Molecular Basis of Oncogenic PI3K Proteins
Simple Summary
Abstract
1. Introduction
2. Structural Details and Functional Determinants of PI3K Proteins
2.1. Domains in PI3K Proteins
2.2. Sequence Homology Among Full-Length PI3K Proteins
2.3. 3D Structures of PI3K Kinases
2.3.1. Structural Details and Potential Functions of ABD
2.3.2. Structural Details and Potential Functions of RBD
2.3.3. Structural Details and Potential Functions of C2 Domain
2.3.4. Structural Details and Potential Functions of HD
2.3.5. Structural Details and Potential Functions of KD
2.4. 3D Structures of PI3K Adaptors
2.4.1. N-Terminal Domains of Class IA Adaptors
2.4.2. C-Terminal Domains of Class IA Adaptors
2.4.3. Domains in Class IB Adaptors
3. Structural Basis of Class I PI3K Signaling in Oncogenic Transformation
3.1. Functional Divergence of PI3K Kinases
3.2. Oncogenic Potential of Mutant PI3K Proteins
3.2.1. Oncogenic Mutations in PI3K Kinases
3.2.2. Oncogenic Mutations in PI3K Adaptors
3.2.3. Molecular Basis of Oncogenic PI3K Kinase Mutants
3.2.4. Molecular Basis of Oncogenic Mutants of PI3K Adaptors
3.3. Oncogenic Potential of Wild-Type PI3K Proteins
3.3.1. Wild-Type PI3K Proteins Cooperate with Other Oncogenes in Oncogenic Transformation
3.3.2. Wild-Type p110β Outcompetes Other p110 Kinases in Oncogenic Transformation
3.3.3. Structural Basis of Oncogenic p110β
3.4. Targeting Oncogenic p110 Kinases
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wymann, M.P.; Pirola, L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1998, 1436, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Castellano, E.; Downward, J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2011, 2, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Pacold, M.E.; Suire, S.; Perisic, O.; Lara-Gonzalez, S.; Davis, C.T.; Walker, E.H.; Hawkins, P.T.; Stephens, L.; Eccleston, J.F.; Williams, R.L. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 2000, 103, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Viciana, P.; Warne, P.H.; Dhand, R.; Vanhaesebroeck, B.; Gout, I.; Fry, M.J.; Waterfield, M.D.; Downward, J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994, 370, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Tolias, K.F.; Cantley, L.C.; Carpenter, C.L. Rho family GTPases bind to phosphoinositide kinases. J. Biol. Chem. 1995, 270, 17656–17659. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Meyers, R.E.; Cantley, L.C. Phosphoinositide kinases. Annu. Rev. Biochem. 1998, 67, 481–507. [Google Scholar] [CrossRef]
- Han, F.; Li, C.F.; Cai, Z.; Zhang, X.; Jin, G.; Zhang, W.N.; Xu, C.; Wang, C.Y.; Morrow, J.; Zhang, S.; et al. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat. Commun. 2018, 9, 4728. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Chatterjee, A.; Kogan, D.; Patel, D.; Foster, D.A. 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) enhances the efficacy of rapamycin in human cancer cells. Cell Cycle 2015, 14, 3331–3339. [Google Scholar] [CrossRef]
- Worby, C.A.; Dixon, J.E. Pten. Annu. Rev. Biochem. 2014, 83, 641–669. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.E. Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol. Cell 2018, 71, 653–673. [Google Scholar] [CrossRef] [PubMed]
- Zadra, G.; Batista, J.L.; Loda, M. Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies. Mol. Cancer Res. 2015, 13, 1059–1072. [Google Scholar] [CrossRef]
- Delma, M.I. Three May Be Better Than Two: A Proposal for Metformin Addition to PI3K/Akt Inhibitor-antiandrogen Combination in Castration-resistant Prostate Cancer. Cureus 2018, 10, e3403. [Google Scholar] [CrossRef]
- Domin, J.; Waterfield, M.D. Using structure to define the function of phosphoinositide 3-kinase family members. FEBS Lett. 1997, 410, 91–95. [Google Scholar] [CrossRef]
- Schu, P.V.; Takegawa, K.; Fry, M.J.; Stack, J.H.; Waterfield, M.D.; Emr, S.D. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993, 260, 88–91. [Google Scholar] [CrossRef]
- Heng, E.Y.Z.; Maffucci, T. An Overview of Class II Phosphoinositide 3-Kinases. Curr. Top. Microbiol. Immunol. 2022, 436, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Caux, M.; Chicanne, G.; Severin, S. Class III PI3K Biology. Curr. Top. Microbiol. Immunol. 2022, 436, 69–93. [Google Scholar] [CrossRef] [PubMed]
- Whitman, M.; Kaplan, D.R.; Schaffhausen, B.; Cantley, L.; Roberts, T.M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985, 315, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, J.A.; Navankasattusas, S.; Kavanaugh, W.M.; Milfay, D.; Fried, V.A.; Williams, L.T. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 1991, 65, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Otsu, M.; Hiles, I.; Gout, I.; Fry, M.J.; Ruiz-Larrea, F.; Panayotou, G.; Thompson, A.; Dhand, R.; Hsuan, J.; Totty, N.; et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 1991, 65, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Hiles, I.D.; Otsu, M.; Volinia, S.; Fry, M.J.; Gout, I.; Dhand, R.; Panayotou, G.; Ruiz-Larrea, F.; Thompson, A.; Totty, N.F.; et al. Phosphatidylinositol 3-kinase: Structure and expression of the 110 kd catalytic subunit. Cell 1992, 70, 419–429. [Google Scholar] [CrossRef]
- Volinia, S.; Hiles, I.; Ormondroyd, E.; Nizetic, D.; Antonacci, R.; Rocchi, M.; Waterfield, M.D. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics 1994, 24, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Mondino, A.; Skolnik, E.Y.; Schlessinger, J. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol. Cell Biol. 1993, 13, 7677–7688. [Google Scholar] [CrossRef] [PubMed]
- Vanhaesebroeck, B.; Welham, M.J.; Kotani, K.; Stein, R.; Warne, P.H.; Zvelebil, M.J.; Higashi, K.; Volinia, S.; Downward, J.; Waterfield, M.D. P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. USA 1997, 94, 4330–4335. [Google Scholar] [CrossRef] [PubMed]
- Stoyanov, B.; Volinia, S.; Hanck, T.; Rubio, I.; Loubtchenkov, M.; Malek, D.; Stoyanova, S.; Vanhaesebroeck, B.; Dhand, R.; Nurnberg, B.; et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 1995, 269, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Dey, B.R.; Furlanetto, R.W.; Nissley, S.P. Cloning of human p55 gamma, a regulatory subunit of phosphatidylinositol 3-kinase, by a yeast two-hybrid library screen with the insulin-like growth factor-I receptor. Gene 1998, 209, 175–183. [Google Scholar] [CrossRef]
- Stephens, L.R.; Eguinoa, A.; Erdjument-Bromage, H.; Lui, M.; Cooke, F.; Coadwell, J.; Smrcka, A.S.; Thelen, M.; Cadwallader, K.; Tempst, P.; et al. The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 1997, 89, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Skolnik, E.Y.; Margolis, B.; Mohammadi, M.; Lowenstein, E.; Fischer, R.; Drepps, A.; Ullrich, A.; Schlessinger, J. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 1991, 65, 83–90. [Google Scholar] [CrossRef]
- Carpenter, C.L.; Duckworth, B.C.; Auger, K.R.; Cohen, B.; Schaffhausen, B.S.; Cantley, L.C. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 1990, 265, 19704–19711. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.J.; Smith, A.D.; Parker, P.J. Purification and characterization of bovine brain type I phosphatidylinositol kinase. Eur. J. Biochem. 1990, 191, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Pons, S.; Asano, T.; Glasheen, E.; Miralpeix, M.; Zhang, Y.; Fisher, T.L.; Myers, M.G., Jr.; Sun, X.J.; White, M.F. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol. Cell Biol. 1995, 15, 4453–4465. [Google Scholar] [CrossRef] [PubMed]
