Challenges and Obstacles in Applying Therapeutical Indications Formulated in Molecular Tumor Boards
Abstract
:Simple Summary
Abstract
1. Introduction
- The collection of the relevant parties’ informed consent;
- The patient’s clinical data (comorbidities, ongoing therapies, and the presence of target lesions according to RECIST 1.1 criteria) [16];
- NGS data and all other molecular findings (i.e., polymerase chain reaction, PCR; fluorescent in situ hybridization, FISH; IHC);
- The databases utilized to annotate the pathogenicity of each molecular alteration found;
- The need for genetic counselling;
- The final recommendations with the relative levels of evidence;
- The availability of clinical trials in which the patient can be enrolled and the information regarding enrolling centers or whether there is any open expanded access program;
- The relevant bibliography utilized.
2. Issues in Applying MTB Output
3. Role of Pharmaceutical Companies
4. Overview of MTB Experiences, Precision Medicine Trials, and Solutions for Increasing Matched Therapies Access
4.1. Institutional MTB Experiences
4.2. Precision Medicine Trials—Screening Programs Reporting Drug Access Data
4.3. Precision Medicine Trials—Basket and Platform Trials
Institution or Trial Name | Type | Study Period | Total Number of Patients (Actionable Alterations) | Patients Who Received Targeted Therapy | Reported Issues in Applying MTB Indications | Proposed Solutions |
---|---|---|---|---|---|---|
Institut Curie [18] | Retrospective—MTB experience | 2014–2017 | 736 (207) | 52 | Deterioration of clinical conditions; lack of clinical trials; patient’s refusal | - |
Sidney Kimmel CCC [40] | Retrospective—MTB experience | 2013–2016 | 155 (132) | 29 | Lack of clinical trials; deterioration of clinical conditions | - |
Rutgers Cancer Institute [41] | Prospective—MTB experience | 2013 | 100 (87) | 31 | Lack of clinical trials; Deterioration of clinical conditions | - |
Alabama University Birmingham [42] | Retrospective—MTB experience | 2013–2016 | 191 (48) | 15 | Standard treatment preferred; deterioration of clinical conditions | Agreement for the reimbursement of genomic testing prescribed by MTB |
Sarah Cannon Research Institute [43] | Prospective—MTB experience | 2014–2018 | 895 (NA) | 76 | NA | - |
Antwerp University Hospital [6] | Retrospective—MTB experience | 2013–2017 | 173 (72) | NA | NA | - |
SCRI-CA-001 (NCT00530192) [44] | Prospective -molecular screening | 2006–2009 | 106 (85) | 66 | Deterioration of clinical conditions; patient’s refusal | - |
Mi-ONCOSEQ [45] | Prospective -molecular screening | 2011 | 1138 (817) | 132 | NA | - |
MD Anderson Cancer Center Personalized Cancer Therapy Program [46] | Prospective -molecular screening | 2012–2013 | 2000 (789) | 123 (83 + 40 reported in the article) | Deterioration of clinical conditions; geographical accessibility; patient’s refusal; no need for another treatment | - |
Princess Margaret Cancer Center IMPACT/COMPACT [47] | Prospective -molecular screening | 2012–2014 | 1893 (NA) | 84 | Deterioration of clinical conditions; geographical accessibility; Lack of Clinical trials | MTB timely discussions; alerts containing genotype-matched trials; individual summaries of profiling results |
Memorial Sloan Kettering Cancer Center [48] | Prospective -molecular screening | 2014–2016 | 5009 (1838—derived) | 527 (only clinical trials in MSKCC) | Deterioration of clinical conditions; geographical accessibility; Clinical trials lacking; patient’s refusal | Automated system (DCMS) sending the results of genomic testing to an institutional database and signaling the eligibility of the patient to the pertinent physician |
CoPPO [50] | Prospective -molecular screening | 2013–2017 | 500 (352) | 101 | Deterioration of clinical conditions; Clinical trials lacking | - |
Western Regional Medical Center [25] | Prospective -molecular screening | 2013–2014 | 97 (91) | 5 | NA | - |
Indiana University Health Precision Genomics Program [51] | Prospective -molecular screening | 2014–2015 | 168 (NA) | 44 | Deterioration of clinical conditions; inaccessibility to treatment (unspecified); physician choice | - |
MD Anderson Cancer Center [52] | Prospective -molecular screening | 2012—unspecified | 500 (315—derived) | 122 | Deterioration of clinical conditions; no need for another treatment; patient’s refusal | - |
MASTER [53] | Prospective -molecular screening | 2012–2018 | (1138) | 362 | NA | - |
WINTHER [54] | Prospective -molecular screening | 2013–2015 | 303 (NA) | 107 (treated patients, not specified how many TT) | Deterioration of clinical conditions; no need for another treatment; patient’s refusal | Transcriptomic analysis increased the percentage of treated patients from 23% to 35% |
