of “Real-Life” Neuroscience: A Commentary on Shamay-Tsoory and Mendelsohn (2019). Perspect. Psychol. Sci. 2021, 16, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Kothe, C.; Shirazi, S.Y.; Stenner, T.; Medine, D.; Boulay, C.; Grivich, M.I.; Mullen, T.; Delorme, A.; Makeig, S. The Lab Streaming Layer for Synchronized Multimodal Recording. bioRxiv 2024, 1–11. [Google Scholar] [CrossRef]
- Petukhov, I.V.; Glazyrin, A.E.; Gorokhov, A.V.; Steshina, L.A.; Tanryverdiev, I.O. Being Present in a Real or Virtual World: A EEG Study. Int. J. Med. Inform. 2020, 136, 103977. [Google Scholar] [CrossRef]
- Fadeev, K.A.; Smirnov, A.S.; Zhigalova, O.P.; Bazhina, P.S.; Tumialis, A.V.; Golokhvast, K.S. Too Real to Be Virtual: Autonomic and EEG Responses to Extreme Stress Scenarios in Virtual Reality. Behav. Neurol. 2020, 2020, 5758038. [Google Scholar] [CrossRef]
- Eiler, T.J.; Grünewald, A.; Wahl, M.; Brück, R. AAT Meets Virtual Reality. In Proceedings of the Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, Czech Republic, 25–27 February 2019; Springer International Publishing: Cham, Switzerland, 2020; pp. 153–176. [Google Scholar]
- Eiler, T.J.; Grünewald, A.; Brück, R. Fighting Substance Dependency Combining AAT Therapy and Virtual Reality with Game Design Elements. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), Prague, Czech Republic, 25–27 February 2019; pp. 28–37. [Google Scholar]
- Jones, E.B.; Sharpe, L. Cognitive Bias Modification: A Review of Meta-Analyses. J. Affect. Disord. 2017, 223, 175–183. [Google Scholar] [CrossRef]
- Machulska, A.; Eiler, T.J.; Kleinke, K.; Grünewald, A.; Brück, R.; Jahn, K.; Niehaves, B.; Klucken, T. Approach Bias Retraining through Virtual Reality in Smokers Willing to Quit Smoking: A Randomized-Controlled Study. Behav. Res. Ther. 2021, 141, 103858. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.M.D.; Secoli, S.R.; Püschel, V.A. de A. The Joanna Briggs Institute Approach for Systematic Reviews. Rev. Lat. Am. Enfermagem 2018, 26, e3074. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Others Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Chandra, K.; Slater, B.; Ma, M. Research Rabbit. 2023. Available online: https://www.researchrabbit.ai/ (accessed on 25 October 2024).
- Tarnavsky-Eitan, A.; Smolyansky, E.; Knaan-Harpaz, I.; Perets, S. Connected Papers. 2019. Available online: https://connectedpapers.com (accessed on 25 October 2024).
- van de Schoot, R.; de Bruin, J.; Schram, R.; Zahedi, P.; de Boer, J.; Weijdema, F.; Kramer, B.; Huijts, M.; Hoogerwerf, M.; Ferdinands, G.; et al. An Open Source Machine Learning Framework for Efficient and Transparent Systematic Reviews. Nat. Mach. Intell. 2021, 3, 125–133. [Google Scholar] [CrossRef]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological Quality of Case Series Studies: An Introduction to the JBI Critical Appraisal Tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Barker, T.H.; Hasanoff, S.; Aromataris, E.; Stone, J.; Leonardi-Bee, J.; Sears, K.; Habibi, N.; Klugar, M.; Tufanaru, C.; Moola, S.; et al. The Revised JBI Critical Appraisal Tool for the Assessment of Risk of Bias for Cohort Studies. JBI Evid. Synth. 2024. [Google Scholar] [CrossRef]
- Popay, J.; Roberts, H.; Sowden, A.; Petticrew, M.; Arai, L.; Rodgers, M.; Britten, N.; Roen, K.; Duffy, S. Guidance on the Conduct of Narrative Synthesis in Systematic Reviews: A product from the ESRC Methods Programme Version; Institute for Health Research: London, UK, 2006; Volume 1, p. b92. [Google Scholar]