- Inukai, K.; Funaki, M.; Ogihara, T.; Katagiri, H.; Kanda, A.; Anai, M.; Fukushima, Y.; Hosaka, T.; Suzuki, M.; Shin, B.C.; et al. p85alpha gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-Kinase), p50alpha, p55alpha, and p85alpha, with different PI 3-kinase activity elevating responses to insulin. J. Biol. Chem. 1997, 272, 7873–7882. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Cantley, L.C.; Carpenter, C.L. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 alpha gene. Genomics 1996, 37, 113–121. [Google Scholar] [CrossRef]
- Geering, B.; Cutillas, P.R.; Nock, G.; Gharbi, S.I.; Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc. Natl. Acad. Sci. USA 2007, 104, 7809–7814. [Google Scholar] [CrossRef] [PubMed]
- Suire, S.; Coadwell, J.; Ferguson, G.J.; Davidson, K.; Hawkins, P.; Stephens, L. p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr. Biol. 2005, 15, 566–570. [Google Scholar] [CrossRef]
- Carpenter, C.L.; Auger, K.R.; Chanudhuri, M.; Yoakim, M.; Schaffhausen, B.; Shoelson, S.; Cantley, L.C. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J. Biol. Chem. 1993, 268, 9478–9483. [Google Scholar] [CrossRef] [PubMed]
- Dhand, R.; Hara, K.; Hiles, I.; Bax, B.; Gout, I.; Panayotou, G.; Fry, M.J.; Yonezawa, K.; Kasuga, M.; Waterfield, M.D. PI 3-kinase: Structural and functional analysis of intersubunit interactions. EMBO J. 1994, 13, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, S.; Bulgarelli-Leva, G.; Kirsch, C.; Hanck, T.; Klinger, R.; Wetzker, R.; Wymann, M.P. Lipid kinase and protein kinase activities of G-protein-coupled phosphoinositide 3-kinase gamma: Structure-activity analysis and interactions with wortmannin. Biochem. J. 1997, 324 Pt 2, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, Y.; McIlroy, J.; Rordorf-Nikolic, T.; Orr, G.A.; Backer, J.M. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: Stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol. Cell Biol. 1998, 18, 1379–1387. [Google Scholar] [CrossRef]
- Woscholski, R.; Dhand, R.; Fry, M.J.; Waterfield, M.D.; Parker, P.J. Biochemical characterization of the free catalytic p110 alpha and the complexed heterodimeric p110 alpha.p85 alpha forms of the mammalian phosphatidylinositol 3-kinase. J. Biol. Chem. 1994, 269, 25067–25072. [Google Scholar] [CrossRef]
- Shymanets, A.; Prajwal; Bucher, K.; Beer-Hammer, S.; Harteneck, C.; Nurnberg, B. p87 and p101 subunits are distinct regulators determining class IB phosphoinositide 3-kinase (PI3K) specificity. J. Biol. Chem. 2013, 288, 31059–31068. [Google Scholar] [CrossRef] [PubMed]
- Klippel, A.; Escobedo, J.A.; Hirano, M.; Williams, L.T. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell Biol. 1994, 14, 2675–2685. [Google Scholar] [CrossRef] [PubMed]
- Klippel, A.; Reinhard, C.; Kavanaugh, W.M.; Apell, G.; Escobedo, M.A.; Williams, L.T. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell Biol. 1996, 16, 4117–4127. [Google Scholar] [CrossRef]
- Booker, G.W.; Breeze, A.L.; Downing, A.K.; Panayotou, G.; Gout, I.; Waterfield, M.D.; Campbell, I.D. Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase. Nature 1992, 358, 684–687. [Google Scholar] [CrossRef]
- Booker, G.W.; Gout, I.; Downing, A.K.; Driscoll, P.C.; Boyd, J.; Waterfield, M.D.; Campbell, I.D. Solution structure and ligand-binding site of the SH3 domain of the p85 alpha subunit of phosphatidylinositol 3-kinase. Cell 1993, 73, 813–822. [Google Scholar] [CrossRef]
- Koyama, S.; Yu, H.; Dalgarno, D.C.; Shin, T.B.; Zydowsky, L.D.; Schreiber, S.L. Structure of the PI3K SH3 domain and analysis of the SH3 family. Cell 1993, 72, 945–952. [Google Scholar] [CrossRef]
- Songyang, Z.; Shoelson, S.E.; Chaudhuri, M.; Gish, G.; Pawson, T.; Haser, W.G.; King, F.; Roberts, T.; Ratnofsky, S.; Lechleider, R.J.; et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993, 72, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Chen, J.K.; Schreiber, S.T.; Clardy, J. Crystal structure of P13K SH3 domain at 20 angstroms resolution. J. Mol. Biol. 1996, 257, 632–643. [Google Scholar] [CrossRef]
- Nolte, R.T.; Eck, M.J.; Schlessinger, J.; Shoelson, S.E.; Harrison, S.C. Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nat. Struct. Mol. Biol. 1996, 3, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Siegal, G.; Davis, B.; Kristensen, S.M.; Sankar, A.; Linacre, J.; Stein, R.C.; Panayotou, G.; Waterfield, M.D.; Driscoll, P.C. Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase. J. Mol. Biol. 1998, 276, 461–478. [Google Scholar] [CrossRef]
- Yu, J.; Wjasow, C.; Backer, J.M. Regulation of the p85/p110alpha phosphatidylinositol 3′-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J. Biol. Chem. 1998, 273, 30199–30203. [Google Scholar] [CrossRef]
- Walker, E.H.; Perisic, O.; Ried, C.; Stephens, L.; Williams, R.L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 1999, 402, 313–320. [Google Scholar] [CrossRef]
- Fu, Z.; Aronoff-Spencer, E.; Wu, H.; Gerfen, G.J.; Backer, J.M. The iSH2 domain of PI 3-kinase is a rigid tether for p110 and not a conformational switch. Arch. Biochem. Biophys. 2004, 432, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Shekar, S.C.; Flinn, R.J.; El-Sibai, M.; Jaiswal, B.S.; Sen, K.I.; Janakiraman, V.; Seshagiri, S.; Gerfen, G.J.; Girvin, M.E.; et al. Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Proc. Natl. Acad. Sci. USA 2009, 106, 20258–20263. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.S.; Schmidt-Kittler, O.; Bolduc, D.M.; Brower, E.T.; Chaves-Moreira, D.; Allaire, M.; Kinzler, K.W.; Jennings, I.G.; Thompson, P.E.; Cole, P.A.; et al. Structural basis of nSH2 regulation and lipid binding in PI3Kalpha. Oncotarget 2014, 5, 5198–5208. [Google Scholar] [CrossRef] [PubMed]
- Musacchio, A.; Cantley, L.C.; Harrison, S.C. Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85 alpha subunit. Proc. Natl. Acad. Sci. USA 1996, 93, 14373–14378. [Google Scholar] [CrossRef] [PubMed]
- Miled, N.; Yan, Y.; Hon, W.C.; Perisic, O.; Zvelebil, M.; Inbar, Y.; Schneidman-Duhovny, D.; Wolfson, H.J.; Backer, J.M.; Williams, R.L. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 2007, 317, 239–242. [Google Scholar] [CrossRef]
- Zhang, X.; Vadas, O.; Perisic, O.; Anderson, K.E.; Clark, J.; Hawkins, P.T.; Stephens, L.R.; Williams, R.L. Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell 2011, 41, 567–578. [Google Scholar] [CrossRef]
- Huang, C.H.; Mandelker, D.; Schmidt-Kittler, O.; Samuels, Y.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Gabelli, S.B.; Amzel, L.M. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 2007, 318, 1744–1748. [Google Scholar] [CrossRef]
- Chen, C.L.; Syahirah, R.; Ravala, S.K.; Yen, Y.C.; Klose, T.; Deng, Q.; Tesmer, J.J.G. Molecular basis for Gbetagamma-mediated activation of phosphoinositide 3-kinase gamma. Nat. Struct. Mol. Biol. 2024, 31, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.K.; Hart, J.R.; Yang, S.; Zhou, Q.; Yang, D.; Wang, M.W. Structural and mechanistic insights provided by single particle cryo-EM analysis of phosphoinositide 3-kinase (PI3Kalpha). Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188947. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, X.; Neri, D.; Li, W.; Favalli, N.; Bassi, G.; Yang, S.; Yang, D.; Vogt, P.K.; Wang, M.W. Structural insights into the interaction of three Y-shaped ligands with PI3Kalpha. Proc. Natl. Acad. Sci. USA 2023, 120, e2304071120. [Google Scholar] [CrossRef] [PubMed]