I-PREDICT [55] | Prospective -molecular screening | 2015—Unspecified | 149 (83) | 73 | Physician choice;Patient’s refusal; drug toxicity concern. | Timely MTB discussion; employment of a medication acquisition specialist and clinical trials coordinator; Indication possibly to combination therapies targeting a majority of alterations in each patient |
TARGET [56] | Prospective -molecular screening | 2015—Unspecified | 100 (41) | 11 | Deterioration of clinical conditions; physician choice; lack of clinical trials | Digital tool eTARGET integrating clinical and genomic data |
GOZILA [57] | Prospective -molecular screening | NA | 1687 (632) | 60 | NA | Liquid biopsy to shorten analysis time |
SHIVA [19] | Prospective—platform | 2012–2014 | 741 (293) | 99 (randomized: 96 in control group) | Randomization criteria not met; Deterioration of clinical conditions; patient’s refusal. | - |
MOSCATO [59] | Prospective—platform | 2011–2016 | 1035 (411) | 199 | Deterioration of clinical conditions; physician choice; lack of clinical trials; patient’s refusal. | - |
NCI-MATCH [60] | Prospective—platform | 2015 (before interim analysis) | 795 (56) | 33 (only within the trial) | NA | NCI-designed computational platform (MATCHBOX) |
ProfiLER [62] | Prospective—platform | 2013–2017 | 2579 (699) | 163 | Deterioration of clinical conditions (long turnaround time); inaccessibility to treatment (unspecified): no accurate accounting for reasons for not initiating TT was carried out | - |
K-MASTER [75] | Prospective—platform | 2017—ongoing | 4028 (1156—derived) | 440 | NA | Dynamic precision oncology clinical trials design |
DRUP [78] | Prospective—drug access program | 2016—ongoing | 1065 (NA) | 500 | NA | Personalized reimbursement model |
5. Discussion and Recommendations
- A long timeframe for genomic testing and/or the MTB output, which increases the risk of clinical deterioration of patients. Henceforth, it is necessary to minimize the turnaround time from the test prescription and the treatment start. Moreover, many authors call for performing these analyses earlier in the patient’s disease course. Nevertheless, the introduction of new technologies in clinical practice, such as liquid biopsy, is facilitating the application of MTB indications. Molecular profiling studies employing this technique (e.g., TARGET, GOZILA) have shown increased percentages of patients receiving targeted therapies and enrolled in clinical trials [56,57]. In fact, the improved manageability and the reduced time for the test results, along with the possibility to have the test performed even without tumor tissue available, could help to rapidly administrate the targeted therapy while avoiding clinical condition deterioration or the necessity of starting another treatment in the meantime.
- Drug accessibility, also in the frame of a clinical trial, a lack of clinical trials, geographical accessibility, or incorrect matching evaluating all the patient features. Of note, MTBs are often more inclined to refer patients to clinical trials in their own institution, even if not providing a matched therapy, rather than suggesting patients to move to other hospitals. Many digital tools have been developed to ease clinical trial access, indicating the most pertinent trials to each patient according to its clinical and genomic profiles. For instance, MatchMiner is an open-source software used at the Dana Farber Cancer Institute since 2017, and with October 2020 it has allowed for the enrolment of more than 118 cancer patients in a genomic-matched clinical trial [82]. MolecularMatch is another tool capable of matching patients’ characteristics with clinical trials and precision medicine indications, relying on a self-learning software [83]. Nevertheless, these systems can help, but not replace, the nowadays necessary systematic matching of patients performing genomic tests to clinical trials, and efficacious strategies should be developed to also guarantee access to studies for patients living in rural areas, as Canada is trying to institute with decentralized clinical trials [84].
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Janssens, J.; Gallagher, W.M.; Dean, A.; Ussia, G.; Stamp, G. Tumor Profiling-Directed Precision Cancer Therapy—Comparison of Commercial and Academic Clinical Utility. Int. J. Surg. Surg. Proced. 2017, 2017, 123. [Google Scholar] [CrossRef] [PubMed]
- FoundationOne CDx|Foundation Medicine. Available online: https://www.foundationmedicine.com/test/foundationone-cdx (accessed on 25 June 2022).