- Soni, K.D. When Do We Need to Do Meta-Analysis!!! Indian J. Anaesth. 2023, 67, 673–674. [Google Scholar] [CrossRef]
- Field, A.P.; Gillett, R. How to Do a Meta-Analysis. Br. J. Math. Stat. Psychol. 2010, 63, 665–694. [Google Scholar] [CrossRef]
- Ratliff, K.A.; Smith, C.T. Implicit Bias as Automatic Behavior. Psychol. Inq. 2022, 33, 213–218. [Google Scholar] [CrossRef]
- van Nunspeet, F.; Ellemers, N.; Derks, B. Reducing Implicit Bias: How Moral Motivation Helps People Refrain from Making “automatic” Prejudiced Associations. Transl. Issues Psychol. Sci. 2015, 1, 382–391. [Google Scholar] [CrossRef]
- Payne, B.K.; Hannay, J.W. Implicit Bias Reflects Systemic Racism. Trends Cogn. Sci. 2021, 25, 927–936. [Google Scholar] [CrossRef]
- Schroeder, P.A.; Lohmann, J.; Butz, M.V.; Plewnia, C. Behavioral Bias for Food Reflected in Hand Movements: A Preliminary Study with Healthy Subjects. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 120–126. [Google Scholar] [CrossRef]
- Max, S.M.; Schroeder, P.A.; Blechert, J.; Giel, K.E.; Ehlis, A.-C.; Plewnia, C. Mind the Food: Behavioural Characteristics and Imaging Signatures of the Specific Handling of Food Objects. Brain Struct. Funct. 2021, 226, 1169–1183. [Google Scholar] [CrossRef]
- Schroeder, P.A.; Mayer, K.; Wirth, R.; Svaldi, J. Playing with Temptation: Stopping Abilities to Chocolate Are Superior, but Also More Extensive. Appetite 2023, 181, 106383. [Google Scholar] [CrossRef]
- Schroeder, P.A.; Collantoni, E.; Meregalli, V.; Rabarbari, E.; Simonazzi, C.; Svaldi, J.; Cardi, V. Persistent Avoidance of Virtual Food in Anorexia Nervosa-Restrictive Type: Results from Motion Tracking in a Virtual Stopping Task. Int. J. Eat. Disord. 2024, 57, 624–634. [Google Scholar] [CrossRef]
- Felnhofer, A.; Kafka, J.X.; Hlavacs, H.; Beutl, L.; Kryspin-Exner, I.; Kothgassner, O.D. Meeting Others Virtually in a Day-to-Day Setting: Investigating Social Avoidance and Prosocial Behavior towards Avatars and Agents. Comput. Hum. Behav. 2018, 80, 399–406. [Google Scholar] [CrossRef]
- Nuel, I.; Fayant, M.-P.; Alexopoulos, T. “Science Manipulates the Things and Lives in Them”: Reconsidering Approach-Avoidance Operationalization through a Grounded Cognition Perspective. Front. Psychol. 2019, 10, 1418. [Google Scholar] [CrossRef]
- Welsch, R.; von Castell, C.; Hecht, H. Interpersonal Distance Regulation and Approach-Avoidance Reactions Are Altered in Psychopathy. Clin. Psychol. Sci. 2020, 8, 211–225. [Google Scholar] [CrossRef]
- Welsch, R.; von Castell, C.; Rettenberger, M.; Turner, D.; Hecht, H.; Fromberger, P. Sexual Attraction Modulates Interpersonal Distance and Approach-Avoidance Movements towards Virtual Agents in Males. PLoS ONE 2020, 15, e0231539. [Google Scholar] [CrossRef] [PubMed]
- Kisker, J.; Lange, L.; Flinkenflügel, K.; Kaup, M.; Labersweiler, N.; Tetenborg, F.; Ott, P.; Gundler, C.; Gruber, T.; Osinsky, R.; et al. Authentic Fear Responses in Virtual Reality: A Mobile EEG Study on Affective, Behavioral and Electrophysiological Correlates of Fear. Front. Virtual Real. 2021, 2, 716318. [Google Scholar] [CrossRef]
- Madeira, O.; Gromer, D.; Latoschik, M.E.; Pauli, P. Effects of Acrophobic Fear and Trait Anxiety on Human Behavior in a Virtual Elevated Plus-Maze. Front. Virtual Real. 2021, 2, 635048. [Google Scholar] [CrossRef]
- Wei, W.; Wang, Q.; Ding, R.; Dong, R.; Ni, S. Playing Closer: Using Virtual Reality to Measure Approach Bias of Internet Gaming Disorder. Behav. Sci. 2023, 13, 408. [Google Scholar] [CrossRef]
