Sonographic Risk Stratification Systems for Thyroid Nodules as Rule-Out Tests in Older Adults
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Reference Standard
4.2. Age Groups
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gharib, H.; Papini, E.; Garber, J.R.; Duick, D.S.; Harrell, R.M.; Hegedüs, L.; Paschke, R.; Valcavi, R.; Vitti, P.; AACE/ACE/AME Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules 2016 update. Endocr. Pr. 2016, 22, 622–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.H.; Lee, Y.H.; Lim, H.K.; Moon, W.J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grani, G.; Sponziello, M.; Pecce, V.; Ramundo, V.; Durante, C. Contemporary Thyroid Nodule Evaluation and Management. J. Clin. Endocrinol. Metab. 2020, 105. [Google Scholar] [CrossRef] [PubMed]
- Hoang, J.K.; Middleton, W.D.; Farjat, A.E.; Langer, J.E.; Reading, C.C.; Teefey, S.A.; Abinanti, N.; Boschini, F.J.; Bronner, A.J.; Dahiya, N.; et al. Reduction in Thyroid Nodule Biopsies and Improved Accuracy with American College of Radiology Thyroid Imaging Reporting and Data System. Radiology 2018, 287, 185–193. [Google Scholar] [CrossRef]
- Ahmadi, S.; Oyekunle, T.; Jiang, X.; Scheri, R.; Perkins, J.; Stang, M.; Roman, S.; Sosa, J.A. A direct comparison of the ata and TI-Rads ultrasound scoring systems. Endocr. Pr. 2019, 25, 413–422. [Google Scholar] [CrossRef]
- Middleton, W.D.; Teefey, S.A.; Reading, C.C.; Langer, J.E.; Beland, M.D.; Szabunio, M.M.; Desser, T.S. Multiinstitutional Analysis of Thyroid Nodule Risk Stratification Using the American College of Radiology Thyroid Imaging Reporting and Data System. AJR Am. J. Roentgenol. 2017, 208, 1331–1341. [Google Scholar] [CrossRef]
- Xu, T.; Wu, Y.; Wu, R.X.; Zhang, Y.Z.; Gu, J.Y.; Ye, X.H.; Tang, W.; Xu, S.H.; Liu, C.; Wu, X.H. Validation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination. Endocrine 2019, 64, 299–307. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Ascoli, V.; Bosco, D.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Falcone, R.; Ramundo, V.; Cantisani, V.; et al. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” TIRADS. J. Clin. Endocrinol. Metab. 2019, 104, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basha, M.A.A.; Alnaggar, A.A.; Refaat, R.; El-Maghraby, A.M.; Refaat, M.M.; Abd Elhamed, M.E.; Abdalla, A.; Aly, S.A.; Hanafy, A.S.; Mohamed, A.E.M.; et al. The validity and reproducibility of the thyroid imaging reporting and data system (TI-RADS) in categorization of thyroid nodules: Multicentre prospective study. Eur. J. Radiol. 2019, 117, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Persichetti, A.; Di Stasio, E.; Guglielmi, R.; Bizzarri, G.; Taccogna, S.; Misischi, I.; Graziano, F.; Petrucci, L.; Bianchini, A.; Papini, E. Predictive Value of Malignancy of Thyroid Nodule Ultrasound Classification Systems: A Prospective Study. J. Clin. Endocrinol. Metab. 2018, 103, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Castellana, M.; Castellana, C.; Treglia, G.; Giorgino, F.; Giovanella, L.; Russ, G.; Trimboli, P. Performance of five ultrasound risk stratification systems in selecting thyroid nodules for FNA. A meta-analysis. J. Clin. Endocrinol. Metab. 2019, 105, 1659–1669. [Google Scholar] [CrossRef]