- Woodhouse, R.; Li, M.; Hughes, J.; Delfosse, D.; Skoletsky, J.; Ma, P.; Meng, W.; Dewal, N.; Milbury, C.; Clark, T.; et al. Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS ONE 2020, 15, e0237802. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.; Alifrangis, C.; Cereser, B.; Chandrasinghe, P.; Belluz, L.D.B.; Herzog, T.; Levitan, J.; Moderau, N.; Schwartzberg, L.; Tabassum, N.; et al. Does molecular profiling of tumors using the Caris molecular intelligence platform improve outcomes for cancer patients? Oncotarget 2018, 9, 9456–9467. [Google Scholar] [CrossRef] [Green Version]
- Rolfo, C.; Manca, P.; Salgado, R.; Van Dam, P.; Dendooven, A.; Gandia, J.F.; Rutten, A.; Lybaert, W.; Vermeij, J.; Gevaert, T.; et al. Multidisciplinary molecular tumour board: A tool to improve clinical practice and selection accrual for clinical trials in patients with cancer. ESMO Open 2018, 3, e000398. [Google Scholar] [CrossRef] [Green Version]
- Luchini, C.; Lawlor, R.T.; Milella, M.; Scarpa, A. Molecular Tumor Boards in Clinical Practice. Trends Cancer 2020, 6, 738–744. [Google Scholar] [CrossRef]
- Landrum, M.J.; Chitipiralla, S.; Brown, G.R.; Chen, C.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; Kaur, K.; Liu, C.; et al. ClinVar: Improvements to accessing data. Nucleic Acids Res. 2020, 48, D835–D844. [Google Scholar] [CrossRef]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 2017, PO.17.00011. [Google Scholar] [CrossRef]
- FDA. FDA Recognizes Memorial Sloan-Kettering Database of Molecular Tumor Marker Information. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-recognizes-memorial-sloan-kettering-database-molecular-tumor-marker-information (accessed on 2 March 2022).
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- FDA. FDA Grants Accelerated Approval to Dostarlimab-Gxly for dMMR Advanced Solid Tumors. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors (accessed on 2 March 2022).
- Mateo, J.; Chakravarty, D.; Dienstmann, R.; Jezdic, S.; Gonzalez-Perez, A.; Lopez-Bigas, N.; Ng, C.; Bedard, P.; Tortora, G.; Douillard, J.-Y.; et al. A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 2018, 29, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kim, K.H.; Lim, H.J.; Boichard, A.; Nikanjam, M.; Weihe, E.; Kuo, D.J.; Eskander, R.N.; Goodman, A.; Galanina, N.; et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Basse, C.; Morel, C.; Alt, M.; Sablin, M.P.; Franck, C.; Pierron, G.; Callens, C.; Melaabi, S.; Masliah-Planchon, J.; Bataillon, G.; et al. Relevance of a molecular tumour board (MTB) for patients’ enrolment in clinical trials: Experience of the Institut Curie. ESMO Open 2018, 3, e000339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Tourneau, C.; Delord, J.-P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.-A.; Mauborgne, C.; et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): A multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015, 16, 1324–1334. [Google Scholar] [CrossRef]
- Larson, K.L.; Huang, B.; Weiss, H.L.; Hull, P.; Westgate, P.M.; Miller, R.W.; Arnold, S.M.; Kolesar, J.M. Clinical Outcomes of Molecular Tumor Boards: A Systematic Review. JCO Precis. Oncol. 2021, 5, 1122–1132. [Google Scholar] [CrossRef]
- Weiss, G.; Hoff, B.; Whitehead, R.; Sangal, A.; Gingrich, S.; Penny, R.; Mallery, D.; Morris, S.; Thompson, E.; Loesch, D.; et al. Evaluation and comparison of two commercially available targeted next-generation sequencing platforms to assist oncology decision making. OncoTargets Ther. 2015, 8, 959–967. [Google Scholar] [CrossRef] [Green Version]