- Ascone, L.; Wirtz, J.; Mellentin, A.I.; Kugler, D.; Bremer, T.; Schadow, F.; Hoppe, S.; Jebens, C.; Kühn, S. Transferring the Approach Avoidance Task into Virtual Reality: A Study in Patients with Alcohol Use Disorder versus Healthy Controls. Virtual Real. 2023, 27, 2711–2722. [Google Scholar] [CrossRef]
- Jahn, K.; Oschinsky, F.M.; Kordyaka, B.; Machulska, A.; Eiler, T.J.; Gruenewald, A.; Klucken, T.; Brueck, R.; Gethmann, C.F.; Niehaves, B. Design Elements in Immersive Virtual Reality: The Impact of Object Presence on Health-Related Outcomes. Internet Res. 2022, 32, 376–401. [Google Scholar] [CrossRef]
- Smeijers, D.; Bulten, E.H.; Verkes, R.-J.; Koole, S.L. Testing the Effects of a Virtual Reality Game for Aggressive Impulse Management: A Preliminary Randomized Controlled Trial among Forensic Psychiatric Outpatients. Brain Sci. 2021, 11, 1484. [Google Scholar] [CrossRef]
- Banakou, D.; Hanumanthu, P.D.; Slater, M. Virtual Embodiment of White People in a Black Virtual Body Leads to a Sustained Reduction in Their Implicit Racial Bias. Front. Hum. Neurosci. 2016, 10, 601. [Google Scholar] [CrossRef]
- Kishore, S.; Spanlang, B.; Iruretagoyena, G.; Szostak, D.; Slater, M. A Virtual Reality Embodiment Technique to Enhance Helping Behavior of Police towards a Victim of Police Racial Aggression. PRESENCE Virtual Augment. Real. 2021, 28, 5–27. [Google Scholar] [CrossRef]
- Peck, T.C.; Good, J.J.; Seitz, K. Evidence of Racial Bias Using Immersive Virtual Reality: Analysis of Head and Hand Motions during Shooting Decisions. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2502–2512. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Peck, T.; Stuart, J.; Gomes de Siqueira, A.; Lok, B. What My Bias Meant for My Embodiment: An Investigation on Virtual Embodiment in Desktop-Based Virtual Reality. Front. Virtual Real. 2024, 5, 1251564. [Google Scholar] [CrossRef]
- Persky, S.; Hollister, B.M.; Martingano, A.J.; Dolwick, A.P.; Telaak, S.H.; Schopp, E.M.; Bonham, V.L. Assessing Bias toward a Black or White Simulated Patient with Obesity in a Virtual Reality-Based Genomics Encounter. CyberpsychologyBehav. Soc. Netw. 2024, 27, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, S.M.S.; Michael, A.; Chowdhury, T.I.; Quarles, J. Use of Scaling to Improve Reach in Virtual Reality for People with Parkinson’s Disease. In Proceedings of the 2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH), Sydney, Australia, 10–12 August 2022; pp. 1–7. [Google Scholar]
- Kampmann, I.L.; Emmelkamp, P.M.G.; Morina, N. Does Exposure Therapy Lead to Changes in Attention Bias and Approach-Avoidance Bias in Patients with Social Anxiety Disorder? Cognit. Ther. Res. 2018, 42, 856–866. [Google Scholar] [CrossRef]
- Scherer, K.R.; Moors, A. The Emotion Process: Event Appraisal and Component Differentiation. Annu. Rev. Psychol. 2019, 70, 719–745. [Google Scholar] [CrossRef] [PubMed]
- Moors, A.; Fischer, M. Demystifying the Role of Emotion in Behaviour: Toward a Goal-Directed Account. Cogn. Emot. 2019, 33, 94–100. [Google Scholar] [CrossRef]
- Schiller, D.; Yu, A.N.C.; Alia-Klein, N.; Becker, S.; Cromwell, H.C.; Dolcos, F.; Eslinger, P.J.; Frewen, P.; Kemp, A.H.; Pace-Schott, E.F.; et al. The Human Affectome. Neurosci. Biobehav. Rev. 2024, 158, 105450. [Google Scholar] [CrossRef]
- Solarz, A.K. Latency of Instrumental Responses as a Function of Compatibility with the Meaning of Eliciting Verbal Signs. J. Exp. Psychol. 1960, 59, 239–245. [Google Scholar] [CrossRef]