- Rathinaswamy, M.K.; Dalwadi, U.; Fleming, K.D.; Adams, C.; Stariha, J.T.B.; Pardon, E.; Baek, M.; Vadas, O.; DiMaio, F.; Steyaert, J.; et al. Structure of the phosphoinositide 3-kinase (PI3K) p110gamma-p101 complex reveals molecular mechanism of GPCR activation. Sci. Adv. 2021, 7, eabj4282. [Google Scholar] [CrossRef]
- Amzel, L.M.; Huang, C.H.; Mandelker, D.; Lengauer, C.; Gabelli, S.B.; Vogelstein, B. Structural comparisons of class I phosphoinositide 3-kinases. Nat. Rev. Cancer 2008, 8, 665–669. [Google Scholar] [CrossRef]
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000, 6, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Berndt, A.; Miller, S.; Williams, O.; Le, D.D.; Houseman, B.T.; Pacold, J.I.; Gorrec, F.; Hon, W.C.; Liu, Y.; Rommel, C.; et al. The p110 delta structure: Mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat. Chem. Biol. 2010, 6, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Chen, Y.; Lu, S.; Peng, Y.; Wang, X.; Guo, C.; Zhou, A.; Zhang, J.; Luo, Y.; et al. Crystal Structures of PI3Kalpha Complexed with PI103 and Its Derivatives: New Directions for Inhibitors Design. ACS Med. Chem. Lett. 2014, 5, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Mandelker, D.; Gabelli, S.B.; Schmidt-Kittler, O.; Zhu, J.; Cheong, I.; Huang, C.H.; Kinzler, K.W.; Vogelstein, B.; Amzel, L.M. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc. Natl. Acad. Sci. USA 2009, 106, 16996–17001. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.W.; Shin, M.G.; Lee, S.; Kim, J.R.; Park, W.S.; Cho, K.H.; Meyer, T.; Heo, W.D. Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol. Cell 2012, 47, 281–290. [Google Scholar] [CrossRef]
- Whitecross, D.E.; Anderson, D.H. Identification of the Binding Sites on Rab5 and p110beta Phosphatidylinositol 3-kinase. Sci. Rep. 2017, 7, 16194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jang, H.; Nussinov, R. The structural basis for Ras activation of PI3Kalpha lipid kinase. Phys. Chem. Chem. Phys. 2019, 21, 12021–12028. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, S.; Matsuoka, S.; Ueda, M. Excitable dynamics of Ras triggers spontaneous symmetry breaking of PIP3 signaling in motile cells. J. Cell Sci. 2019, 132, jcs224121. [Google Scholar] [CrossRef]
- Huang, L.; Hofer, F.; Martin, G.S.; Kim, S.H. Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Mol. Biol. 1998, 5, 422–426. [Google Scholar] [CrossRef]
- Nassar, N.; Horn, G.; Herrmann, C.; Scherer, A.; McCormick, F.; Wittinghofer, A. The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 1995, 375, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Corbalan-Garcia, S.; Gomez-Fernandez, J.C. Signaling through C2 domains: More than one lipid target. Biochim. Biophys. Acta 2014, 1838, 1536–1547. [Google Scholar] [CrossRef] [PubMed]
- Thapa, N.; Chen, M.; Cryns, V.L.; Anderson, R. A p85 isoform switch enhances PI3K activation on endosomes by a MAP4- and PI3P-dependent mechanism. Cell Rep. 2024, 43, 114119. [Google Scholar] [CrossRef]
- Gabelli, S.B.; Mandelker, D.; Schmidt-Kittler, O.; Vogelstein, B.; Amzel, L.M. Somatic mutations in PI3Kalpha: Structural basis for enzyme activation and drug design. Biochim. Biophys. Acta 2010, 1804, 533–540. [Google Scholar] [CrossRef]
- Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell 2002, 109, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Vanhaesebroeck, B.; Perry, M.W.D.; Brown, J.R.; Andre, F.; Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 2021, 20, 741–769. [Google Scholar] [CrossRef]
- Maheshwari, S.; Miller, M.S.; O’Meally, R.; Cole, R.N.; Amzel, L.M.; Gabelli, S.B. Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase alpha that are critical for catalysis and substrate recognition. J. Biol. Chem. 2017, 292, 13541–13550. [Google Scholar] [CrossRef] [PubMed]
- Hoedemaeker, F.J.; Siegal, G.; Roe, S.M.; Driscoll, P.C.; Abrahams, J.P. Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: An SH2 domain mimicking its own substrate. J. Mol. Biol. 1999, 292, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Dombrosky-Ferlan, P.M.; Corey, S.J. Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oncogene product Cbl but not with the p85 subunit of PI 3-kinase. Oncogene 1997, 14, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, D.; Brill, S.; Garrett, M.D.; Totty, N.; Hsuan, J.; Monfries, C.; Hall, C.; Lim, L.; Hall, A. Bcr encodes a GTPase-activating protein for p21rac. Nature 1991, 351, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.H.; Olson, L.; Moye-Rowley, W.S.; Pessin, J.E. Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol. Cell Biol. 1994, 14, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Hale, B.G.; Kerry, P.S.; Jackson, D.; Precious, B.L.; Gray, A.; Killip, M.J.; Randall, R.E.; Russell, R.J. Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Proc. Natl. Acad. Sci. USA 2010, 107, 1954–1959. [Google Scholar] [CrossRef] [PubMed]
- Voigt, P.; Brock, C.; Nurnberg, B.; Schaefer, M. Assigning functional domains within the p101 regulatory subunit of phosphoinositide 3-kinase gamma. J. Biol. Chem. 2005, 280, 5121–5127. [Google Scholar] [CrossRef] [PubMed]
- Hoxhaj, G.; Manning, B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Rommel, C.; Camps, M.; Ji, H. PI3K delta and PI3K gamma: Partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol. 2007, 7, 191–201. [Google Scholar] [CrossRef]
- Park, S.J.; Min, K.H.; Lee, Y.C. Phosphoinositide 3-kinase delta inhibitor as a novel therapeutic agent in asthma. Respirology 2008, 13, 764–771. [Google Scholar] [CrossRef]
- Bi, L.; Okabe, I.; Bernard, D.J.; Nussbaum, R.L. Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm. Genome 2002, 13, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Ciraolo, E.; Iezzi, M.; Marone, R.; Marengo, S.; Curcio, C.; Costa, C.; Azzolino, O.; Gonella, C.; Rubinetto, C.; Wu, H.; et al. Phosphoinositide 3-kinase p110beta activity: Key role in metabolism and mammary gland cancer but not development. Sci. Signal. 2008, 1, ra3. [Google Scholar] [CrossRef] [PubMed]
- Foukas, L.C.; Claret, M.; Pearce, W.; Okkenhaug, K.; Meek, S.; Peskett, E.; Sancho, S.; Smith, A.J.; Withers, D.J.; Vanhaesebroeck, B. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 2006, 441, 366–370. [Google Scholar] [CrossRef]
- Graupera, M.; Guillermet-Guibert, J.; Foukas, L.C.; Phng, L.K.; Cain, R.J.; Salpekar, A.; Pearce, W.; Meek, S.; Millan, J.; Cutillas, P.R.; et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008, 453, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Sopasakis, V.R.; Liu, P.; Suzuki, R.; Kondo, T.; Winnay, J.; Tran, T.T.; Asano, T.; Smyth, G.; Sajan, M.P.; Farese, R.V.; et al. Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab. 2010, 11, 220–230. [Google Scholar] [CrossRef]
- Guillermet-Guibert, J.; Bjorklof, K.; Salpekar, A.; Gonella, C.; Ramadani, F.; Bilancio, A.; Meek, S.; Smith, A.J.; Okkenhaug, K.; Vanhaesebroeck, B. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc. Natl. Acad. Sci. USA 2008, 105, 8292–8297. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Liu, Z.; Zhang, S.; Liu, P.; Zhang, L.; Lee, S.H.; Zhang, J.; Signoretti, S.; Loda, M.; Roberts, T.M.; et al. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 2008, 454, 776–779. [Google Scholar] [CrossRef]