- Di Fermo, F.; Sforza, N.; Rosmarin, M.; Morosan Allo, Y.; Parisi, C.; Santamaria, J.; Pacenza, N.; Zuk, C.; Faingold, C.; Ferraro, F.; et al. Comparison of different systems of ultrasound (US) risk stratification for malignancy in elderly patients with thyroid nodules. Real world experience. Endocrine 2020, 69, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Kwong, N.; Medici, M.; Angell, T.E.; Liu, X.; Marqusee, E.; Cibas, E.S.; Krane, J.F.; Barletta, J.A.; Kim, M.I.; Larsen, P.R.; et al. The Influence of Patient Age on Thyroid Nodule Formation, Multinodularity, and Thyroid Cancer Risk. J. Clin. Endocrinol. Metab. 2015, 100, 4434–4440. [Google Scholar] [CrossRef] [Green Version]
- Russ, G.; Leboulleux, S.; Leenhardt, L.; Hegedüs, L. Thyroid incidentalomas: Epidemiology, risk stratification with ultrasound and workup. Eur. Thyroid J. 2014, 3, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Vyas, C.M.; Van Benschoten, O.; Nehs, M.A.; Moore, F.D.; Marqusee, E.; Krane, J.F.; Kim, M.I.; Heller, H.T.; Gawande, A.A.; et al. Quantitative Analysis of the Benefits and Risk of Thyroid Nodule Evaluation in Patients ≥70 Years Old. Thyroid 2018, 28, 465–471. [Google Scholar] [CrossRef]
- Ramundo, V.; Sponziello, M.; Falcone, R.; Verrienti, A.; Filetti, S.; Durante, C.; Grani, G. Low-risk papillary thyroid microcarcinoma: Optimal management toward a more conservative approach. J. Surg. Oncol. 2020, 121, 958–963. [Google Scholar] [CrossRef] [Green Version]
- Lamartina, L.; Grani, G.; Durante, C.; Filetti, S. Recent advances in managing differentiated thyroid cancer. F1000Res 2018, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Holoubeck, S.A.; Yan, H.; Kuchta, K.M.; Winchester, D.J.; Moo-Young, T.A.; Prinz, R.A. Trends in nonoperative management of papillary thyroid microcarcinoma. J. Surg. Oncol. 2020. [Google Scholar] [CrossRef]
- Ito, Y.; Miyauchi, A.; Kihara, M.; Higashiyama, T.; Kobayashi, K.; Miya, A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 2014, 24, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.K.; Lee, E.M.; Kim, J.H.; Oak, S.Y.; Kwon, S.K.; Choi, Y.S.; Kim, Y.O. Relationship between ultrasonographic and pathologic calcification patterns in papillary thyroid cancer. Medicine 2018, 97, e12675. [Google Scholar] [CrossRef] [PubMed]
- Tahvildari, A.M.; Pan, L.; Kong, C.S.; Desser, T. Sonographic-Pathologic Correlation for Punctate Echogenic Reflectors in Papillary Thyroid Carcinoma: What Are They? J. Ultrasound Med. 2016, 35, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Rosario, P.W.; da Silva, A.L.; Nunes, M.S.; Ribeiro Borges, M.A.; Mourão, G.F.; Calsolari, M.R. Risk of malignancy in 1502 solid thyroid nodules >1 cm using the new ultrasonographic classification of the American Thyroid Association. Endocrine 2017, 56, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Knappe, L.; Treglia, G.; Ruberto, T.; Piccardo, A.; Ceriani, L.; Paone, G.; Giovanella, L. FNA indication according to ACR-TIRADS, EU-TIRADS and K-TIRADS in thyroid incidentalomas at 18F-FDG PET/CT. J. Endocrinol. Investig. 2020. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A meta-analysis. Acta Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef]