- Pishvaian, M.J.; Blais, E.M.; Bender, R.J.; Rao, S.; Boca, S.M.; Chung, V.; E Hendifar, A.; Mikhail, S.; Sohal, D.P.S.; Pohlmann, P.R.; et al. A virtual molecular tumor board to improve efficiency and scalability of delivering precision oncology to physicians and their patients. JAMIA Open 2019, 2, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Hoefflin, R.; Geißler, A.-L.; Fritsch, R.; Claus, R.; Wehrle, J.; Metzger, P.; Reiser, M.; Mehmed, L.; Fauth, L.; Heiland, D.H.; et al. Personalized Clinical Decision Making Through Implementation of a Molecular Tumor Board: A German Single-Center Experience. JCO Precis. Oncol. 2018, 2, 1–16. [Google Scholar] [CrossRef]
- Horak, P.; Klink, B.; Heining, C.; Gröschel, S.; Hutter, B.; Fröhlich, M.; Uhrig, S.; Hübschmann, D.; Schlesner, M.; Eils, R.; et al. Precision oncology based on omics data: The NCT Heidelberg experience. Int. J. Cancer 2017, 141, 877–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltran, H.; Eng, K.; Mosquera, J.M.; Sigaras, A.; Romanel, A.; Rennert, H.; Kossai, M.; Pauli, C.; Faltas, B.; Fontugne, J.; et al. Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response. JAMA Oncol. 2015, 1, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.; Barlesi, F.; Lolkema, M.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef] [PubMed]
- Pagès, A.; Foulon, S.; Zou, Z.; Lacroix, L.; Lemare, F.; de Baère, T.; Massard, C.; Soria, J.-C.; Bonastre, J. The cost of molecular-guided therapy in oncology: A prospective cost study alongside the MOSCATO trial. Genet. Med. 2017, 19, 683–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galsky, M.D.; Stensland, K.D.; McBride, R.B.; Latif, A.; Moshier, E.; Oh, W.K.; Wisnivesky, J. Geographic Accessibility to Clinical Trials for Advanced Cancer in the United States. JAMA Intern. Med. 2015, 175, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Huang, H.-Y.; Wu, D.-W.; Yang, Z.-M.; Wang, J.; Wang, J.-S.; Wang, S.-H.; Fang, H.; Yu, Y.; Bai, Y.; et al. Changes in clinical trials of cancer drugs in mainland China over the decade 2009–18: A systematic review. Lancet Oncol. 2019, 20, e619–e626. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mallick, I.; Luu, H.N.; Bhattacharyya, T.; Arunsingh, M.; Achari, R.B.; Chatterjee, S. Geographic disparities in access to cancer clinical trials in India. Ecancermedicalscience 2021, 15. [Google Scholar] [CrossRef]
- Meropol, N.J.; Buzaglo, J.S.; Millard, J.; Damjanov, N.; Miller, S.M.; Ridgway, C.; Ross, E.A.; Sprandio, J.D.; Watts, P. Barriers to Clinical Trial Participation as Perceived by Oncologists and Patients. J. Natl. Compr. Cancer Netw. 2007, 5, 753–762. [Google Scholar] [CrossRef]
- Pantziarka, P.; Capistrano, R.I.; De Potter, A.; Vandeborne, L.; Bouche, G. An Open Access Database of Licensed Cancer Drugs. Front. Pharmacol. 2021, 12, 627574. [Google Scholar] [CrossRef]
- Collyar, D.E. Time to Treat Financial Toxicity for Patients. Cancer J. 2020, 26, 292–297. [Google Scholar] [CrossRef]
- Meyers, D.E.; Meyers, B.S.; Msc, T.M.C.; Wright, K.; Gyawali, B.; Prasad, V.; Sullivan, R.; Booth, C.M. Trends in drug revenue among major pharmaceutical companies: A 2010-2019 cohort study. Cancer 2021, 128, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.J.; Heyward, J.; Anderson, G.; Alexander, G.C. Variation in the estimated costs of pivotal clinical benefit trials supporting the US approval of new therapeutic agents, 2015–2017: A cross-sectional study. BMJ Open 2020, 10, e038863. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Cook, E.; Tai, E.; Bleyer, A. The Role of Clinical Trial Participation in Cancer Research: Barriers, Evidence, and Strategies. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.E.; Curb, J.; McArdle, R. Participation in a clinical trial: The patients’ point of view. Control. Clin. Trials 1985, 6, 156–167. [Google Scholar] [CrossRef]