- Ando, Y.; Iwasa, S.; Takahashi, S.; Saka, H.; Kakizume, T.; Natsume, K.; Suenaga, N.; Quadt, C.; Yamada, Y. Phase I study of alpelisib (BYL719), an alpha-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci. 2019, 110, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.; Guillermet-Guibert, J.; Chicanne, G.; Cabou, C.; Jandrot-Perrus, M.; Plantavid, M.; Vanhaesebroeck, B.; Payrastre, B.; Gratacap, M.P. Deletion of the p110beta isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 2010, 115, 2008–2013. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.; Kumar, A.; Poveda, A.M.; Zuluaga, S.; Hernandez, C.; Jackson, S.; Pasero, P.; Carrera, A.C. Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc. Natl. Acad. Sci. USA 2009, 106, 7525–7530. [Google Scholar] [CrossRef] [PubMed]
- Ciraolo, E.; Morello, F.; Hobbs, R.M.; Wolf, F.; Marone, R.; Iezzi, M.; Lu, X.; Mengozzi, G.; Altruda, F.; Sorba, G.; et al. Essential role of the p110beta subunit of phosphoinositide 3-OH kinase in male fertility. Mol. Biol. Cell 2010, 21, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 2015, 15, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Okabe, I.; Bernard, D.J.; Wynshaw-Boris, A.; Nussbaum, R.L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J. Biol. Chem. 1999, 274, 10963–10968. [Google Scholar] [CrossRef] [PubMed]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef]
- Lindhurst, M.J.; Parker, V.E.; Payne, F.; Sapp, J.C.; Rudge, S.; Harris, J.; Witkowski, A.M.; Zhang, Q.; Groeneveld, M.P.; Scott, C.E.; et al. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat. Genet. 2012, 44, 928–933. [Google Scholar] [CrossRef]
- Arafeh, R.; Samuels, Y. PIK3CA in cancer: The past 30 years. Semin. Cancer Biol. 2019, 59, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Buckbinder, L.; St Jean, D.J., Jr.; Tieu, T.; Ladd, B.; Hilbert, B.; Wang, W.; Alltucker, J.T.; Manimala, S.; Kryukov, G.V.; Brooijmans, N.; et al. STX-478, a Mutant-Selective, Allosteric PI3Kalpha Inhibitor Spares Metabolic Dysfunction and Improves Therapeutic Response in PI3Kalpha-Mutant Xenografts. Cancer Discov. 2023, 13, 2432–2447. [Google Scholar] [CrossRef] [PubMed]
- Vanhaesebroeck, B.; Burke, J.E.; Madsen, R.R. Precision Targeting of Mutant PI3Kalpha in Cancer by Selective Degradation. Cancer Discov. 2022, 12, 20–22. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Walter, K.; Spoerke, J.M.; O’Brien, C.; Huw, L.Y.; Hampton, G.M.; Lackner, M.R. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110beta. Cancer Res. 2016, 76, 1193–1203. [Google Scholar] [CrossRef]
- Whale, A.D.; Colman, L.; Lensun, L.; Rogers, H.L.; Shuttleworth, S.J. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct. Target. Ther. 2017, 2, 17063. [Google Scholar] [CrossRef]
- Pazarentzos, E.; Giannikopoulos, P.; Hrustanovic, G.; St John, J.; Olivas, V.R.; Gubens, M.A.; Balassanian, R.; Weissman, J.; Polkinghorn, W.; Bivona, T.G. Oncogenic activation of the PI3-kinase p110beta isoform via the tumor-derived PIK3Cbeta(D1067V) kinase domain mutation. Oncogene 2016, 35, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.L.; Chandra, A.; Nejentsev, S.; Condliffe, A.M.; Okkenhaug, K. PI3Kdelta and primary immunodeficiencies. Nat. Rev. Immunol. 2016, 16, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Durandy, A.; Kracker, S. Increased activation of PI3 kinase-delta predisposes to B-cell lymphoma. Blood 2020, 135, 638–643. [Google Scholar] [CrossRef]
- Thian, M.; Hoeger, B.; Kamnev, A.; Poyer, F.; Kostel Bal, S.; Caldera, M.; Jimenez-Heredia, R.; Huemer, J.; Pickl, W.F.; Gross, M.; et al. Germline biallelic PIK3CG mutations in a multifaceted immunodeficiency with immune dysregulation. Haematologica 2020, 105, e488. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Irie-Sasaki, J.; Horie, Y.; Bachmaier, K.; Fata, J.E.; Li, M.; Suzuki, A.; Bouchard, D.; Ho, A.; Redston, M.; et al. Colorectal carcinomas in mice lacking the catalytic subunit of PI(3)Kgamma. Nature 2000, 406, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Urick, M.E.; Rudd, M.L.; Godwin, A.K.; Sgroi, D.; Merino, M.; Bell, D.W. PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 2011, 71, 4061–4067. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, B.T.; Jucker, M. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85alpha regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain. Cell Signal. 2012, 24, 1950–1954. [Google Scholar] [CrossRef] [PubMed]
- Deau, M.C.; Heurtier, L.; Frange, P.; Suarez, F.; Bole-Feysot, C.; Nitschke, P.; Cavazzana, M.; Picard, C.; Durandy, A.; Fischer, A.; et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J. Clin. Investig. 2014, 124, 3923–3928. [Google Scholar] [CrossRef]
- Thorpe, L.M.; Spangle, J.M.; Ohlson, C.E.; Cheng, H.; Roberts, T.M.; Cantley, L.C.; Zhao, J.J. PI3K-p110alpha mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85alpha. Proc. Natl. Acad. Sci. USA 2017, 114, 7095–7100. [Google Scholar] [CrossRef]
- Fox, M.; Mott, H.R.; Owen, D. Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem. Soc. Trans. 2020, 48, 1397–1417. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.W.; Mills, G.B. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics 2016, 17, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Gabelli, S.B.; Huang, C.H.; Mandelker, D.; Schmidt-Kittler, O.; Vogelstein, B.; Amzel, L.M. Structural effects of oncogenic PI3Kalpha mutations. Curr. Top. Microbiol. Immunol. 2010, 347, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Gymnopoulos, M.; Elsliger, M.A.; Vogt, P.K. Rare cancer-specific mutations in PIK3CA show gain of function. Proc. Natl. Acad. Sci. USA 2007, 104, 5569–5574. [Google Scholar] [CrossRef]
- Rudd, M.L.; Price, J.C.; Fogoros, S.; Godwin, A.K.; Sgroi, D.C.; Merino, M.J.; Bell, D.W. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin. Cancer Res. 2011, 17, 1331–1340. [Google Scholar] [CrossRef]
- Zhao, L.; Vogt, P.K. Class I PI3K in oncogenic cellular transformation. Oncogene 2008, 27, 5486–5496. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, K.; Han, J.; Chen, X.; Wang, Z.; Wu, T.; Yu, B.; Zhao, F.; Wang, X.; Li, H.; et al. Cryo-EM structures reveal two allosteric inhibition modes of PI3Kalpha(H1047R) involving a re-shaping of the activation loop. Structure 2024, 32, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Razavi, P.; Johnson, J.L.; Shao, H.; Shah, H.; Antoine, A.; Ladewig, E.; Gorelick, A.; Lin, T.Y.; Toska, E.; et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kalpha inhibitors. Science 2019, 366, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, Q.; Hart, J.R.; Xu, Y.; Yang, S.; Yang, D.; Vogt, P.K.; Wang, M.W. Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kalpha. Proc. Natl. Acad. Sci. USA 2022, 119, e2215621119. [Google Scholar] [CrossRef] [PubMed]
- Debouki-Joudi, S.; Ben Kridis, W.; Trifa, F.; Ayadi, W.; Khabir, A.; Sellami-Boudawara, T.; Daoud, J.; Khanfir, A.; Mokdad-Gargouri, R. A novel PIK3CA hot-spot mutation in breast cancer patients detected by HRM-COLD-PCR analysis. Breast Dis. 2024, 43, 213–221. [Google Scholar] [CrossRef]
- Spangle, J.M.; Von, T.; Pavlick, D.C.; Khotimsky, A.; Zhao, J.J.; Roberts, T.M. PIK3CA C-terminal frameshift mutations are novel oncogenic events that sensitize tumors to PI3K-alpha inhibition. Proc. Natl. Acad. Sci. USA 2020, 117, 24427–24433. [Google Scholar] [CrossRef] [PubMed]
- Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502, 333–339. [Google Scholar] [CrossRef]
- Dsouza, N.R.; Cottrell, C.E.; Davies, O.M.T.; Tollefson, M.M.; Frieden, I.J.; Basel, D.; Urrutia, R.; Drolet, B.A.; Zimmermann, M.T. Structural and Dynamic Analyses of Pathogenic Variants in PIK3R1 Reveal a Shared Mechanism Associated among Cancer, Undergrowth, and Overgrowth Syndromes. Life 2024, 14, 297. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Hillmann, P.; Hofmann, B.T.; Hart, J.R.; Vogt, P.K. Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Proc. Natl. Acad. Sci. USA 2010, 107, 15547–15552. [Google Scholar] [CrossRef]
