Isomerization of Hemicellulose Aldoses to Ketoses Catalyzed by Basic Anion Resins: Catalyst Screening and Stability Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isomerization of Glucose in the Presence of Different Anion Resins
2.1.1. Influence of the Temperature
2.1.2. Kinetic Modeling
2.2. Isomerization of Hemicellulose Sugar Feedstock
2.2.1. Catalyst Versatility—Isomerization of C5 and C6 Aldoses
2.2.2. Isomerization of Sugar Mixtures
2.3. Catalyst Reusability
3. Experimental
3.1. Materials and Methods
3.2. Catalyst Characterization
3.3. Catalytic Activity
3.4. Catalyst Reusability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tayyab, M.; Noman, A.; Islam, W.; Waheed, S.; Arafat, Y.; Ali, F.; Zaynab, M.; Lin, S.; Zhang, H.; Lin, W. Bioethanol Production from Lignocellulosic Biomass by Environment-Friendly Pretreatment Methods: A Review. Appl. Ecol. Environ. Res. 2018, 16, 225–249. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Venkatkarthick, R.; Jayashree, S.; Chuetor, S.; Dharmaraj, S.; Kumar, G.; Chen, W.H.; Ngamcharussrivichai, C. Recent Advances in Lignocellulosic Biomass for Biofuels and Value-Added Bioproducts—A Critical Review. Bioresour. Technol. 2022, 344, 126195. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.U.; Qaisar, K.; Nawaz, A.; Akram, F.; Mukhtar, H.; Zohu, X.; Xu, Y.; Mumtaz, M.W.; Rashid, U.; Ghani, W.A.W.A.K.; et al. Advances in Valorization of Lignocellulosic Biomass towards Energy Generation. Catalysts 2021, 11, 309. [Google Scholar] [CrossRef]
- Velvizhi, G.; Goswami, C.; Shetti, N.P.; Ahmad, E.; Kishore Pant, K.; Aminabhavi, T.M. Valorisation of Lignocellulosic Biomass to Value-Added Products: Paving the Pathway towards Low-Carbon Footprint. Fuel 2022, 313, 122678. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Gokhale, D.V. Lignocellulosic Biomass: Hurdles and Challenges in Its Valorization. Appl. Microbiol. Biotechnol. 2019, 103, 9305–9320. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.J.; Huang, H.; Nie, Z.K.; Qu, L.; Xu, Q.; Tsao, G.T. Fuels and Chemicals from Hemicellulose Sugars. Adv. Biochem. Eng. Biotechnol. 2012, 128, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Hoydonckx, H.E.; Van Rhijn, W.M.; Van Rhijn, W.; De Vos, D.E.; Jacobs, P.A. Furfural and Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Weinheim, Germany, 2007. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Saravanamurugan, S.; Riisager, A. Glucose Isomerization by Enzymes and Chemo-Catalysts: Status and Current Advances. ACS Catal. 2017, 7, 3010–3029. [Google Scholar] [CrossRef]
- Demerdash, M.; Attia, R.M. Equilibrium Kinetics of D-Glucose to D-Fructose Isomerization Catalyzed by Glucose Isomerase Enzyme from Streptomyces Phaeochromogenus. Zentralbl. Mikrobiol. 1992, 147, 297–303. [Google Scholar] [CrossRef]
- Takasaki, Y. Kinetic and Equilibrium Studies on D-Mannose-d-Fructose Isomerization Catalyzed by Mannose Isomerase from Streptomyces Aerocolorigenes. Agric. Biol. Chem. 1967, 31, 435–440. [Google Scholar] [CrossRef]