- Keshava, A.; Gottschewsky, N.; Balle, S.; Nezami, F.N.; Schüler, T.; König, P. Action Affordance Affects Proximal and Distal Goal-Oriented Planning. Eur. J. Neurosci. 2023, 57, 1546–1560. [Google Scholar] [CrossRef]
- Van Dessel, P.; Cummins, J.; Wiers, R.W. ABC-Training as a New Intervention for Hazardous Alcohol Drinking: Two Proof-of-Principle Randomized Pilot Studies. Addiction 2023, 118, 2141–2155. [Google Scholar] [CrossRef]
- Markman, A.B.; Brendl, C.M. Constraining Theories of Embodied Cognition. Psychol. Sci. 2005, 16, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Elliot, A.J. Approach and Avoidance Motivation and Achievement Goals. Educ. Psychol. 1999, 34, 169–189. [Google Scholar] [CrossRef]
- Elliot, A.J.; Harackiewicz, J.M. Approach and Avoidance Achievement Goals and Intrinsic Motivation: A Mediational Analysis. J. Pers. Soc. Psychol. 1996, 70, 461–475. [Google Scholar] [CrossRef]
- Eder, A.B.; Elliot, A.J.; Harmon-Jones, E. Approach and Avoidance Motivation: Issues and Advances. Emot. Rev. 2013, 5, 227–229. [Google Scholar] [CrossRef]
- Gibson, J.J. The Ecological Approach to Visual Perception: Classic Edition; Psychology Press Classic Editions: London, UK, 1979. [Google Scholar]
- Cesario, J.; Plaks, J.E.; Hagiwara, N.; Navarrete, C.D.; Higgins, E.T. The Ecology of Automaticity. How Situational Contingencies Shape Action Semantics and Social Behavior: How Situational Contingencies Shape Action Semantics and Social Behavior. Psychol. Sci. 2010, 21, 1311–1317. [Google Scholar] [CrossRef]
- Saraiva, A.C.; Schüür, F.; Bestmann, S. Emotional Valence and Contextual Affordances Flexibly Shape Approach-Avoidance Movements. Front. Psychol. 2013, 4, 933. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Eden, A.; Park, T.; Ewoldsen, D.R.; Bente, G. Embodied Motivation: Spatial and Temporal Aspects of Approach and Avoidance in Virtual Reality. Media Psychol. 2022, 25, 387–410. [Google Scholar] [CrossRef]
- Ascheid, S.; Wessa, M.; Linke, J.O. Effects of Valence and Arousal on Implicit Approach/Avoidance Tendencies: A fMRI Study. Neuropsychologia 2019, 131, 333–341. [Google Scholar] [CrossRef]
- Zorowitz, S.; Rockhill, A.P.; Ellard, K.K.; Link, K.E.; Herrington, T.; Pizzagalli, D.A.; Widge, A.S.; Deckersbach, T.; Dougherty, D.D. The Neural Basis of Approach-Avoidance Conflict: A Model Based Analysis. eNeuro 2019, 6, 4. [Google Scholar] [CrossRef]
- Cardinal, R.N.; Parkinson, J.A.; Hall, J.; Everitt, B.J. Emotion and Motivation: The Role of the Amygdala, Ventral Striatum, and Prefrontal Cortex. Neurosci. Biobehav. Rev. 2002, 26, 321–352. [Google Scholar] [CrossRef]
- Tye, K.; Janak, P. Amygdala Neurons Differentially Encode Motivation and Reinforcement. J. Neurosci. 2007, 27, 3937–3945. [Google Scholar] [CrossRef]
- Rolls, E.T. Emotion, Motivation, Decision-Making, the Orbitofrontal Cortex, Anterior Cingulate Cortex, and the Amygdala. Brain Struct. Funct. 2023, 228, 1201–1257. [Google Scholar] [CrossRef]
- Nolte, D.; Vidal De Palol, M.; Keshava, A.; Madrid-Carvajal, J.; Gert, A.L.; von Butler, E.-M.; Kömürlüoğlu, P.; König, P. Combining EEG and Eye-Tracking in Virtual Reality: Obtaining Fixation-Onset Event-Related Potentials and Event-Related Spectral Perturbations. Atten. Percept. Psychophys. 2024, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Garrison, K.; Schmeichel, B.; Baldwin, C. Meta-Analysis of the Relationship Between Frontal EEG Asymmetry and Approach/Avoidance Motivation. 2022. Available online: https://osf.io/preprints/psyarxiv/9tgws (accessed on 20 January 2025).