- Jimenez, C.; Jones, D.R.; Rodriguez-Viciana, P.; Gonzalez-Garcia, A.; Leonardo, E.; Wennstrom, S.; von Kobbe, C.; Toran, J.L.; R-Borlado, L.; Calvo, V.; et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J. 1998, 17, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; He, B.; Wu, L.; Li, Y.; Wang, C.; Wang, T.; Sun, L.; Zhang, Y.; Zhan, Y.; Zhao, Y.; et al. Nuclear translocation of p85beta promotes tumorigenesis of PIK3CA helical domain mutant cancer. Nat. Commun. 2022, 13, 1974. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, B.S.; Janakiraman, V.; Kljavin, N.M.; Chaudhuri, S.; Stern, H.M.; Wang, W.; Kan, Z.; Dbouk, H.A.; Peters, B.A.; Waring, P.; et al. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell 2009, 16, 463–474. [Google Scholar] [CrossRef]
- Liu, S.; Knapp, S.; Ahmed, A.A. The structural basis of PI3K cancer mutations: From mechanism to therapy. Cancer Res. 2014, 74, 641–646. [Google Scholar] [CrossRef]
- Cheung, L.W.; Yu, S.; Zhang, D.; Li, J.; Ng, P.K.; Panupinthu, N.; Mitra, S.; Ju, Z.; Yu, Q.; Liang, H.; et al. Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. Cancer Cell 2014, 26, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Tsolakos, N.; Durrant, T.N.; Chessa, T.; Suire, S.M.; Oxley, D.; Kulkarni, S.; Downward, J.; Perisic, O.; Williams, R.L.; Stephens, L.; et al. Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors. Proc. Natl. Acad. Sci. USA 2018, 115, 12176–12181. [Google Scholar] [CrossRef]
- Skorski, T.; Bellacosa, A.; Nieborowska-Skorska, M.; Majewski, M.; Martinez, R.; Choi, J.K.; Trotta, R.; Wlodarski, P.; Perrotti, D.; Chan, T.O.; et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 1997, 16, 6151–6161. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Ramjaun, A.R.; Haiko, P.; Wang, Y.; Warne, P.H.; Nicke, B.; Nye, E.; Stamp, G.; Alitalo, K.; Downward, J. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 2007, 129, 957–968. [Google Scholar] [CrossRef]
- Wu, C.Y.; Carpenter, E.S.; Takeuchi, K.K.; Halbrook, C.J.; Peverley, L.V.; Bien, H.; Hall, J.C.; DelGiorno, K.E.; Pal, D.; Song, Y.; et al. PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice. Gastroenterology 2014, 147, 1405–1416.E7. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Denley, A.; Vanhaesebroeck, B.; Vogt, P.K. Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. USA 2006, 103, 1289–1294. [Google Scholar] [CrossRef]
- Suire, S.; Condliffe, A.M.; Ferguson, G.J.; Ellson, C.D.; Guillou, H.; Davidson, K.; Welch, H.; Coadwell, J.; Turner, M.; Chilvers, E.R.; et al. Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat. Cell Biol. 2006, 8, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Liu, Z.; Wang, L.; Shin, E.; Loda, M.F.; Roberts, T.M. The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc. Natl. Acad. Sci. USA 2005, 102, 18443–18448. [Google Scholar] [CrossRef] [PubMed]
- Denley, A.; Kang, S.; Karst, U.; Vogt, P.K. Oncogenic signaling of class I PI3K isoforms. Oncogene 2008, 27, 2561–2574. [Google Scholar] [CrossRef] [PubMed]
- Dbouk, H.A.; Pang, H.; Fiser, A.; Backer, J.M. A biochemical mechanism for the oncogenic potential of the p110beta catalytic subunit of phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. USA 2010, 107, 19897–19902. [Google Scholar] [CrossRef]
- Maier, U.; Babich, A.; Nurnberg, B. Roles of non-catalytic subunits in gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J. Biol. Chem. 1999, 274, 29311–29317. [Google Scholar] [CrossRef] [PubMed]
- Kurosu, H.; Maehama, T.; Okada, T.; Yamamoto, T.; Hoshino, S.; Fukui, Y.; Ui, M.; Hazeki, O.; Katada, T. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 1997, 272, 24252–24256. [Google Scholar] [CrossRef]
- Foukas, L.C.; Berenjeno, I.M.; Gray, A.; Khwaja, A.; Vanhaesebroeck, B. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc. Natl. Acad. Sci. USA 2010, 107, 11381–11386. [Google Scholar] [CrossRef]
- Kulkarni, S.; Sitaru, C.; Jakus, Z.; Anderson, K.E.; Damoulakis, G.; Davidson, K.; Hirose, M.; Juss, J.; Oxley, D.; Chessa, T.A.; et al. PI3Kbeta plays a critical role in neutrophil activation by immune complexes. Sci. Signal. 2011, 4, ra23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Gjoerup, O.V.; Subramanian, R.R.; Cheng, Y.; Chen, W.; Roberts, T.M.; Hahn, W.C. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 2003, 3, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Bader, A.G.; Vogt, P.K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. USA 2005, 102, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.; Wiederschain, D.; Maira, S.M.; Loo, A.; Miller, C.; deBeaumont, R.; Stegmeier, F.; Yao, Y.M.; Lengauer, C. PTEN-deficient cancers depend on PIK3CB. Proc. Natl. Acad. Sci. USA 2008, 105, 13057–13062. [Google Scholar] [CrossRef] [PubMed]
- Pridham, K.J.; Le, L.; Guo, S.; Varghese, R.T.; Algino, S.; Liang, Y.; Fajardin, R.; Rodgers, C.M.; Simonds, G.R.; Kelly, D.F.; et al. PIK3CB/p110beta is a selective survival factor for glioblastoma. Neuro Oncol. 2018, 20, 494–505. [Google Scholar] [CrossRef]
- Xie, S.; Ni, J.; McFaline-Figueroa, J.R.; Wang, Y.; Bronson, R.T.; Ligon, K.L.; Wen, P.Y.; Roberts, T.M.; Zhao, J.J. Divergent Roles of PI3K Isoforms in PTEN-Deficient Glioblastomas. Cell Rep. 2020, 32, 108196. [Google Scholar] [CrossRef] [PubMed]
- Pridham, K.J.; Hutchings, K.R.; Beck, P.; Liu, M.; Xu, E.; Saechin, E.; Bui, V.; Patel, C.; Solis, J.; Huang, L.; et al. Selective regulation of chemosensitivity in glioblastoma by phosphatidylinositol 3-kinase beta. iScience 2024, 27, 109921. [Google Scholar] [CrossRef]
- Pridham, K.J.; Shah, F.; Hutchings, K.R.; Sheng, K.L.; Guo, S.; Liu, M.; Kanabur, P.; Lamouille, S.; Lewis, G.; Morales, M.; et al. Connexin 43 confers chemoresistance through activating PI3K. Oncogenesis 2022, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.A.; Degan, S.; Wang, Y.; Cohen, J.; Ku, S.Y.; Goodrich, D.W.; Gelman, I.H. PTEN-regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. Oncogene 2024, 43, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Redondo-Munoz, J.; Perez-Garcia, V.; Cortes, I.; Chagoyen, M.; Carrera, A.C. Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Mol. Cell Biol. 2011, 31, 2122–2133. [Google Scholar] [CrossRef]
- Kumar, A.; Fernandez-Capetillo, O.; Carrera, A.C. Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc. Natl. Acad. Sci. USA 2010, 107, 7491–7496. [Google Scholar] [CrossRef] [PubMed]
- Dbouk, H.A.; Vadas, O.; Shymanets, A.; Burke, J.E.; Salamon, R.S.; Khalil, B.D.; Barrett, M.O.; Waldo, G.L.; Surve, C.; Hsueh, C.; et al. G protein-coupled receptor-mediated activation of p110beta by Gbetagamma is required for cellular transformation and invasiveness. Sci. Signal. 2012, 5, ra89. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Idelalisib: First global approval. Drugs 2014, 74, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Duvelisib: First Global Approval. Drugs 2018, 78, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S.; Keam, S.J. Umbralisib: First Approval. Drugs 2021, 81, 857–866. [Google Scholar] [CrossRef] [PubMed]
- FDA U.S. Phosphatidylinositol 3-kinase (PI3K) Inhibitors in Hematologic Malgnancies. Oncologic Drugs Advisory Committee Meeting. 2022; FDA Briefing Document. Available online: https://www.fda.gov/media/157762/download (accessed on 26 December 2024).