- Spencer, K.C.; Boisrobert, C.E.; Fisher, S.A.; Rojak, P.A.; Sabatini, K.S. Method of Producing High Fructose Corn Syrup from Glucose Using Noble Gases. U.S. Patent US5512464A, 25 December 1992. [Google Scholar]
- Paniagua, M.; Saravanamurugan, S.; Melian-Rodriguez, M.; Melero, J.A.; Riisager, A. Xylose Isomerization with Zeolites in a Two-Step Alcohol-Water Process. ChemSusChem 2015, 8, 1088–1094. [Google Scholar] [CrossRef]
- Drabo, P.; Delidovich, I. Catalytic Isomerization of Galactose into Tagatose in the Presence of Bases and Lewis Acids. Catal. Commun. 2018, 107, 24–28. [Google Scholar] [CrossRef]
- Choudhary, V.; Pinar, A.B.; Sandler, S.I.; Vlachos, D.G.; Lobo, R.F. Xylose Isomerization to Xylulose and Its Dehydration to Furfural in Aqueous Media. ACS Catal. 2011, 1, 1724–1728. [Google Scholar] [CrossRef]
- Delidovich, I.; Palkovits, R. Catalytic Isomerization of Biomass-Derived Aldoses: A Review. ChemSusChem 2016, 9, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Moliner, M.; Román-Leshkov, Y.; Davis, M.E. Tin-Containing Zeolites Are Highly Active Catalysts for the Isomerization of Glucose in Water. Proc. Natl. Acad. Sci. USA 2010, 107, 6164–6168. [Google Scholar] [CrossRef] [PubMed]
- Román-Leshkov, Y.; Moliner, M.; Labinger, J.A.; Davis, M.E. Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angew. Chem. Int. Ed. 2010, 49, 8954–8957. [Google Scholar] [CrossRef] [PubMed]
- Delidovich, I. Recent Progress in Base-Catalyzed Isomerization of D-Glucose into D-Fructose. Curr. Opin. Green Sustain. Chem. 2021, 27, 100414. [Google Scholar] [CrossRef]
- Wolfromwi, M.L.; Lee Lewis, W. The Reactivity of the Methylated Sugars. II. The Action of Dilute Alkali on Tetramethyl Glucose. J. Am. Chem. Soc. 1928, 50, 837–854. [Google Scholar] [CrossRef]
- Carraher, J.M.; Fleitman, C.N.; Tessonnier, J.P. Kinetic and Mechanistic Study of Glucose Isomerization Using Homogeneous Organic Brønsted Base Catalysts in Water. ACS Catal. 2015, 5, 3162–3173. [Google Scholar] [CrossRef]
- Lobry De Bruyn, C.A. Action Des Alcalis DiIués Sur Ies Hydrates de Carbone I. Recl. Des Trav. Chim. Des Pays-Bas 1895, 14, 156–165. [Google Scholar] [CrossRef]
- Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 5246–5249. [Google Scholar] [CrossRef]
- Bermejo-Deval, R.; Gounder, R.; Davis, M.E. Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catal. 2012, 2, 2705–2713. [Google Scholar] [CrossRef]
- de Bruijn, J.M.; Kieboom, A.P.G.; van Bekkum, H. Alkaline Degradation of Monosaccharides V: Kinetics of the Alkaline Isomerization and Degradation of Monosaccharides. Recl. Des Trav. Chim. Des Pays-Bas 1987, 106, 35–43. [Google Scholar] [CrossRef]
- Mendicino, J.F. Effect of Borate on the Alkali-Catalyzed Isomerization of Sugars. J. Am. Chem. Soc. 1960, 82, 4975–4979. [Google Scholar] [CrossRef]