- Reddy, N.; Subbiah, V. Right to Try, expanded access use, Project Facilitate, and clinical trial reform. Ann. Oncol. 2021, 32, 1083–1086. [Google Scholar] [CrossRef]
- Stout, J.; Smith, C.; Buckner, J.; Adjei, A.A.; Wentworth, M.; Tilburt, J.C.; Master, Z. Oncologists’ reflections on patient rights and access to compassionate use drugs: A qualitative interview study from an academic cancer center. PLoS ONE 2021, 16, e0261478. [Google Scholar] [CrossRef]
- Dalton, W.; Forde, P.M.; Kang, H.; Connolly, R.M.; Stearns, V.; Gocke, C.D.; Eshleman, J.R.; Axilbund, J.; Petry, D.; Geoghegan, C.; et al. Personalized Medicine in the Oncology Clinic: Implementation and Outcomes of the Johns Hopkins Molecular Tumor Board. JCO Precis. Oncol. 2017, 2017, PO.16.00046. [Google Scholar] [CrossRef]
- Hirshfield, K.M.; Tolkunov, D.; Zhong, H.; Ali, S.M.; Stein, M.N.; Murphy, S.; Vig, H.; Vazquez, A.; Glod, J.; Moss, R.A.; et al. Clinical Actionability of Comprehensive Genomic Profiling for Management of Rare or Refractory Cancers. Oncologist 2016, 21, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Harada, S.; Arend, R.; Dai, Q.; Levesque, J.A.; Winokur, T.S.; Guo, R.; Heslin, M.J.; Nabell, L.; Nabors, L.B.; Limdi, N.A.; et al. Implementation and utilization of the molecular tumor board to guide precision medicine. Oncotarget 2017, 8, 57845–57854. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.A.; Kushnir, M.; Mak, G.; Winter, H.; Curiel, T.; Voskoboynik, M.; Moschetta, M.; Rozumna-Martynyuk, N.; Balbi, K.; Bennett, P.; et al. Prospective analysis of 895 patients on a UK Genomics Review Board. ESMO Open 2019, 4, e000469. [Google Scholar] [CrossRef] [Green Version]
- Von Hoff, D.D.; Stephenson, J.J.; Rosen, P.; Loesch, D.M.; Borad, M.J.; Anthony, S.; Jameson, G.S.; Brown, S.; Cantafio, N.; Richards, D.A.; et al. Pilot Study Using Molecular Profiling of Patients’ Tumors to Find Potential Targets and Select Treatments for Their Refractory Cancers. J. Clin. Oncol. 2010, 28, 4877–4883. [Google Scholar] [CrossRef] [PubMed]
- Cobain, E.F.; Wu, Y.-M.; Vats, P.; Chugh, R.; Worden, F.; Smith, D.C.; Schuetze, S.M.; Zalupski, M.M.; Sahai, V.; Alva, A.; et al. Assessment of Clinical Benefit of Integrative Genomic Profiling in Advanced Solid Tumors. JAMA Oncol. 2021, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Brusco, L.; Shaw, K.; Horombe, C.; Kopetz, S.; Davies, M.A.; Routbort, M.J.; Piha-Paul, S.; Janku, F.; Ueno, N.T.; et al. Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment Onto Genomically Matched Clinical Trials. J. Clin. Oncol. 2015, 33, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- Stockley, T.; Oza, A.; Berman, H.K.; Leighl, N.B.; Knox, J.J.; Shepherd, F.A.; Chen, E.X.; Krzyzanowska, M.; Dhani, N.; Joshua, A.; et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: The Princess Margaret IMPACT/COMPACT trial. Genome Med. 2016, 8, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 2017, 23, 703–713. [Google Scholar] [CrossRef]
- Eubank, M.H.; Hyman, D.M.; Kanakamedala, A.D.; Gardos, S.; Wills, J.M.; Stetson, P.D. Automated eligibility screening and monitoring for genotype-driven precision oncology trials. J. Am. Med Informatics Assoc. 2016, 23, 777–781. [Google Scholar] [CrossRef] [Green Version]
- Tuxen, I.V.; Rohrberg, K.S.; Oestrup, O.; Ahlborn, L.B.; Schmidt, A.Y.; Spanggaard, I.; Hasselby, J.P.; Santoni-Rugiu, E.; Yde, C.W.; Mau-Sørensen, M.; et al. Copenhagen prospective personalized oncology (COPPO)—Clinical utility of using molecu-lar profiling to select patients to phase I trials. Clin. Cancer Res. 2019, 25, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Radovich, M.; Kiel, P.J.; Nance, S.M.; Niland, E.E.; Parsley, M.E.; Ferguson, M.E.; Jiang, G.; Ammakkanavar, N.R.; Einhorn, L.H.; Cheng, L.; et al. Clinical benefit of a precision medicine based approach for guiding treatment of refractory cancers. Oncotarget 2016, 7, 56491–56500. [Google Scholar] [CrossRef] [Green Version]