- FDA U.S.; Gilead Sciences, Inc. Withdrawal of Approval of Indications for Relapsed Follicular Lymphoma and Relapsed Small Lymphocytic Lymphoma for ZYDELIG (Idelalisib) Tablets. Federal Register, The Daily Journal of the United States Government. 2022: Published Document: 2022–11277 (87 FR 32031). Available online: https://www.federalregister.gov/documents/2022/05/26/2022-11277/gilead-sciences-inc-withdrawal-of-approval-of-indications-for-relapsed-follicular-lymphoma-and#:~:text=Therefore%2C%20under%20%C2%A7%20314.150(d,for%20ZYDELIG%20(idelalisib)%20Tablets (accessed on 26 December 2024).
- U.S. FDA; Secura Bio, Inc. Withdrawal of Approval of Relapsed or Refractory Follicular Lymphoma Indication for COPIKTRA. Federal Register, The Daily Journal of the United States Government. 2022:Published Document: 2022–07931 (87 FR 21888). Available online: https://www.federalregister.gov/documents/2022/04/13/2022-07931/secura-bio-inc-withdrawal-of-approval-of-relapsed-or-refractory-follicular-lymphoma-indication-for#:~:text=Therefore%2C%20under%20%C2%A7%20314.150(d,other%20approved%20indication%20for%20COPIKTRA (accessed on 26 December 2024).
- FDA U.S.; TG Therapeutics, Inc. Withdrawal of Approval of New Drug Application for UKONIQ (Umbralisib Tosylate) Tablets, Equivalent to 200 Milligrams Base. Federal Register, The Daily Journal of the United States Government. 2022:Published Document: 2022–11631 (87 FR 32425). Available online: https://www.federalregister.gov/documents/2022/05/31/2022-11631/tg-therapeutics-inc-withdrawal-of-approval-of-new-drug-application-for-ukoniq-umbralisib-tosylate#:~:text=0503%2DAA39%20SORN-,TG%20Therapeutics%2C%20Inc.%3B%20Withdrawal%20of%20Approval%20of%20New%20Drug,Equivalent%20to%20200%20Milligrams%20Base&text=Approval%20is%20withdrawn%20as%20of%20May%2031%2C%202022.&text=Document%20page%20views%20are%20updated,cumulative%20counts%20for%20this%20document (accessed on 26 December 2024).
- Sk, A.; Hemalatha, K.; Matada, G.S.P.; Pal, R.; Manjushree, B.; Mounika, S.; Haripriya, E.; Viji, M.; Anjan, D. Current developments in PI3K-based anticancer agents: Designing strategies, biological activity, selectivity, structure-activity correlation, and docking insight. Bioorg. Chem. 2024, 154, 108011. [Google Scholar] [CrossRef]
- Varkaris, A.; Fece de la Cruz, F.; Martin, E.E.; Norden, B.L.; Chevalier, N.; Kehlmann, A.M.; Leshchiner, I.; Barnes, H.; Ehnstrom, S.; Stavridi, A.M.; et al. Allosteric PI3Kalpha Inhibition Overcomes On-target Resistance to Orthosteric Inhibitors Mediated by Secondary PIK3CA Mutations. Cancer Discov. 2024, 14, 227–239. [Google Scholar] [CrossRef] [PubMed]
Isoform | Domain /Motif | Location /Length | Secondary Structure | Similarity (RMSD) | Function(s) | PDB /UniProt |
---|---|---|---|---|---|---|
p110α | ABD | 16–105 90aa | Globular, 1 α-helix/5 β-sheets | 1.9Å to β, 1.3Å to δ | Forming ABD–iSH2 interfaces to stabilize complexes; Binding to the KD | 4L1B, human P42336 |
RBD | 187–289 103aa | α/β-fold structures, 3 1 α-helix/4 β-sheets | 5.4Å to β, 3.9Å to δ | Binding to the Switch domains in RAS family proteins or other small GTPase | ||
C2 | 330–487 158aa | β-sheets/loops, 8 β-sheets | 6.6Å to β, 3.6Å to δ | Forming C2/KD–iSH2 interfaces to stabilize complexes and facilitate membrane translocation | ||
HD | 517–694 178aa | 10 α-helices | 2.7Å to β, 2.6Å to δ | Binding C2/KD and nSH2 to mask kinase activity | ||
KD | 765–1051 287aa | N-lobe/hinge/C-lobe, 9 α-helices/8 β-sheets | 4.1Å to β, 3.9Å to δ | Accommodating ATP and PIP2 to catalyze phosphate groups transferring | ||
ATP-binding | 798–807/833–841, 19aa | KD β3/β4 β-sheets | 0.7Å to β, 0.7Å to δ | Binding ATP | ||
CA-loop | 912–920/931–957, 36aa | KD’s linker between α4 and β7 or β8 and α5 | 10.6Å to β, 4.7Å to δ | Kinase catalytic center transferring phosphate groups from ATP to PIP2 | ||
p110β | ABD | 26–115 90aa | Globular, 1 α-helix/5 β-sheets | 1.9Å to α, 1.6Å to δ | Forming ABD–iSH2 interfaces to stabilize complexes; Binding to the KD | 2Y3A, murine P42338 |
RBD | 194–285 102 aa | α/β-fold structures, 3 α-helices/4 β-sheets | 5.4Å to α, 2.4Å to δ | Binding to the Switch domains in RAS family proteins or other small GTPase | ||
C2 | 327–496 170aa | β-sheets/loops, 8 β-sheets | 6.6Å to α, 11.1Å to δ | Forming C2/KD–iSH2 interfaces to stabilize complexes and facilitate membrane translocation | ||
HD | 524–701 178aa | 10 α-helices | 2.7Å to α, 2.8Å to δ | Binding C2/KD and nSH2 to mask kinase activity | ||
KD | 772–1053 282aa | N-lobe/hinge/C-lobe, 9 α-helices/8 β-sheets | 4.1Å to α, 1.5Å to δ | Accommodating ATP and PIP2 to catalyze phosphate groups transferring | ||
ATP-binding | 801–810/836–844, 19aa | KD β3/β4 β-sheets | 0.7Å to α, 0.3Å to δ | Binding ATP | ||
CA-loop | 916–924/935–961, 36aa | KD’s linker between α4 and β7 or β8 and α5 | 10.6Å to α, 5.5Å to δ | Kinase catalytic center transferring phosphate groups from ATP to PIP2 | ||
p110δ | ABD | 16–105 90aa | Globular, 1 α-helix/5 β-sheets | 1.3Å to α, 1.6Å to β | Forming ABD–iSH2 interfaces to stabilize complexes; Binding to the KD | 6G6W, human O00329 |
RBD | 187–277 91aa | α/β-fold structures, 3 α-helices/4 β-sheets | 3.9Å to α, 2.4Å to β | Binding to the Switch domains in RAS family proteins or other small GTPase | ||
C2 | 319–476 158aa | β-sheets/loops, 8 β-sheets | 3.6Å to α, 11.1Å to β | Forming C2/KD–iSH2 interfaces to stabilize complexes and facilitate membrane translocation | ||
HD | 497–674 178aa | 10 α-helices | 2.6Å to α, 2.8Å to β | Binding C2/KD and nSH2 to mask kinase activity | ||
KD | 745–1027 283aa | N-lobe/hinge/C-lobe, 9 α-helices/8 β-sheets | 3.9Å to α, 1.5Å to β | Accommodating ATP and PIP2 to catalyze phosphate groups transferring | ||
ATP-binding | 774–783/809–817, 19aa | KD β3/β4 β-sheets | 0.7Å to α, 0.3Å to β | Binding ATP | ||
CA-loop | 890–898/909–935, 36aa | KD’s linker between α4 and β7 or β8 and α5 | 4.7Å to α, 5.5Å to β | Kinase catalytic center transferring phosphate groups from ATP to PIP2 | ||