- Shaw, A.; Tsao, G.T. Isomerization of D-Glucose with Sodium Aluminate: Kinetics as a Function of Temperature. Carbohydr. Res 1978, 60, 376–382. [Google Scholar] [CrossRef]
- Ventura, M.; Mazarío, J.; Domine, M.E. Isomerization of Glucose-to-Fructose in Water over a Continuous Flow Reactor Using Ca−Al Mixed Oxide as Heterogeneous Catalyst. ChemCatChem 2022, 14, e202101229. [Google Scholar] [CrossRef]
- Mun, D.; Huynh, N.T.T.; Shin, S.; Kim, Y.J.; Kim, S.; Shul, Y.G.; Cho, J.K. Facile Isomerization of Glucose into Fructose Using Anion-Exchange Resins in Organic Solvents and Application to Direct Conversion of Glucose into Furan Compounds. Res. Chem. Intermed. 2017, 43, 5495–5506. [Google Scholar] [CrossRef]
- Lv, L.; Guo, X.; Bai, P.; Zhao, S. Isomerization of Glucose into Fructose and Mannose in Presence of Anion-Exchanged Resins. Asian J. Chem. 2015, 27, 2774–2778. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Salmi, T.; Holmbom, B.; Willför, S.; Murzin, D.Y. Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review. Chem. Rev. 2011, 111, 5638–5666. [Google Scholar] [CrossRef]
- Zhang, X.; Wilson, K.; Lee, A.F. Heterogeneously Catalyzed Hydrothermal Processing of C5-C6 Sugars. Chem. Rev. 2016, 116, 12328–12368. [Google Scholar] [CrossRef]
- Schouten, N.; van der Ham, L.G.J.; Euverink, G.J.W.; de Haan, A.B. Selection and Evaluation of Adsorbents for the Removal of Anionic Surfactants from Laundry Rinsing Water. Water Res. 2007, 41, 4233–4241. [Google Scholar] [CrossRef]
- Souzanchi, S.; Nazari, L.; Rao, K.T.V.; Yuan, Z.; Tan, Z.; Xu, C. Catalytic Isomerization of Glucose to Fructose Using Heterogeneous Solid Base Catalysts in a Continuous-Flow Tubular Reactor: Catalyst Screening Study. Catal. Today 2019, 319, 76–83. [Google Scholar] [CrossRef]
- Berbar, Y.; Amara, M.; Kerdjoudj, H. Anion Exchange Resin Applied to a Separation between Nitrate and Chloride Ions in the Presence of Aqueous Soluble Polyelectrolyte. Desalination 2008, 223, 238–242. [Google Scholar] [CrossRef]
- Inczedy, J. Thermoanalytical Investigation of Ion Exchange Resins. The Swelling Water of Anion Exchange Resins. J. Therm. Anal. 1978, 13, 257–261. [Google Scholar] [CrossRef]
- Beenackers, J.A.W.M.; Kuster, B.F.M.; Van Der Barn, H.S. Physical Properties of Anion Exchangers Used as a Catalyst in the Isomerization of Hexoses. Appl. Catal. 1985, 16, 75–87. [Google Scholar] [CrossRef]
- Bermejo-Deval, R.; Orazov, M.; Gounder, R.; Hwang, S.J.; Davis, M.E. Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catal. 2014, 4, 2288–2297. [Google Scholar] [CrossRef]
- Nguyen, H.; Nikolakis, V.; Vlachos, D.G. Mechanistic Insights into Lewis Acid Metal Salt-Catalyzed Glucose Chemistry in Aqueous Solution. ACS Catal. 2016, 6, 1497–1504. [Google Scholar] [CrossRef]
- Chethana, B.K.; Mushrif, S.H. Brønsted and Lewis Acid Sites of Sn-Beta Zeolite, in Combination with the Borate Salt, Catalyze the Epimerization of Glucose: A Density Functional Theory Study. J. Catal. 2015, 323, 158–164. [Google Scholar] [CrossRef]