- Vecchio, A.; Pascalis, V. EEG Resting Asymmetries and Frequency Oscillations in Approach/avoidance Personality Traits: A Systematic Review. Symmetry 2020, 12, 1712. [Google Scholar] [CrossRef]
- Coan, J.A.; Allen, J.J.B. Frontal EEG Asymmetry as a Moderator and Mediator of Emotion. Biol. Psychol. 2004, 67, 7–49. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Jones, E. Early Career Award. Clarifying the Emotive Functions of Asymmetrical Frontal Cortical Activity. Psychophysiology 2003, 40, 838–848. [Google Scholar] [CrossRef]
- Smith, E.E.; Reznik, S.J.; Stewart, J.L.; Allen, J.J.B. Assessing and Conceptualizing Frontal EEG Asymmetry: An Updated Primer on Recording, Processing, Analyzing, and Interpreting Frontal Alpha Asymmetry. Int. J. Psychophysiol. 2017, 111, 98–114. [Google Scholar] [CrossRef]
- Harlé, K.M.; Bomyea, J.; Spadoni, A.D.; Simmons, A.N.; Taylor, C.T. Proactive Engagement of Cognitive Control Modulates Implicit Approach-Avoidance Bias. Cogn. Affect. Behav. Neurosci. 2020, 20, 998–1010. [Google Scholar] [CrossRef]
- Elliot, A.J.; Eder, A.B.; Harmon-Jones, E. Approach–avoidance Motivation and Emotion: Convergence and Divergence. Emot. Rev. 2013, 5, 308–311. [Google Scholar] [CrossRef]
- Jungnickel, E.; Gehrke, L.; Klug, M.; Gramann, K. Chapter 10—MoBI—Mobile Brain/Body Imaging. In Neuroergonomics; Ayaz, H., Dehais, F., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 59–63. ISBN 9780128119266. [Google Scholar]
- Makeig, S.; Gramann, K.; Jung, T.-P.; Sejnowski, T.J.; Poizner, H. Linking Brain, Mind and Behavior. Int. J. Psychophysiol. 2009, 73, 95–100. [Google Scholar] [CrossRef]
- Gramann, K.; Ferris, D.P.; Gwin, J.; Makeig, S. Imaging Natural Cognition in Action. Int. J. Psychophysiol. 2014, 91, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Redcay, E.; Schilbach, L. Using Second-Person Neuroscience to Elucidate the Mechanisms of Social Interaction. Nat. Rev. Neurosci. 2019, 20, 495–505. [Google Scholar] [CrossRef]
- Gramann, K.; Gwin, J.T.; Ferris, D.P.; Oie, K.; Jung, T.-P.; Lin, C.-T.; Liao, L.-D.; Makeig, S. Cognition in Action: Imaging Brain/body Dynamics in Mobile Humans. Rev. Neurosci. 2011, 22, 593–608. [Google Scholar] [CrossRef]
- Hölle, D.; Meekes, J.; Bleichner, M.G. Mobile Ear-EEG to Study Auditory Attention in Everyday Life: Auditory Attention in Everyday Life. Behav. Res. Methods 2021, 53, 2025–2036. [Google Scholar] [CrossRef]
- Maimon, G.; Straw, A.D.; Dickinson, M.H. Active Flight Increases the Gain of Visual Motion Processing in Drosophila. Nat. Neurosci. 2010, 13, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Kihlstrom, J.F. Ecological Validity and “Ecological Validity”. Perspect. Psychol. Sci. 2021, 16, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Grasso-Cladera, A.; Costa-Cordella, S.; Rossi, A.; Fuchs, N.F.; Parada, F.J. Mobile Brain/Body Imaging: Challenges and Opportunities for the Implementation of Research Programs Based on the 4E Perspective to Cognition. Adapt. Behav. 2023, 31, 423–448. [Google Scholar] [CrossRef]
- Stangl, M.; Maoz, S.L.; Suthana, N. Mobile Cognition: Imaging the Human Brain in the “real World”. Nat. Rev. Neurosci. 2023, 24, 347–362. [Google Scholar] [CrossRef]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International Affective Picture System (IAPS): Technical Manual and Affective Ratings; NIMH Center for the Study of 1997; NIMH Center for the Study of Emotion and Attention: Gainesville, FL, USA, 1997. [Google Scholar]
- Marchewka, A.; Zurawski, Ł.; Jednoróg, K.; Grabowska, A. The Nencki Affective Picture System (NAPS): Introduction to a Novel, Standardized, Wide-Range, High-Quality, Realistic Picture Database. Behav. Res. Methods 2014, 46, 596–610. [Google Scholar] [CrossRef]
- Kim, H.; Lu, X.; Costa, M.; Kandemir, B.; Adams, R.B., Jr.; Li, J.; Wang, J.Z.; Newman, M.G. Development and Validation of Image Stimuli for Emotion Elicitation (ISEE): A Novel Affective Pictorial System with Test-Retest Repeatability. Psychiatry Res. 2018, 261, 414–420. [Google Scholar] [CrossRef]
