Effect of Zirconia Polymorph on Vapor-Phase Ketonization of Propionic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterizations
2.1.1. Structure Identification
2.1.2. Surface Properties
2.2. Catalytic Performance
2.3. DRIFTS Study of Propionic Acid and 3-Pentanone Adsorption on the Surface of ZrO2
3. Experiments and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- George, S.I.; Huber, W.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar]
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sustain. Energ. Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.F.; Soares, O.S.G.P.; de Farias, A.M.D.; Pereira, M.F.R.; Fraga, M.A. Conversion of hemicellulose-derived pentoses over noble metal supported on 1D multiwalled carbon nanotubes. Appl. Catal. B Environ. 2018, 232, 101–107. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Li, Y. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Appl. Catal. A Gen. 2012, 411–412, 95–104. [Google Scholar] [CrossRef]
- Rachmady, W.; Vannice, M.A. Acetic acid reduction by H2 over supported Pt catalysts: A DRIFTS and TPD/TPR study. J. Catal. 2002, 207, 317–330. [Google Scholar] [CrossRef]
- Al-Auda, Z.; Al-Atabi, H.; Hohn, K.L. Metals on ZrO2: Catalysts for the aldol condensation of methyl ethyl ketone (MEK) to C8 ketones. Catalyst 2018, 8, 622. [Google Scholar] [CrossRef]
- Faba, L.; Díaz, E.; Ordóñez, S. Gas phase acetone self-condensation over unsupported and supported Mg–Zr mixed-oxides catalysts. Appl. Catal. B Environ. 2013, 142–143, 387–395. [Google Scholar] [CrossRef]
- Mekhemer, G.; Halawy, S.; Mohamed, M.; Zaki, M. Ketonization of acetic acid vapour over polycrystalline magnesia: In situ Fourier transform infrared spectroscopy and kinetic studies. J. Catal. 2005, 230, 109–122. [Google Scholar] [CrossRef]
- Bennett, J.A.; Parlett, C.M.A.; Isaacs, M.A.; Durndell, L.J.; Olivi, L.; Lee, A.F.; Wilson, K. Aetic acid ketonization over Fe2O3/SiO2 for pyrolysis bio-oil upgrading. ChemCatChem 2017, 9, 1648–1654. [Google Scholar] [CrossRef]
- Snell, R.W.; Shanks, B.H. CeMOx-promoted ketonization of biomass-derived carboxylic acids in the condensed phase. ACS Catal. 2014, 4, 512–518. [Google Scholar] [CrossRef]
- Nagashima, O.; Sato, S.; Takahashi, R.; Sodesawa, T. Ketonization of carboxylic acids over CeO2-based composite oxides. J. Mol. Catal. A Chem. 2005, 227, 231–239. [Google Scholar] [CrossRef]
- Pham, T.N.; Shi, D.; Sooknoi, T.; Resasco, D.E. Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. J. Catal. 2014, 314, 149–158. [Google Scholar] [CrossRef]
- Lu, F.; Jiang, B.; Wang, J.; Huang, Z.; Liao, Z.; Yang, Y. Insights into the improvement effect of Fe doping into the CeO2 catalyst for vapor phase ketonization of carboxylic acids. Mol. Catal. 2018, 444, 22–33. [Google Scholar] [CrossRef]
- Gumidyala, A.; Sooknoi, T.; Crossley, S. Selective ketonization of acetic acid over HZSM-5: The importance of acyl species and the influence of water. J. Catal. 2016, 340, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, S.; Wang, H.; Liu, X.; Han, J.; Ge, Q.; Zhu, X. Conversion of propionic acid and 3-pentanone to hydrocarbons on ZSM-5 catalysts: Reaction pathway and active site. Appl. Catal. A Gen. 2017, 545, 79–89. [Google Scholar] [CrossRef]
- Martinez, R. Ketonization of acetic acid on titania-functionalized silica monoliths. J. Catal. 2004, 222, 404–409. [Google Scholar] [CrossRef]
- Ignatchenko, A.V.; Kozliak, E.I. Distinguishing Enolic and Carbonyl Components in the Mechanism of Carboxylic Acid Ketonization on Monoclinic Zirconia. ACS Catal. 2012, 2, 1555–1562. [Google Scholar] [CrossRef]
- Cai, Q.; Lopez-Ruiz, J.A.; Cooper, A.R.; Wang, J.; Albrecht, K.O.; Mei, D. Aqueous-phase acetic acid ketonization over monoclinic zirconia. ACS Catal. 2017, 8, 488–502. [Google Scholar] [CrossRef]