- Langlois, D.P.; Larson, R.F. Interconversion of Sugars Using Anion Exchange Resins. U.S. Patent US2746889A, 22 May 1955. [Google Scholar]
- Tianshu, B.; Lixuan, Z.; Chunhong, W. The Synthesis of Thermostable, Strongly Basic Anion-Exchange Resins Using Cross-Linked Biguanide and Its Application in the Extraction of Sodium Copper Chlorophyllin. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1211, 123436. [Google Scholar] [CrossRef]
- Beenackers, J.A.W.M. The Kinetics of the Heterogeneous Alkaline Isomerization of Carbohydrates. Doctoral Thesis, Technische Hogeschool Eindhoven, Eindhoven, The Netherlands, 1980. [Google Scholar] [CrossRef]
- Delidovich, I. Toward Understanding Base-Catalyzed Isomerization of Saccharides. ACS Catal. 2023, 13, 2250–2267. [Google Scholar] [CrossRef]
- Wang, W.; Mittal, A.; Pilath, H.; Chen, X.; Tucker, M.P.; Johnson, D.K. Simultaneous Upgrading of Biomass-Derived Sugars to HMF/Furfural via Enzymatically Isomerized Ketose Intermediates. Biotechnol. Biofuels 2019, 12, 253. [Google Scholar] [CrossRef]
- Murzin, D.Y.; Murzina, E.V.; Aho, A.; Kazakova, M.A.; Selyutin, A.G.; Kubicka, D.; Kuznetsov, V.L.; Simakova, I.L. Aldose to Ketose Interconversion: Galactose and Arabinose Isomerization over Heterogeneous Catalysts. Catal. Sci. Technol. 2017, 7, 5321–5331. [Google Scholar] [CrossRef]
- Milasing, N.; Khuwijitjaru, P.; Adachi, S. Isomerization of Galactose to Tagatose Using Arginine as a Green Catalyst. Food Chem. 2023, 398, 133858. [Google Scholar] [CrossRef] [PubMed]
- Alonso, D.M.; Hakim, S.H.; Zhou, S.; Won, W.; Hosseinaei, O.; Tao, J.; Garcia-Negron, V.; Motagamwala, A.H.; Mellmer, M.A.; Huang, K.; et al. Increasing the Revenue from Lignocellulosic Biomass: Maximizing Feedstock Utilization. Sci. Adv. 2017, 3, 1603301. [Google Scholar] [CrossRef] [PubMed]
- Wawrzkiewicz, M.; Hubicki, Z. Removal of Tartrazine from Aqueous Solutions by Strongly Basic Polystyrene Anion Exchange Resins. J. Hazard. Mater. 2009, 164, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Abu, A.; Abdullah, N. Sorption and Thermodynamic Study of Nitrate Removal by Using Amberlite IRA 900 (AI900) Resin. Mater. Today Proc. 2020, 41, 102–108. [Google Scholar] [CrossRef]
- Drabo, P.; Fischer, M.; Emondts, M.; Hamm, J.; Engelke, M.; Simonis, M.; Qi, L.; Scott, S.L.; Palkovits, R.; Delidovich, I. Solvent Effects on Catalytic Activity and Selectivity in Amine-Catalyzed D-Fructose Isomerization. J. Catal. 2023, 418, 13–21. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
Resin | N Group | Matrix | ABET (1) (m2/g) | Vpore (1) (cm3/g) | Dpore (1) (Å) | N (2) (wt%) | N (2) (meq·g−1) | Size (3) (µm) |
---|---|---|---|---|---|---|---|---|
IRA-67 | tertiary amine | gel | <1.0 | <0.01 | - | 2.10 | 1.5 | 500–750 |
A-21 | tertiary amine | macroreticular | 24.8 | 0.05 | 220 | 7.86 | 5.6 | 550 |
IRA-900 | quaternary ammonium | macroreticular | 7.5 | 0.10 | 80 | 4.62 | 3.3 | 640–800 |