- Grall, C.; Finn, E.S. Leveraging the Power of Media to Drive Cognition: A Media-Informed Approach to Naturalistic Neuroscience. Soc. Cogn. Affect. Neurosci. 2022, 17, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Parada, F.J. Understanding Natural Cognition in Everyday Settings: 3 Pressing Challenges. Front. Hum. Neurosci. 2018, 12, 386. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring Emotion: The Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Bynion, T.-M.; Feldner, M.T. Self-Assessment Manikin. In Encyclopedia of Personality and Individual Differences; Springer International Publishing: Cham, Switzerland, 2020; pp. 4654–4656. ISBN 9783319246109. [Google Scholar]
- Morris, J.D. Observations: SAM: The Self-Assessment Manikin; an Efficient Cross-Cultural Measurement of Emotional Response. J. Advert. Res. 1995, 35, 63–68. [Google Scholar]
- Neamoniti, S.; Kasapakis, V. Hand Tracking vs Motion Controllers: The Effects on Immersive Virtual Reality Game Experience. In Proceedings of the 2022 IEEE International Symposium on Multimedia (ISM), Naples, Italy, 5–7 December 2022; pp. 206–207. [Google Scholar]
- Masurovsky, A.; Chojecki, P.; Runde, D.; Lafci, M.; Przewozny, D.; Gaebler, M. Controller-Free Hand Tracking for Grab-and-Place Tasks in Immersive Virtual Reality: Design Elements and Their Empirical Study. Multimodal Technol. Interact. 2020, 4, 91. [Google Scholar] [CrossRef]
- Roelofs, K.; Elzinga, B.M.; Rotteveel, M. The Effects of Stress-Induced Cortisol Responses on Approach-Avoidance Behavior. Psychoneuroendocrinology 2005, 30, 665–677. [Google Scholar] [CrossRef]
PICO Criteria for the Inclusion of Articles in the Review | |
---|---|
Criteria | Determinants |
Population | Human participants, including clinical populations and healthy subjects |
Intervention | All types of experimental paradigms are oriented to studying the approach–avoidance bias using virtual reality or a natural setup. This review does not include using VR or a natural setup as training or treatment. |
Comparison | The presence of a comparison or control condition was not required to be included in the review. |
Outcome | Any type of outcome was expected from the included articles regarding the study of the approach–avoidance bias in virtual reality. |
Others | No timing restrictions; virtual reality and natural setups; studies reported in English; published studies in peer-reviewed journals. |
Risk of Bias Assessment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Case–Control Studies 1 | ||||||||||
Reference | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 |
Felnhofer et al., 2018 [49] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Not Applicable | Yes |
Eiler et al., 2019 [4] | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Not Applicable | Yes |
Degner et al., 2021 [1] | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Not Applicable | Yes |
Max et al., 2021 [46] | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Not Applicable | Yes |
Schroeder et al., 2023 [47] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Not Applicable | Yes |
Ascone et al., 2023 [56] | Yes | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Not Applicable | Yes |
Schroeder et al., 2024 [48] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Not Applicable | Yes |
Cross-Sectional Studies 2 | ||||||||||
Reference | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | ||
Schroeder et al., 2016 [50] | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Yes | ||
Nuel et al., 2019 [51] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||
Welsch et al., 2020 [51] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||
Welsch et al., 2020 [52] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||
Kisker et al., 2021 [53] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||
Madeira et al., 2021 [54] | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Yes | ||
Wei et al., 2023 [55] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Reference | Experimental Paradigm |
---|---|
Schroeder et al., 2016 [45] | Approach–avoidance task to measure the interaction with food and ball objects |
Felnhofer et al., 2018 [49] | Interactional task with agents |
Nuel et al., 2019 [50] | E1 and E2: Approach–avoidance task to agents in different contexts |
Eiler et al., 2019 [4] | Sorting task to measure interaction between smoke and non-smoke related cues |