- Snell, R.W.; Shanks, B.H. Insights into the ceria-catalyzed ketonization reaction for biofuels applications. ACS Catal. 2013, 3, 783–789. [Google Scholar] [CrossRef]
- Almutairi, S.T.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Ketonisation of acetic acid on metal oxides: Catalyst activity, stability and mechanistic insights. Appl. Catal. A Gen. 2018, 565, 135–145. [Google Scholar] [CrossRef]
- Liu, C.; Karim, A.M.; Lebarbier, V.M.; Mei, D.; Wang, Y. Vapor phase ketonization of acetic acid on ceria based metal oxides. Top. Catal. 2013, 56, 1782–1789. [Google Scholar] [CrossRef]
- Kim, K.S.; Barteau, M.A. Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2 (001) single-crystal surfaces. J. Catal. 1990, 125, 353–375. [Google Scholar] [CrossRef]
- Stubenrauch, J.; Brosha, E.; Vohs, J.M. Reaction of carboxylic acids on CeO2 (111) and CeO2 (100). Catal. Today 1996, 28, 431–441. [Google Scholar] [CrossRef]
- Wang, S.; Iglesia, E. Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. J. Catal. 2017, 345, 183–206. [Google Scholar] [CrossRef]
- Wang, S.; Iglesia, E. Experimental and theoretical evidence for the reactivity of bound intermediates in ketonization of carboxylic acids and consequences of acid–base properties of oxide catalysts. J. Phys. Chem. C 2017, 121, 18030–18046. [Google Scholar] [CrossRef]
- Snell, R.W.; Hakim, S.H.; Dumesic, J.A.; Shanks, B.H. Catalysis with ceria nanocrystals: Bio-oil model compound ketonization, Appl. Catal. A Gen. 2013, 464–465, 288–295. [Google Scholar] [CrossRef]
- Wu, K.; Yang, M.; Pu, W.; Wu, Y.; Shi, Y.; Hu, H. Carbon promoted ZrO2 catalysts for aqueous-phase ketonization of acetic acid. ACS Sustain. Chem. Eng. 2017, 5, 3509–3516. [Google Scholar] [CrossRef]
- Wu, K.; Yang, M.; Chen, Y.; Pu, W.; Hu, H. Aqueous-phase ketonization of acetic acid over Zr/Mn mixed oxides. AICHE J. 2017, 63, 2958–2967. [Google Scholar] [CrossRef]
- Lopez-Ruiz, J.A.; Cooper, A.R.; Li, G.; Albrecht, K.O. Enhanced hydrothermal stability and catalytic activity of LaxZryOz mixed oxides for the ketonization of acetic acid in the aqueous condensed phase. ACS Catal. 2017, 7, 6400–6412. [Google Scholar] [CrossRef]
- Parida, K.; Mishra, H.K. Catalytic ketonisation of acetic acid over modified zirconia 1 effect of alkali-metal cations as promoter. J. Mol. Catal. A Chem 1999, 139, 73–80. [Google Scholar] [CrossRef]
- Pulido, A.; Oliver-Tomas, B.; Renz, M.; Corma, A. Ketonic decarboxylation reaction mechanism: A combined experimental and DFT study. ChemSusChem 2013, 6, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Ignatchenko, A.V.; DeRaddo, J.S.; Marino, V.J.; Mercado, A. Cross-selectivity in the catalytic ketonization of carboxylic acids. Appl. Catal. A Gen. 2015, 498, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Gaertner, C.A.; Serrano-Ruiz, J.C.; Braden, D.J.; Dumesic, J.A. Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J. Catal. 2009, 266, 71–78. [Google Scholar] [CrossRef]
- Tosoni, S.; Pacchioni, G. Acetic acid ketonization on tetragonal zirconia: Role of surface reduction. J. Catal. 2016, 344, 465–473. [Google Scholar] [CrossRef]
- Shutilov, A.A.; Simonov, M.N.; Zaytseva, Y.A.; Zenkovets, G.A.; Simakova, I.L. Phase composition and catalytic properties of ZrO2 and CeO2-ZrO2 in the ketonization of pentanoic acid to 5-nonanone. Kinet. Catal. 2013, 54, 184–192. [Google Scholar] [CrossRef]
- Ding, S.; Wang, H.; Han, J.; Zhu, X.; Ge, Q. Ketonization of propionic acid to 3-pentanone over CexZr1–xO2 catalysts: The importance of acid–base balance. Ind. Eng. Chem. Res. 2018, 57, 17086–17096. [Google Scholar] [CrossRef]
- Baylon, R.A.L.; Sun, J.; Kovarik, L.; Engelhard, M.; Li, H.; Winkelman, A.D.; Wang, Y. Structural identification of ZnxZryOz catalysts for cascade aldolization and self-deoxygenation reactions. Appl. Catal. B Environ. 2018, 234, 337–346. [Google Scholar] [CrossRef]