p110γ | ABD | 34–141 108aa | 3 α-helices/5 β-sheets | 4.5Å to IA | Binding to the RBD–C2 linker; Not binding to the adapter | 7MeZ, human P48736 |
RBD | 217–309 93aa | α/β-fold structures, 2 α-helices/5 β-sheets | 4.8Å to IA | Binding to the Switch domains in RAS family proteins or other small GTPases. | ||
C2 | 357–521 165aa | β-sheets/loops, 8 β-sheets | 8.8Å to IA | Binding to the PBD domain of adaptor to stabilize complexes | ||
HD | 541–723 183aa | 10 α-helices | 2.7Å to IA | Binding to C2/KD to stabilize complexes | ||
KD | 797–1080 284aa | N-lobe/hinge/C-lobe, 10 α-helices/8 β-sheets | 2.9Å to IA | Accommodating ATP and PIP2 to catalyze phosphate groups transferring | ||
ATP-binding | 829–838/864–872, 19aa | KD β3/β4 β-sheets | 0.7Å to IA | Binding ATP | ||
CA-loop | 943–951/962–988, 36aa | KD’s linker between α4 and β7 or β8 and α5 | 8.1Å to IA | Kinase catalytic center transferring phosphate groups from ATP to PIP2 | ||
p85α p55α p50α | SH3 | 3–79, 77aa | 1 α-helix/5 β-sheets | 0.5Å to β | Binding to ligands | 1PHT(SH3);1PBW(BH);7RNS(nSH2);2V1Y(iSH2);1H9O(cSH2), human P27986 |
BH | 113–301, 189aa | 10 α-helices | 8.2Å to β | Binding to GTPases | ||
nSH2 * | 333–428, 96aa | Globular, 2 α-helices/6 β-sheets | 0.2Å to β/δ | Binding to RTKs’ pYXXM for membrane translocation; Binding to HD/KD to mask kinase activity | ||
iSH2 | 429–623, 195aa | Rod-like structure, 4 α-helices | 7.8Å to β/δ | Forming iSH2-C2/KD interface to stabilize complexes | ||
cSH2 | 624–718, 95aa | Globular, 2 α-helices/6 β-sheets | 0.2Å to β/δ | Binding to RTKs’ pYXXM for membrane translocation; Masking kinase activity | ||
p85β | SH3 | 4–80, 77aa | 1 α-helix/5 β-sheets | 0.5Å to α | Binding to ligands | 3O5Z(SH3);7RNU(nSH2);3MTT(iSH2), human O00459 |
BH | 109–295, 187aa | 10 α-helices | 8.2Å to α | Binding to GTPases | ||
nSH2 | 330–425, 96aa | Globular, 2 α-helices/6 β-sheets | 0.2Å to α/δ | Binding to RTKs’ pYXXM for membrane translocation; Binding to HD/KD to mask kinase activity | ||
iSH2 | 426–621, 195aa | Rod-like structure, 4 α-helices | 7.8Å to α/δ | Binding to RTKs’ pYXXM for membrane translocation; Forming iSH2-C2/KD interface to mask kinase activity | ||
cSH2 | 622–716, 95aa | Globular, 2 α-helices/6 β-sheets | 0.2Å to α/δ | Binding to RTKs’ pYXXM for membrane translocation; Masking kinase activity | ||
p55δ | SH3 | N/A | O92569 | |||
BH | N/A | |||||
nSH2 | 65–160, 96aa | Globular, 2 α-helices/6 β-sheets | 0.2Å to α/β | Binding to RTKs’ pYXXM for membrane translocation; Binding to HD/KD to mask kinase activity | ||
iSH2 | 161–357, 187aa | Rod-like structure, 4 α-helices | 7.8Å to α/β | Binding to RTKs’ pYXXM for membrane translocation; Forming iSH2-C2/KD interface to mask kinase activity | ||
cSH2 | 358–452, 95aa | Globular, 2 α-helices/6 β-sheets | 0.2Å to α/β | Binding to RTKs’ pYXXM for membrane translocation; Masking kinase activity | ||
p101 | PBD | 25–101, 77aa | Helical solenoid, 4 α-helices | 5.7Å to p84 | Binding to p110γ’s C2 | 7MEZ, human Q8WYR1 |
GBD | 653–753, 101aa | α/β sandwich, 3 α-helices/6 β-sheets | 19.2Å to p84 | Binding to p110γ’s C2 and Gβγ | ||
p84 | PBD | 22–94, 73aa | Helical solenoid, 4 α-helices | 5.7Å to p101 | Binding to p110γ’s C2 | Q5UE93 |
GBD | 520–613, 94aa | α/β sandwich, 3 α-helices/6 β-sheets | 19.2Å to p101 | Binding to p110γ’s C2 and Gβγ |
Isoform | Drug | Combined Interventions * | Types of Cancer ** | Trial Number |
---|---|---|---|---|
p110α | Alpelisib | None | Advanced *** BC, NSCLC, and GIC | NCT04591431 |
Taselisib | Tumors with mPIK3CA | NCT02465060 | ||
TOS-358 | HNSCC, UC, EMC, or HR+/HER2– BC | NCT05683418 | ||
p110α | Alpelisib | AI: anastrozole, letrozole, or exemestane; SERD: fulvestrant, or elacestrant; | Advanced BC | NCT05826964 |
AI: letrozole | HR+ BC | NCT01791478 | ||
AI: letrozole; CDK4/6i: LEE011 | HR+/HER2– advanced BC | NCT01872260 | ||
Chemo: nab-paclitaxel | TNBC with mPIK3CA or mPTEN | NCT04216472 | ||
Chemo: capecitabine | Advanced CRC with mPIK3CA | NCT04753203 | ||
ERA: OP-1250 | HR+/HER2– advanced BC | NCT05508906 | ||
FTasei: tipifarnib | HNSCC | NCT04997902 | ||
HER2 AB: trastuzumab or pertuzumab | HER2+ advanced BC with mPIK3CA | NCT04208178 | ||
Ketogenic diet; low carbohydrate diet; SERD: fulvestrant; SGLT2i: canagliflozin | Advanced BC with mPIK3CA | NCT05090358 | ||
MEKi: trametinib | Meningioma | NCT03631953 | ||
MetAP2i: evexomostat; SERD: fulvestrant | HR+/HER2– BC with mPIK3CA | NCT05455619 | ||
PARPi: olaparib (AZD2281) | Advanced solid tumors | NCT05564377 | ||
SERD: fulvestrant | Advanced BC with mPIK3CA | NCT04967248 | ||
HR+/HER2– BC with mPIK3CA | NCT05022342 | |||
HR+/HER2– advanced BC | NCT05501886 | |||
HR+/HER2– BC with mPIK3CA | NCT05631795 | |||
Trop-2 AB: sacituzumab govitecan | HER– advanced BC | NCT05143229 | ||
HS-10352 | SERD: fulvestrant | HR+/HER2– BC with mPIK3CA | NCT05504213 | |
Izorlisib | Chemo: eribulin | HR+/HER2– BC with mPIK3CA | NCT05810870 | |
Serabelisib | Chemo: nab-paclitaxel; Insulin suppressing diet | Advanced solid tumors with mPIK3CA or mPTEN | NCT05300048 | |
Mutant p110α | Inavolisib | None | Advanced cancers with mPIK3CA | NCT04551521 |
Early-stage BC | NCT05332561 | |||
Mutant p110α | Inavolisib | SERD: giredestrant | HR+/HER2– early-stage BC | NCT05708235 |
Chemo: capecitabine | TNBC | NCT04849364 | ||
HER2 therapy: PHESGO and endocrine therapy | HR+/HER2+ early-stage BC with mPIK3CA | NCT05306041 | ||
RLY-2608 | CDK4/6i: ribociclib and palbociclib; SERD: fulvestrant | HR+/HER2– BC with mPIK3CA | NCT05216432 | |
STX-478 | Advanced solid tumors. | NCT05768139 | ||
p110α-H1047R | LOXO-783 | AI: anastrozole, exemestane, or letrozole; CDK4/6i: abemaciclib; Chemo: paclitaxel; SERD: fulvestrant or imlunestrant | BC and other cancers with PIK3CA-H1047R | NCT05307705 |
OKI-219 | HER2 AB: trastuzumab; SERD: fulvestrant; | Advanced cancer and advanced BC | NCT06239467 | |