Welsch et al., 2020 [51] | E1: Distance reduction task to agents of different genders and facial expressions; E2 and E3: Approach–Avoidance Task regarding agents of different genders |
Welsch et al., 2020 [52] | E1: Approach–avoidance task to agents of different gender; E2: Distance reduction task to agents of different genders. |
Degner et al., 2021 [1] | Approach–avoidance task to measure the interaction between butterflies and spiders |
Kisker et al., 2021 [53] | Cave exploration |
Madeira et al., 2021 [54] | Elevated Plus-Maze |
Max et al., 2021 [46] | Decision-making task regarding food and non-food items |
Wei et al., 2023 [55] | Approach–avoidance task to measure the interaction between game-related and neutral cues |
Schroeder et al., 2023 [47] | Stop-signal task to measure food-specific inhibitory control |
Ascone et al., 2023 [56] | Approach–avoidance task to measure the interaction between alcoholic and non-alcoholic beverages. |
Schroeder et al., 2024 [48] | Stop-signal task to measure foo-specific inhibitory control |
Reference | Trial Number | Stimuli | Embodied Response | Behavioral Data | Comparison |
---|---|---|---|---|---|
Schroeder et al., 2016 [45] | 240 | 3D; food and nonfood ball objects | Grabbing and warding off | Reaction time | No |
Felnhofer et al., 2018 [49] | N/A | 3D; virtual agents | Verbal interaction | Type of reaction | No |
Nuel et al., 2019 [50] | E1: 30 E2: 30 | 3D; virtual agents | Leaning and stepping forward–backward | Type of reaction | No |
Eiler et al., 2019 [4] | 20 | 3D; smoke-related and non-related | Pushing and pulling | Reaction time | No |
Welsch et al., 2020 [51] | E1: 40 E2: 160 E3: 160 | 3D; virtual agents | E1: Walking; E2 and E3: Pushing and pulling | Reaction time, type of reaction, and velocity | No |
Welsch et al., 2020 [52] | E1: 160 E2: 40 | 3D; virtual agents | E1: Step forward–backward; E2: Walking | Reaction time, type of reaction, and velocity | No |
Degner et al., 2021 [1] | 128 | 3D; plants, butterflies, and spiders | Stepping forward–backward | Reaction time and position | Yes |
Kisker et al., 2021 [53] | N/A | 3D; Cave | Exploring (walking) | Exploration time and type of reaction | No |
Madeira et al., 2021 [54] | N/A | 3D; E1: Elevated Plus Maze; E2: Modified EPM | Exploring (walking) | Exploration time, type of reaction, and distance walked | No |
Max et al., 2021 [46] | 192 | 3D; balls, food, and office objects | Grabbing and locating objects | Reaction time | Yes |
Wei et al., 2023 [55] | 96 | 3D; game-related and non-game cartoons | Pushing and pulling | Reaction time | No |
Schroeder et al., 2023 [47] | 400 | 3D; chocolate and similar objects | Grabbing | Reaction time and position | Yes |
Ascone et al., 2023 [56] | 156 | 2D; alcoholic and non-alcoholic drinks | Pushing and Pulling; Grabbing | Reaction time | Yes |
Schroeder et al., 2024 [48] | 200 | 3D; food and shoes | Tapping | Reaction time | No |
Reference | VR System | Resolution | Sampling Rate | Controllers | Development System | Physiology | Position—Movement |
---|---|---|---|---|---|---|---|
Schroeder et al., 2016 [45] | Oculus Rift, HMD | N/A | N/A | Motion sensors | VR API, Unity 3D | No | Sitting, arm and hand movements |
Felnhofer et al., 2018 [49] | Sony HMZ-T1, HMD | N/A | N/A | TrackIR 5, head tracking system; HTC Desire SV smartphone | GIMP, OGRE 3D | No | Sitting |
Nuel et al., 2019 [50] | HTC Vive, HMD | N/A | N/A | HTC controllers | N/A | No | E1: Sitting; leaning back; E2: Standing; stepping |
Eiler et al., 2019 [4] | HTC Vive HMD | 2160 × 1200 pixels | 90 Hz | Motion sensor and HTC Vive controllers | Unity 3D | No | Standing |
Welsch et al., 2020 [51] | LCD shutter glasses | 1400 × 1050 pixels | 60 Hz | Motion sensor | Vizard 5 | No | E1: Standing, walking; E2 and E3: Standing, moving a joystick with the arm |
Welsch et al., 2020 [52] | HTC Vive HMD | 1080 × 1200 pixels | 90 Hz | HTC Vive controller | Vizard 5 | No | Standing, stepping |
Degner et al., 2021 [1] | HTC Vive Pro, HMD | 1440 × 1600 pixels | 90 Hz | HTC Vive Controller | Unity | No | Standing, stepping |
Kisker et al., 2021 [53] | HTC Vive Pro, HMD | N/A | N/A | HTC Vive controller | Unity | EEG and ECG | Standing, walking |