- Castellana, M.; Piccardo, A.; Virili, C.; Scappaticcio, L.; Grani, G.; Durante, C.; Giovanella, L.; Trimboli, P. Can ultrasound systems for risk stratification of thyroid nodules identify follicular carcinoma? Cancer Cytopathol. 2020, 128, 250–259. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Ascoli, V.; Bosco, D.; Nardi, F.; D’Ambrosio, F.; Rubini, A.; Giacomelli, L.; Biffoni, M.; Filetti, S.; et al. Ultrasonography scoring systems can rule out malignancy in cytologically indeterminate thyroid nodules. Endocrine 2017, 57, 256–261. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Falcone, R.; Ramundo, V.; Cantisani, V.; Filetti, S.; Durante, C. Sonographically Estimated Risks of Malignancy for Thyroid Nodules Computed with Five Standard Classification Systems: Changes over Time and Their Relation to Malignancy. Thyroid 2018, 28, 1190–1197. [Google Scholar] [CrossRef]
- Ramundo, V.; Lamartina, L.; Falcone, R.; Ciotti, L.; Lomonaco, C.; Biffoni, M.; Giacomelli, L.; Maranghi, M.; Durante, C.; Grani, G. Is thyroid nodule location associated with malignancy risk? Ultrasonography 2019, 38, 231–235. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Ramundo, V.; Falcone, R.; Lomonaco, C.; Ciotti, L.; Barone, M.; Maranghi, M.; Cantisani, V.; Filetti, S.; et al. Taller-Than-Wide Shape: A New Definition Improves the Specificity of TIRADS Systems. Eur. Thyroid J. 2020, 9, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Nardi, F.; Basolo, F.; Crescenzi, A.; Fadda, G.; Frasoldati, A.; Orlandi, F.; Palombini, L.; Papini, E.; Zini, M.; Pontecorvi, A.; et al. Italian consensus for the classification and reporting of thyroid cytology. J. Endocrinol. Investig. 2014, 37, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Fadda, G.; Basolo, F.; Bondi, A.; Bussolati, G.; Crescenzi, A.; Nappi, O.; Nardi, F.; Papotti, M.; Taddei, G.; Palombini, L. Cytological classification of thyroid nodules. Proposal of the SIAPEC-IAP Italian Consensus Working Group. Pathologica 2010, 102, 405–408. [Google Scholar] [PubMed]
- Orimo, H.; Ito, H.; Suzuki, T.; Araki, A.; Hosoi, T.; Sawabe, M. Reviewing the definition of “elderly”. Geriatr. Gerontol. Int. 2006, 6, 149–158. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837. [Google Scholar] [CrossRef] [PubMed]
- Goksuluk, D.; Korkmaz, S.; Zararsiz, G.; Karaagaoglu, A.E. easyROC: An Interactive Web-tool for ROC Curve Analysis Using R Language Environment. R. J. 2016, 8, 213–230. [Google Scholar] [CrossRef] [Green Version]
Feature | Descriptor | Age | Total | p-Value 1 | |
---|---|---|---|---|---|
≤65 years | >65 years | ||||
Maximum diameter, mm (IQR) | 21 (14.9–29.2) | 20.4 (15.2–27.7) | 20.7 (15–28.8) | 0.798 2 | |
Margins | Regular | 245 | 68 | 313 | 0.246 |
40.4% | 32.1% | 38.3% | |||
Irregular/lobulated | 92 | 32 | 124 | ||
15.2% | 15.1% | 15.2% | |||
Ill-defined | 37 | 14 | 51 | ||
6.1% | 6.6% | 6.2% | |||
Infiltrating | 3 | 1 | 4 | ||
0.5% | 0.5% | 0.5% | |||
Hypoechoic halo | 229 | 97 | 326 | ||
37.8% | 45.8% | 39.9% | |||
Cystic composition | 23 | 1 | 24 | 0.006 | |
3.8% | 0.5% | 2.9% | |||
Solid composition | 180 | 66 | 246 | 0.379 | |
29.7% | 31.1% | 30.1% | |||