p110β | GSK2636771 | None | Tumors with mPTEN | NCT04439149 |
Tumors with PTEN loss | NCT04439188 | |||
p110β | AZD8186 | Chemo: docetaxel | Tumors with mPTEN or mPIK3CB | NCT03218826 |
GSK2636771 | MEKi: trametinib | Tumors with mPTEN and mBRAF | NCT02465060 | |
GSK2636771 | ICI: pembrolizumab | Advanced melanoma with mPTEN | NCT03131908 | |
p110δ | Linperlisib | None | Large granular TLL | NCT06224257 |
iBCL | NCT06343935 | |||
Lymphoma and leukemia | NCT06530550 | |||
p110δ | IBI376 | CD20 AB: pituximab | iNHL | NCT05073250 |
Linperlisib | CD20 AB: obinutuzumab; BCL2i: venetoclax | MCL | NCT06324994 | |
EZH2i: SHR2554 | PTCL | NCT06712173 | ||
HDACi: chidamide | CTCL | NCT06037239 | ||
PTCL | NCT06083701 | |||
ICI: camrelizumab; Chemo: pegaspargase; Steroid: dexamethasone | Advanced NKTL | NCT06376721 | ||
Parsaclisib | HDACi: chidamide | PTCL | NCT05083208 | |
HDACi: romidepsin | Advanced TCL | NCT04774068 | ||
JAKi: itacitinib or ruxolitinib; BTKi: ibrutinib | B-cell malignancies | NCT04509700 | ||
Roginolisib | BCL2i: venetoclax; CD20 AB: rituximab | CLL | NCT06644183 | |
Umbralisib | ICI: pembrolizumab | CLL and B-cell NHL | NCT03283137 | |
p110γ | Eganelisib | None | Advanced HNSCC | NCT03795610 |
p110γ | Eganelisib | ICI: atezolizumab; Chemo: nab-paclitaxel; VEGF AB: bevacizumab | TNBC and RCC | NCT03961698 |
p110α/δ | Copanlisib | None | Tumors with mPIK3CA or mPTEN | NCT02465060 |
Advanced tumors with mPIK3CA | NCT05490771 | |||
Advanced tumors with mPTEN | NCT06400238 | |||
Solid tumors with PTEN loss | NCT06360588 | |||
p110α/δ | Copanlisib | Ketogenic diet | FL or EMC with PI3K mutations | NCT04750941 |
Chemo: eribulin mesylate | Advanced BC and TNBC | NCT04345913 | ||
ICI: durvalumab; PARPi: olaparib | Advanced solid tumors | NCT03842228 | ||
BTKi: ibrutinib | Advanced PCNSL | NCT03581942 | ||
CD20 AB: obinutuzumab | FL | NCT05387616 | ||
CD20 AB: rituximab | iNHL | NCT02367040 | ||
MZL | NCT03474744 | |||
FL | NCT03789240 | |||
CDK4/6i: abemaciclib; SERD: fulvestrant | Advanced BC | NCT03939897 | ||
ICI: avelumab | Advanced UC | NCT05687721 | ||
ICI: ipilimumab or nivolumab | Tumors with mPIK3CA and mPTEN | NCT04317105 | ||
Advanced solid tumors and lymphoma | NCT03502733 | |||
ICI: nivolumab | iNHL | NCT03884998 | ||
PARPi: niraparib (MK-4827) | Advanced solid tumors | NCT03586661 | ||
SERD: fulvestrant | HR+ EMC or OC | NCT05082025 | ||
p110δ/γ | Duvelisib | None | Lymphoma; Leukemia | NCT06530550 |
Tenalisib | TNBC | NCT06189209 | ||
p110δ/γ | Duvelisib | ATRi: ceralasertib | Advanced solid tumors | NCT05514132 |
BCL2i: venetoclax | CLL or SLL | NCT03534323 | ||
CAR-T | NHL and ALL | NCT05044039 | ||
CAR-T: tisagenlecleucel | Advanced DLBCL | NCT04890236 | ||
Chemo: docetaxel | HNSCC | NCT05057247 | ||
CD20 AB: rituximab; Chemo: fludarabine or cyclophosphamide | CLL | NCT02158091 | ||
Pan-PI3K | Paxalisib | None | Brain metastases with mutations in PI3K | NCT03994796 |
Samotolisib | Pediatric solid tumors and NHLs | NCT03155620 | ||
Solid tumors or NHL with mutations in PI3K pathway | NCT03213678 | |||
Pan-PI3K | TL117 | Chemo: Paclitaxel | Advanced HNSCC | NCT04843098 |
Drug | Synonyms | Target | Molecular Formula | 2D Structure * | PubChem CID |
---|---|---|---|---|---|
Alpelisib | BYL719, BYL-719, NVP-BYL719, Piqray, Vijoice | p110α | C19H22F3N5O2S | 56649450 | |
AZD8186 | AZD-8186, AZD 8186 | p110β | C24H25F2N3O4 | 52913813 | |
Copanlisib | BAY 80-6946, BAY-80-6946, Aliqopa | p110α/δ | C23H28N8O4 | 135565596 | |
Duvelisib | IPI-145, IPI145, INK-1197, INK-1147 | p110δ/γ | C22H17ClN6O | 50905713 | |
Eganelisib | IPI-549, IPI549, pi3k-gamma inhibitor IPI-549 | p110γ | C30H24N8O2 | 91933883 | |
GSK2636771 | GSK-2636771 | p110β | C22H22F3N3O3 | 56949517 | |
IBI376 | Parsaclisib, Compound 20 | p110δ | C20H22ClFN6O2 | 89420683 | |
Inavolisib | GDC0077, GDC-0077, RG6114, RG-6114 | Mutant p110α | C18H19F2N5O4 | 124173720 | |
Izorlisib | MEN1611, CH5132799, CH-5132799, PA-799 | p110α | C15H19N7O3S | 49784945 | |
Linperlisib | Pi3kdelta-IN-2, PI3K(delta)-IN-2, PI3Kd-IN-2, PI3K.DELTA.-IN-2 | p110δ | C28H37FN6O5S | 91754520 | |
Parsaclisib | INCB050465, INCB-050465, OS7097575K | p110δ | C20H22ClFN6O2 | 86677874 | |
Paxalisib | GDC-0084, GDC0084, RG-7666, RG 7666 | Pan-PI3K | C18H22N8O2 | 57384863 | |
RLY-2608 | RLY2608, EX-A8255, GTPL13065 | Mutant p110α | C29H14ClF5N6O2 | 166822065 | |
Roginolisib | IOA-244. IOA244, MSC-2360844 | p110δ | C26H27FN4O5S | 66580799 | |
Samotolisib | LY3023414, LY-3023414, GTPL8918 | Pan-PI3K | C23H26N4O3 | 57519748 | |
Serabelisib | MLN1117, MLN-1117, INK1117, INK-1117, TAK-117 | p110α | C19H17N5O3 | 70798655 | |
STX-478 | ZWE, STX478, EX-A7997 | Mutant p110α | C16H12F5N5O2 | 166532451 | |
Taselisib | GDC0032, RG7604, RG-7604 | p110α | C24H28N8O2 | 51001932 | |
Tenalisib | RP6530, RP-6530 | p110δ/γ | C23H18FN5O2 | 86291103 | |
Umbralisib | TGR-1202, TGR1202, RP5264, RP-5264 | p110δ | C31H24F3N5O3 | 72950888 | |
HS-10352 ** | N/A | p110α | N/A | N/A | N/A |
LOXO-783 ** | N/A | p110α-H1047R | N/A | N/A | N/A |
OKI-219 ** | N/A | p110α-H1047R | N/A | N/A | N/A |
TL117 ** | N/A | Pan-PI3K | N/A | N/A | N/A |
TOS-358 ** | N/A | p110α | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Z.; Beck, P.; Gabby, M.; Habte-Mariam, S.; Mitkos, K. Molecular Basis of Oncogenic PI3K Proteins. Cancers 2025, 17, 77. https://doi.org/10.3390/cancers17010077
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers. 2025; 17(1):77. https://doi.org/10.3390/cancers17010077
Chicago/Turabian StyleSheng, Zhi, Patrick Beck, Maegan Gabby, Semhar Habte-Mariam, and Katherine Mitkos. 2025. "Molecular Basis of Oncogenic PI3K Proteins" Cancers 17, no. 1: 77. https://doi.org/10.3390/cancers17010077
APA StyleSheng, Z., Beck, P., Gabby, M., Habte-Mariam, S., & Mitkos, K. (2025). Molecular Basis of Oncogenic PI3K Proteins. Cancers, 17(1), 77. https://doi.org/10.3390/cancers17010077