Madeira et al., 2021 [54] | Infitec Premium color-filtering glasses | 1920 × 1200 pixels | 60 Hz | Motion sensor, Xbox 360 controller | CS-Research VTplus | No | Standing, walking |
Max et al., 2021 [46] | Oculus Rift CV1, HMD | 1080 × 1200 pixels | N/A | Motion sensor | Unity | fNIRS | Sitting, arm and hand movements |
Wei et al., 2023 [55] | HTC Vive HMD | N/A | N/A | N/A | N/A | No | Sitting, arm and hand movements |
Schroeder et al., 2023 [47] | HTC Vive, HMD | N/A | 120 Hz | HTC Vive Wand controller | Unity | No | Sitting, hand movements |
Ascone et al., 2023 [56] | HTC Vive Pro, HMD | 2880 × 1660 pixels | N/A | VR-controller | N/A | No | Sitting, arm and hand movements |
Schroeder et al., 2024 [48] | Meta Quest 2, HMD | N/A | 62 Hz | Meta Quest 2 controller | N/A | No | Sitting, hand movements |
Reference | Reported Limitations | Suggested Future Directions |
---|---|---|
Schroeder et al., 2016 [45] | Lower-level features of the stimuli might be involved in the bias. | To examine movement and speed trajectories; To investigate lower-level features. |
Felnhofer et al., 2018 [49] | Participants’ previous experience in VR was motion sickness. | To consider virtual social environments’ ecological validity and explore specific disorder-dependent social behaviors towards avatars in different populations. |
Nuel et al., 2019 [50] | The feeling of presence: engagement with the VR environment in comparison with the real-world | To explore the ecological operationalizations of approach–avoidance behaviors, suggesting that more extensive behavioral repetition and specific contingencies may be necessary |
Eiler et al., 2019 [4] | N/A | To improve experimental conditions for feeling of presence; To use more realistic graphics in VR; To improve reaction time measurements; To implement full-body tracking to increase immersion and embodiment |
Welsch et al., 2020 [51] | N/A | To improve the ecological validity of the VR setup |
Welsch et al., 2020 [52] | Length of the experiment and habituation | To test the reliability and validity of the AAB in VR. |
Degner et al., 2021 [1] | Habituation, strategy development, and physical demand; Stimuli type | To estimate the optimal trial number that allows reliable measurement without compromising observed effects and counterbalance conditions; To implement full-body tracking as a target measure for analysis |
Kisker et al., 2021 [53] | Impact of movement on physiological measures; Ethical challenges of using VR | To research whether factors other than emotion and immersion may have varying effects on the dimensions of presence |
Madeira et al., 2021 [54] | Lack of psychophysiological measures | To assess other behavioral measures; To generate naturalistic EPM environments to increase validity |
Max et al., 2021 [46] | N/A | To improve the ecological validity of the VR setup |
Wei et al., 2023 [55] | Stimuli type | N/A |
Schroeder et al., 2023 [47] | Stimuli type | N/A |
Ascone et al., 2023 [56] | N/A | To enhance the grasping component, To test different VR setups, To use more realistic stimuli |
Schroeder et al., 2024 [48] | N/A | To manipulate stimuli modality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso-Cladera, A.; Madrid-Carvajal, J.; Walter, S.; König, P. Approach–Avoidance Bias in Virtual and Real-World Simulations: Insights from a Systematic Review of Experimental Setups. Brain Sci. 2025, 15, 103. https://doi.org/10.3390/brainsci15020103
Grasso-Cladera A, Madrid-Carvajal J, Walter S, König P. Approach–Avoidance Bias in Virtual and Real-World Simulations: Insights from a Systematic Review of Experimental Setups. Brain Sciences. 2025; 15(2):103. https://doi.org/10.3390/brainsci15020103
Chicago/Turabian StyleGrasso-Cladera, Aitana, John Madrid-Carvajal, Sven Walter, and Peter König. 2025. "Approach–Avoidance Bias in Virtual and Real-World Simulations: Insights from a Systematic Review of Experimental Setups" Brain Sciences 15, no. 2: 103. https://doi.org/10.3390/brainsci15020103
APA StyleGrasso-Cladera, A., Madrid-Carvajal, J., Walter, S., & König, P. (2025). Approach–Avoidance Bias in Virtual and Real-World Simulations: Insights from a Systematic Review of Experimental Setups. Brain Sciences, 15(2), 103. https://doi.org/10.3390/brainsci15020103