- Wheler, J.J.; Janku, F.; Naing, A.; Li, Y.; Stephen, B.; Zinner, R.; Subbiah, V.; Fu, S.; Karp, D.; Falchook, G.S.; et al. Cancer Therapy Directed by Comprehensive Genomic Profiling: A Single Center Study. Cancer Res. 2016, 76, 3690–3701. [Google Scholar] [CrossRef] [Green Version]
- Horak, P.; Heining, C.; Kreutzfeldt, S.; Hutter, B.; Mock, A.; Hüllein, J.; Fröhlich, M.; Uhrig, S.; Jahn, A.; Rump, A.; et al. Com-prehensive genomic and transcriptomic analysis for guiding therapeutic decisions in patients with rare cancers. Cancer Discov. 2021, 11, 2780–2795. [Google Scholar] [CrossRef]
- Rodon, J.; Soria, J.-C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Braña, I.; et al. Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nat. Med. 2019, 25, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Sicklick, J.K.; Kato, S.; Okamura, R.; Schwaederle, M.; Hahn, M.E.; Williams, C.B.; De, P.; Krie, A.; Piccioni, D.E.; Miller, V.A.; et al. Molecular profiling of cancer patients enables personalized combination therapy: The I-PREDICT study. Nat. Med. 2019, 25, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, D.; Ayub, M.; Cook, N.; Thistlethwaite, F.; Carter, L.; Dean, E.; Smith, N.; Villa, S.; Dransfield, J.; Clipson, A.; et al. Utility of ctDNA to support patient selection for early phase clinical trials: The TARGET study. Nat. Med. 2019, 25, 738–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Taniguchi, H.; Ikeda, M.; Bando, H.; Kato, K.; Morizane, C.; Esaki, T.; Komatsu, Y.; Kawamoto, Y.; Takahashi, N.; et al. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat. Med. 2020, 26, 1859–1864. [Google Scholar] [CrossRef]
- Aftimos, P.; Oliveira, M.; Irrthum, A.; Fumagalli, D.; Sotiriou, C.; Gal-Yam, E.N.; Robson, M.E.; Ndozeng, J.; di Leo, A.; Ciruelos, E.M.; et al. Genomic and transcriptomic analyses of breast cancer primaries and matched metastases in Aurora, the breast international group (Big) molecular screening initiative. Cancer Discov. 2011, 11, 2796–2811. [Google Scholar] [CrossRef]
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.-C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017, 7, 586–595. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, K.T.; Gray, R.; Chen, A.; Li, S.; Patton, D.; Hamilton, S.R.; Williams, P.M.; Mitchell, E.P.; Iafrate, A.J.; Sklar, J.; et al. The Molecular Analysis for Therapy Choice (NCI-MATCH) Trial: Lessons for Genomic Trial Design. JNCI J. Natl. Cancer Inst. 2020, 112, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Trédan, O.; Wang, Q.; Pissaloux, D.; Cassier, P.; de la Fouchardière, A.; Fayette, J.; Desseigne, F.; Ray-Coquard, I.; de la Fouchardiere, C.; Frappaz, D.; et al. Molecular screening program to select molecular-based recommended therapies for metastatic cancer patients: Analysis from the ProfiLER trial. Ann. Oncol. 2019, 30, 757–765. [Google Scholar] [CrossRef]
- Varnier, R.; Le Saux, O.; Chabaud, S.; Garin, G.; Sohier, E.; Wang, Q.; Paindavoine, S.; Pérol, D.; Baudet, C.; Attignon, V.; et al. Actionable molecular alterations in advanced gynaecologic malignancies: Updated results from the ProfiLER programme. Eur. J. Cancer 2019, 118, 156–165. [Google Scholar] [CrossRef]
- Powles, T.; Carroll, D.; Chowdhury, S.; Gravis, G.; Joly, F.; Carles, J.; Fléchon, A.; Maroto, P.; Petrylak, D.; Rolland, F.; et al. An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer. Nat. Med. 2021, 27, 793–801. [Google Scholar] [CrossRef]