Mixed composition | Septa | 20 | 7 | 27 | 0.271 |
3.3% | 3.3% | 3.3% | |||
Non-nodular | 364 | 137 | 501 | ||
60.1% | 64.6% | 61.2% | |||
Central nodular solid portion | 6 | 1 | 7 | ||
1% | 0.5% | 1% | |||
Eccentric nodular solid portion | 13 | 0 | 13 | ||
2.1% | 0% | 1.6% | |||
Echogenicity | Anechogenic | 7 | 1 | 8 | 0.107 |
1.2% | 0.5% | 1.0% | |||
Hyperechogenic | 4 | 3 | 7 | ||
0.7% | 1.4% | 0.9% | |||
Isoechogenic | 427 | 167 | 594 | ||
70.5% | 78.8% | 72.6% | |||
Hypoechogenic | 147 | 36 | 183 | ||
24.3% | 17.0% | 22.4% | |||
Markedly hypoechogenic | 21 | 5 | 26 | ||
3.5% | 2.4% | 3.2% | |||
Hyperechoic Foci | None | 437 | 162 | 599 | 0.277 |
72.1% | 76.4% | 73.2% | |||
Comet-tail | 43 | 9 | 52 | ||
7.1% | 4.2% | 6.4% | |||
Indeterminate | 126 | 41 | 167 | ||
20.8% | 19.3% | 20.4% | |||
Calcifications | None | 486 | 147 | 633 | 0.005 |
80.2% | 69.3% | 77.4% | |||
Macrocalcifications | 74 | 42 | 116 | ||
12.2% | 19.8% | 14.2% | |||
Microcalcifications | 46 | 23 | 69 | ||
7.6% | 10.8% | 8.4% | |||
Suspicious extrathyroidal extension | 6 | 1 | 7 | 0.422 | |
1.0% | 0.5% | 0.9% | |||
Suspicious lymph nodes | 10 | 2 | 12 | 0.361 | |
1.7% | 0.9% | 1.5% | |||
Taller-than-wide shape | 101 | 42 | 143 | 0.175 | |
16.7% | 19.8% | 17.5% | |||
Total | 606 | 212 | 818 |
RSS | Category | Age | Total | p-Value 1 | Malignancy Rate | |||
---|---|---|---|---|---|---|---|---|
≤65 years | >65 years | ≤65 years | >65 years | Overall | ||||
ATA guidelines | Benign | 6 | 0 | 6 | 0.041 | 0 | - | 0 |
1.0% | 0% | 0.7% | 0% | - | 0% | |||
Very low suspicion | 301 | 94 | 395 | 5 | 0 | 5 | ||
49.7% | 44.3% | 48.3% | 1.7% | 0% | 1.3% | |||
Low suspicion | 78 | 33 | 111 | 1 | 1 | 2 | ||
12.9% | 15.6% | 13.6% | 1.3% | 3.0% | 1.8% | |||
Intermediate suspicion | 31 | 5 | 36 | 6 | 0 | 6 | ||
5.1% | 2.4% | 4.4% | 19.4% | 0% | 16.7% | |||
High suspicion | 75 | 23 | 98 | 25 | 3 | 28 | ||
12.4% | 10.8% | 12.0% | 33.3% | 13.0% | 28.6% | |||
Not classifiable | 115 | 57 | 172 | 12 | 4 | 16 | ||
19.0% | 26.9% | 21.0% | 10.4% | 7.0% | 9.3% | |||
K-TIRADS | K-TIRADS 2 | 11 | 2 | 13 | 0.477 | 0 | 0 | 0 |
1.8% | 0.9% | 1.6% | 0% | 0% | 0% | |||
K-TIRADS 3 | 375 | 125 | 500 | 7 | 1 | 8 | ||
61.9% | 59.0% | 61.1% | 1.9% | 0.8% | 1.6% | |||
K-TIRADS 4 | 179 | 73 | 252 | 20 | 6 | 26 | ||
29.5% | 34.4% | 30.8% | 11.2% | 8.2% | 10.3% | |||
K-TIRADS 5 | 41 | 12 | 53 | 22 | 1 | 23 | ||
6.8% | 5.7% | 6.5% | 53.7% | 8.3% | 43.4% | |||
AACE/ACE/AME | Low risk | 48 | 11 | 59 | 0.190 | 0 | 0 | 0 |
7.9% | 5.2% | 7.2% | 0% | 0% | 0% | |||
Intermediate risk | 358 | 119 | 477 | 10 | 1 | 11 | ||
59.1% | 56.1% | 58.3% | 2.8% | 0.8% | 2.3% | |||
High risk | 200 | 82 | 282 | 39 | 7 | 46 | ||
33.0% | 38.7% | 34.5% | 19.5% | 8.5% | 16.3% | |||
ACR TIRADS | TR1 | 24 | 5 | 29 | 0.489 | 0 | 0 | 0 |
4.0% | 2.4% | 3.5% | 0% | 0% | 0% | |||
TR2 | 164 | 48 | 212 | 2 | 0 | 2 | ||
27.1% | 22.6% | 25.9% | 1.2% | 0% | 0.9% | |||
TR3 | 106 | 39 | 145 | 2 | 0 | 2 | ||
17.5% | 18.4% | 17.7% | 1.9% | 0% | 1.4% | |||
TR4 | 208 | 83 | 291 | 13 | 5 | 18 | ||
34.3% | 39.2% | 35.6% | 6.3% | 6.0% | 6.2% | |||
TR5 | 104 | 37 | 141 | 32 | 3 | 35 | ||
17.2% | 17.5% | 17.2% | 30.8% | 8.1% | 24.8% | |||