A-26 | quaternary ammonium | macroreticular | 26.2 | 0.05 | 288 | 3.32 | 2.4 | 560–700 |
Reaction/Component | K0 | ΔG (kJ·mol−1·K−1) | |
---|---|---|---|
Equilibrium | Glucose—Fructose | 3.52 × 10−1 | 3.48 |
Fructose—Mannose | 7.94 × 10−4 | 15.37 | |
Glucose—Mannose | 6.23 × 10−4 | 18.44 | |
Adsorption | Glucose | 1.61 × 10−3 | 10.01 |
Fructose | 5.49 × 10−3 | 8.52 | |
Mannose | 5.10 × 10−4 | 13.36 |
IRA-67 | A-21 | IRA-900 | A-26 | ||
---|---|---|---|---|---|
Activation Energy (J·kmol−1·K−1) | EaGF | 78.33 | 58.31 | 77.61 | 30.94 |
EaFM | 2.30 × 1014 | 140.80 | 1.22 × 1010 | 1414.69 | |
EaMG | 66.04 | 74.96 | 43.33 | 27.50 | |
EaFO | 4.84 × 10−4 | 1.08 × 10−4 | 0.14 | 1.14 × 10−5 |
Monosaccharide | Sugarcane Bagasse | White Birch | Eucalyptus | Scots Pine | |||||
---|---|---|---|---|---|---|---|---|---|
Ci (g/L) | Cf (g/L) | Ci (g/L) | Cf (g/L) | Ci (g/L) | Cf (g/L) | Ci (g/L) | Cf (g/L) | ||
Hexoses | Mannose | 0.2 | 0.0 | 2.7 | 1.9 | 3.4 | 1.9 | 46.5 | 29.4 |
Galactose | 3.0 | 1.5 | 9.7 | 7.7 | 9.7 | 7.8 | 9.1 | 7.5 | |
Glucose | - | 0.1 | - | 1.6 | - | 0.5 | - | 6.9 | |
Fructose | - | 0.1 | - | 0.9 | - | 0.9 | - | 9.6 | |
Tagatose | - | 1.2 | - | 1.6 | - | 1.5 | - | 1.3 | |
Pentoses | Xylose | 85.4 | 58.3 | 85.7 | 49.7 | 83.0 | 59.8 | 33.9 | 16.6 |
Arabinose | 9.6 | 3.5 | 1.4 | 0.1 | 4.3 | 1.2 | 9.0 | 3.5 | |
Xylulose | - | 13.3 | - | 13.1 | - | 12.7 | - | 4.8 | |
Ribulose | - | 3.5 | - | 0.8 | - | 1.9 | - | 3.0 | |
Total | 98.2 | 81.5 | 99.5 | 76.6 | 100.4 | 88.3 | 98.5 | 82.6 |
Monosaccharide | Sugar Concentration (g/L) | |||||
---|---|---|---|---|---|---|
Initial | Reuse 1 | Reuse 2 | Reuse 3 | Reuse 4 | ||
Hexoses | Mannose | 44.6 | 31.6 | 32.3 | 36.9 | 38.3 |
Galactose | 10.6 | 7.4 | 8.3 | 9.6 | 9.7 | |
Glucose | - | 2.0 | 1.6 | 0.0 | 0.0 | |
Fructose | - | 8.5 | 7.6 | 2.0 | 1.6 | |
Tagatose | - | 2.7 | 1.9 | 0.0 | 0.0 | |
Pentoses | Xylose | 39.4 | 26.2 | 27.9 | 26.5 | 31.3 |
Arabinose | 10.9 | 7.6 | 8.5 | 9.5 | 9.7 | |
Xylulose | - | 11.0 | 8.8 | 7.8 | 3.9 | |
Ribulose | - | 2.7 | 1.7 | 0.0 | 0.0 | |
Total | 105.5 | 99.5 | 98.1 | 92.3 | 94.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Tawil-Lucas, M.; Montaña, M.; Macias-Villasevil, M.; Moreno, J.; Iglesias, J. Isomerization of Hemicellulose Aldoses to Ketoses Catalyzed by Basic Anion Resins: Catalyst Screening and Stability Studies. Catalysts 2023, 13, 1301. https://doi.org/10.3390/catal13091301
El Tawil-Lucas M, Montaña M, Macias-Villasevil M, Moreno J, Iglesias J. Isomerization of Hemicellulose Aldoses to Ketoses Catalyzed by Basic Anion Resins: Catalyst Screening and Stability Studies. Catalysts. 2023; 13(9):1301. https://doi.org/10.3390/catal13091301
Chicago/Turabian StyleEl Tawil-Lucas, Miriam, Maia Montaña, Miguel Macias-Villasevil, Jovita Moreno, and Jose Iglesias. 2023. "Isomerization of Hemicellulose Aldoses to Ketoses Catalyzed by Basic Anion Resins: Catalyst Screening and Stability Studies" Catalysts 13, no. 9: 1301. https://doi.org/10.3390/catal13091301