- Hainsworth, J.D.; Meric-Bernstam, F.; Swanton, C.; Hurwitz, H.; Spigel, D.R.; Sweeney, C.; Burris, H.A.; Bose, R.; Yoo, B.; Stein, A.; et al. Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results from MyPathway, an Open-Label, Phase IIa Multiple Basket Study. J. Clin. Oncol. 2018, 36, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.F.; Hainsworth, J.D.; Kurzrock, R.; Spigel, D.R.; Burris, H.A.; Sweeney, C.J.; Meric-Bernstam, F.; Wang, Y.; Levy, J.; Grindheim, J.; et al. Atezolizumab Treatment of Tumors with High Tumor Mutational Burden from MyPathway, a Multicenter, Open-Label, Phase IIa Multiple Basket Study. Cancer Discov. 2022, 12, 654–669. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Hurwitz, H.; Raghav, K.P.S.; McWilliams, R.R.; Fakih, M.; VanderWalde, A.; Swanton, C.; Kurzrock, R.; Burris, H.; Sweeney, C.; et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): An updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2019, 20, 518–530. [Google Scholar] [CrossRef]
- Javle, M.; Borad, M.J.; Azad, N.S.; Kurzrock, R.; Abou-Alfa, G.K.; George, B.; Hainsworth, J.; Meric-Bernstam, F.; Swanton, C.; Sweeney, C.J.; et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): A multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2021, 22, 1290–1300. [Google Scholar] [CrossRef]
- Kurzrock, R.; Bowles, D.; Kang, H.; Meric-Bernstam, F.; Hainsworth, J.; Spigel, D.; Bose, R.; Burris, H.; Sweeney, C.; Beattie, M.; et al. Targeted therapy for advanced salivary gland carcinoma based on molecular profiling: Results from MyPathway, a phase IIa multiple basket study. Ann. Oncol. 2020, 31, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Mangat, P.K.; Halabi, S.; Bruinooge, S.S.; Garrett-Mayer, E.; Alva, A.; Janeway, K.A.; Stella, P.J.; Voest, E.; Yost, K.J.; Perlmutter, J.; et al. Rationale and Design of the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2018, 2018, PO.18.00122. [Google Scholar] [CrossRef]
- Al Baghdadi, T.; Garrett-Mayer, E.; Halabi, S.; Mangat, P.K.; Rich, P.; Ahn, E.R.; Chai, S.; Rygiel, A.L.; Osayameh, O.; Antonelli, K.R.; et al. Sunitinib in Patients with Metastatic Colorectal Cancer (mCRC) with FLT-3 Amplification: Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. Target. Oncol. 2020, 15, 743–750. [Google Scholar] [CrossRef]
- Fisher, J.G.; Tait, D.; Garrett-Mayer, E.; Halabi, S.; Mangat, P.K.; Schink, J.C.; Alvarez, R.H.; Veljovich, D.; Cannon, T.L.; Crilley, P.A.; et al. Cetuximab in Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Ovarian Cancer Without KRAS, NRAS, or BRAF Mutations: Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. Target. Oncol. 2020, 15, 733–741. [Google Scholar] [CrossRef]
- Ahn, E.R.; Mangat, P.K.; Garrett-Mayer, E.; Halabi, S.; Dib, E.G.; Haggstrom, D.E.; Alguire, K.B.; Calfa, C.J.; Cannon, T.L.; Crilley, P.A.; et al. Palbociclib in Patients With Non–Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2020, 4, 757–766. [Google Scholar] [CrossRef]
- Al Baghdadi, T.; Halabi, S.; Garrett-Mayer, E.; Mangat, P.K.; Ahn, E.R.; Sahai, V.; Alvarez, R.H.; Kim, E.S.; Yost, K.J.; Rygiel, A.L.; et al. Palbociclib in Patients with Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis. Oncol. 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.T.; Kim, K.; Lee, H.; Kozarewa, I.; Mortimer, P.G.; Odegaard, J.I.; Harrington, E.A.; Lee, J.; Lee, T.; et al. Tumor Genomic Profiling Guides Patients with Metastatic Gastric Cancer to Targeted Treatment: The VIKTORY Umbrella Trial. Cancer Discov. 2019, 9, 1388–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.H.; Choi, J.Y.; Lim, A.-R.; Kim, J.W.; Choi, Y.J.; Lee, S.; Sung, J.S.; Chung, H.