EU-TIRADS | EU TIRADS 2 | 6 | 1 | 7 | 0.035 | 0 | 0 | 0 |
1.0% | 0.5% | 0.9% | 0% | 0% | 0% | |||
EU TIRADS 3 | 318 | 113 | 431 | 6 | 1 | 7 | ||
52.5% | 53.3% | 52.7% | 1.9% | 0.9% | 1.6% | |||
EU TIRADS 4 | 88 | 16 | 104 | 6 | 0 | 6 | ||
14.5% | 7.5% | 12.7% | 6.8% | 0% | 5.8% | |||
EU TIRADS 5 | 194 | 82 | 276 | 37 | 7 | 44 | ||
32.0% | 38.7% | 33.7% | 19.1% | 8.5% | 15.9% |
RSS | Avoided Biopsies (%) b | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | AUROC (95% CI) c | |
---|---|---|---|---|---|---|---|
≤65 years | ACR TIRADS | 305 | 83.67% | 53.3% | 13.6% | 97.4% | 0.68 |
(50.3%) | (70.3–92.68%) | (49.1–57.5%) | (10.0–18.0%) | (94.9–98.9%) | (0.63–0.74) | ||
AACE/ACE/AME | 197 * | 87.8% | 34.3% | 10.5% | 96.95% | 0.61 | |
(32.5%) | (75.2–95.4%) | (30.3–38.4%) | (7.7–13.9%) | (93.5–98.9%) | (0.56–0.66) | ||
ATA a | 137 * | 93.9% | 24.1% | 9.8% | 97.8% | 0.59 | |
(22.6%) | (83.1–98.7%) | (20.6–27.8%) | (7.3–12.9%) | (93.7–99.5%) | (0.55–0.63) | ||
EU-TIRADS | 154 * | 85.7% | 26.4% | 9.3% | 95.4% | 0.56 | |
(25.4%) | (72.8–94.1%) | (22.8–30.3%) | (6.8–12.3%) | (90.9–98.15%) | (0.51–0.61) | ||
K-TIRADS | 79 * | 95.9% | 13.8% | 8.9% | 97.47% | 0.55 | |
(13.0%) | (86.0–99.5%) | (11.1–17%) | (6.6–11.7%) | (91.1–99.7%) | (0.52–0.58) | ||
>65 years | ACR TIRADS | 96 | 100.0% | 47.1% | 6.9% | 100.0% | 0.73 |
(45.3%) | (63.1–100.0%) | (40.0–54.1%) | (3.0–13.1%) | (96.2–100.0%) | (0.70–0.77) | ||
AACE/ACE/AME | 61 # | 100.0% | 29.9% | 5.3% | 100.0% | 0.65 | |
(28.8%) | (63.1–100.0%) | (23.7–36.7%) | (2.3–10.2%) | (94.1–100.0%) | (0.62–0.68) | ||
ATA a | 46 # | 100.0% | 22.5% | 4.8% | 100.0% | 0.61 | |
(21.7%) | (63.1–100.0%) | (17.0–28.9%) | (2.1–9.3%) | (92.3–100.0%) | (0.58–0.64) | ||
EU-TIRADS | 52 # | 100.0% | 25.5% | 5.0% | 100.0% | 0.63 | |
(24.5%) | (63.1–100.0%) | (19.7–32.0%) | (2.2–9.6%) | (93.1–100.0%) | (0.60–0.66) | ||
K-TIRADS | 28 # | 100.0% | 13.7% | 4.3% | 100.0% | 0.57 | |
(13.2%) | (63.1–100.0%) | (9.3–19.2%) | (1.9–8.4%) | (87.7–100.0%) | (0.54–0.59) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grani, G.; Brenta, G.; Trimboli, P.; Falcone, R.; Ramundo, V.; Maranghi, M.; Lucia, P.; Filetti, S.; Durante, C. Sonographic Risk Stratification Systems for Thyroid Nodules as Rule-Out Tests in Older Adults. Cancers 2020, 12, 2458. https://doi.org/10.3390/cancers12092458
Grani G, Brenta G, Trimboli P, Falcone R, Ramundo V, Maranghi M, Lucia P, Filetti S, Durante C. Sonographic Risk Stratification Systems for Thyroid Nodules as Rule-Out Tests in Older Adults. Cancers. 2020; 12(9):2458. https://doi.org/10.3390/cancers12092458
Chicago/Turabian StyleGrani, Giorgio, Gabriela Brenta, Pierpaolo Trimboli, Rosa Falcone, Valeria Ramundo, Marianna Maranghi, Piernatale Lucia, Sebastiano Filetti, and Cosimo Durante. 2020. "Sonographic Risk Stratification Systems for Thyroid Nodules as Rule-Out Tests in Older Adults" Cancers 12, no. 9: 2458. https://doi.org/10.3390/cancers12092458
APA StyleGrani, G., Brenta, G., Trimboli, P., Falcone, R., Ramundo, V., Maranghi, M., Lucia, P., Filetti, S., & Durante, C. (2020). Sonographic Risk Stratification Systems for Thyroid Nodules as Rule-Out Tests in Older Adults. Cancers, 12(9), 2458. https://doi.org/10.3390/cancers12092458