- Albuquerque, E.M.; Borges, L.E.P.; Fraga, M.A.; Sievers, C. Realtionship between acid-base properties and the activity of ZrO2-based catalysts for the cannizzaro reaction of pyruvaldehyde to lactic acid. ChemCatChem 2017, 9, 2675–2683. [Google Scholar] [CrossRef]
- Rhodes, M.D.; Bell, A.T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts Part I. steady-state studies. J. Catal. 2005, 233, 198–209. [Google Scholar] [CrossRef]
- Nelson, A.E.; Schulz, K.H. Surface chemistry and microstructural analysis of CexZr1−xO2−y model catalyst surfaces. Appl. Surf. Sci. 2003, 210, 206–221. [Google Scholar] [CrossRef]
- Silva, L.P.C.; Terra, L.E.; Coutinho, A.C.S.L.S.; Passos, F.B. Sour water-gas shift reaction over Pt/CeZrO2 catalysts. J. Catal. 2016, 341, 1–12. [Google Scholar] [CrossRef]
- Zaki, M.I.; Hasan, M.A.; Al-Sagheer, F.A.; Pasupulety, L. In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf. A Physicochem. Eng. Asp. 2001, 190, 261–274. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, K.; Gao, F.; Wang, C.; Liu, J.; Peden, C.H.F.; Wang, Y. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. J. Am. Chem. Soc. 2011, 133, 11096–11099. [Google Scholar] [CrossRef] [PubMed]
- Prymak, I.; Kalevaru, V.N.; Wohlrab, S.; Martin, A. Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce-Zr-O catalysts. Catal. Sci. Technol. 2015, 5, 2322–2331. [Google Scholar] [CrossRef]
- Hasan, M.A.; Zaki, M.I.; Pasupulety, L. Oxide-catalyzed conversion of acetic acid into acetone: An FTIR spectroscopic investigation. Appl. Catal. A Gen. 2003, 243, 81–92. [Google Scholar] [CrossRef]
- Foraita, S.; Fulton, J.L.; Chase, Z.A.; Vjunov, A.; Xu, P.; Barath, E.; Camaioni, D.M.; Zhao, C.; Lercher, J.A. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2. Chem. Eur. J. 2015, 21, 2423–2434. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Domen, K.; Maruya, K.I.; Onishi, T. Spectroscopic identification of adsorbed species derived from adsorption and decomposition of formic acid, methanol, and formaldehyde on cerium oxide. J. Catal. 1990, 125, 445–455. [Google Scholar] [CrossRef]
- Pei, Z.-F.; Ponec, V. On the intermediates of the acetic acid reactions on oxides: An IR study. Appl. Surf. Sci. 1996, 103, 171–182. [Google Scholar] [CrossRef]
- Pokrovski, K.; Jung, K.T.; Bell, A.T. Investigation of CO and CO2 adsorption on tetragonal and monoclinic Zirconia. Langmuir 2001, 17, 4297–4303. [Google Scholar] [CrossRef]
- Zaki, M.I.; Hasan, M.A.; Pasupulety, L. Surface Reactions of acetone on Al2O3, TiO2, ZrO2 and CeO2: IR Spectroscopic assessment of impacts of the surface acid-base properties. Langmuir 2001, 17, 768–774. [Google Scholar] [CrossRef]
- Li, W.; Huang, H.; Li, H.; Zhang, W.; Liu, H. Facile synthesis of monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation. Langmuir 2008, 24, 8358–8366. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Surface Area (m2/g) | Pore Volume (cm3/g) | Lattice Spacing a (nm) | Crystallite Size a (nm) |
---|---|---|---|---|
m-ZrO2 | 103 | 0.307 | 0.3164 | 9.5 |
t-ZrO2 | 127 | 0.160 | 0.2957 | 8.4 |
Catalysts | Acid Site a (μmol/m2) | Base Site b (μmol/m2) | |||||
---|---|---|---|---|---|---|---|
Total | Weak | Medium | Total | Weak | Medium | Strong | |
m-ZrO2 | 2.21 | 0.79 | 1.42 | 1.55 | 0.49 | 1.03 | 0.02 |
t-ZrO2 | 1.89 | 0.74 | 1.15 | 1.45 | 0.61 | 0.81 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Zhao, J.; Yu, Q. Effect of Zirconia Polymorph on Vapor-Phase Ketonization of Propionic Acid. Catalysts 2019, 9, 768. https://doi.org/10.3390/catal9090768
Ding S, Zhao J, Yu Q. Effect of Zirconia Polymorph on Vapor-Phase Ketonization of Propionic Acid. Catalysts. 2019; 9(9):768. https://doi.org/10.3390/catal9090768
Chicago/Turabian StyleDing, Shuang, Jiankang Zhao, and Qiang Yu. 2019. "Effect of Zirconia Polymorph on Vapor-Phase Ketonization of Propionic Acid" Catalysts 9, no. 9: 768. https://doi.org/10.3390/catal9090768