-J.; Jang, B.; Yoon, D.; et al. Genomic Landscape and Clinical Utility in Korean Advanced Pan-Cancer Patients from Prospective Clinical Sequencing: K-MASTER Program. Cancer Discov. 2021, 12, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Van Der Velden, D.L.; Hoes, L.R.; Van Der Wijngaart, H.; van Berge Henegouwen, J.M.; Van Werkhoven, E.; Roepman, P.; Schilsky, R.L.; De Leng, W.W.J.; Huitema, A.D.R.; Nuijen, B.; et al. The Drug Rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 2019, 574, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Doorn-Khosrovani, S.V.W.V.; Roy, A.P.-V.; Van Saase, L.; Van Der Graaff, M.; Gijzen, J.; Sleijfer, S.; Hoes, L.; Henegouwen, J.V.B.; Van Der Wijngaart, H.; Van Der Velden, D.; et al. Personalised reimbursement: A risk-sharing model for biomarker-driven treatment of rare subgroups of cancer patients. Ann. Oncol. 2019, 30, 663–665. [Google Scholar] [CrossRef]
- Hoes, L.R.; van Berge Henegouwen, J.M.; van der Wijngaart, H.; Zeverijn, L.J.; van der Velden, D.L.; van de Haar, J.; Roepman, P.; de Leng, W.J.; Jansen, A.M.; van Werkhoven, E.; et al. Patients with Rare Cancers in the Drug Rediscovery Protocol (DRUP) Benefit from Genomics-Guided Treatment. Clin. Cancer Res. 2022, 28, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Ganeshalingam, J.; Wan, J.C.M. The future of liquid biopsy. Lancet Oncol. 2020, 21, e550. [Google Scholar] [CrossRef]
- Turner, N.C.; Kingston, B.; Kilburn, L.S.; Kernaghan, S.; Wardley, A.M.; Macpherson, I.R.; Baird, R.D.; Roylance, R.; Stephens, P.; Oikonomidou, O.; et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): A multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 2020, 21, 1296–1308. [Google Scholar] [CrossRef]
- Cherny, N.I.; Dafni, U.; Bogaerts, J.; Latino, N.J.; Pentheroudakis, G.; Douillard, J.-Y.; Tabernero, J.; Zielinski, C.; Piccart, M.J.; de Vries, E.G.E. ESMO-Magnitude of Clinical Benefit Scale version 1.1. Ann. Oncol. 2017, 28, 2340–2366. [Google Scholar] [CrossRef]
- Mazor, T.; Kumari, P.; Lindsay, J.; Ovalle, A.; Siegel, E.; Yu, J.; Hassett, M.; Cerami, E. MatchMiner: Computational matching of cancer patients to precision medicine clinical trials. Eur. J. Cancer 2020, 138, S18. [Google Scholar] [CrossRef]
- MMPower|Molecular Knowledge Base Platform|MolecularMatch. Available online: https://www.molecularmatch.com/mmpower/ (accessed on 13 April 2022).
- Sundquist, S.; Batist, G.; Brodeur-Robb, K.; Dyck, K.; Eigl, B.J.; Lee, D.K.; Limoges, J.; Longstaff, H.; Pankovich, J.; Sadura, A.; et al. CRAFT—A Proposed Framework for Decentralized Clinical Trials Participation in Canada. Curr. Oncol. 2021, 28, 3857–3865. [Google Scholar] [CrossRef]
- De Vries, E.; Cherny, N.; Voest, E. When is off-label off-road? Ann. Oncol. 2019, 30, 1536–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crimini, E.; Repetto, M.; Tarantino, P.; Ascione, L.; Antonarelli, G.; Rocco, E.G.; Barberis, M.; Mazzarella, L.; Curigliano, G. Challenges and Obstacles in Applying Therapeutical Indications Formulated in Molecular Tumor Boards. Cancers 2022, 14, 3193. https://doi.org/10.3390/cancers14133193
Crimini E, Repetto M, Tarantino P, Ascione L, Antonarelli G, Rocco EG, Barberis M, Mazzarella L, Curigliano G. Challenges and Obstacles in Applying Therapeutical Indications Formulated in Molecular Tumor Boards. Cancers. 2022; 14(13):3193. https://doi.org/10.3390/cancers14133193
Chicago/Turabian StyleCrimini, Edoardo, Matteo Repetto, Paolo Tarantino, Liliana Ascione, Gabriele Antonarelli, Elena Guerini Rocco, Massimo Barberis, Luca Mazzarella, and Giuseppe Curigliano. 2022. "Challenges and Obstacles in Applying Therapeutical Indications Formulated in Molecular Tumor Boards" Cancers 14, no. 13: 3193. https://doi.org/10.3390/cancers14133193