Audiological and Vestibular Follow-Up for Children with Congenital Cytomegalovirus Infection: From Current Limitations to Future Directions
Abstract
:1. Introduction
2. Audiological Follow-Up
2.1. Current Audiological Follow-Up Approaches for Children with Congenital Cytomegalovirus Infection
2.2. Limitations of the Current Audiological Follow-Up Approaches for Children with Congenital Cytomegalovirus Infection
2.3. Future Directions of Audiological Follow-Up Approaches for Children with Congenital Cytomegalovirus Infection
2.4. Proposal for a New Targeted Audiological Follow-Up for Children with Congenital Cytomegalovirus Infection
- -
- Children whose mother was infected in the third trimester (no risk): no regular audiological follow-up is needed. However, immediate hearing evaluations are recommended if SNHL is suspected by parents and the primary care pediatrician, or in case of speech-language delay.
- -
- Children whose mother was infected in the second trimester (low risk): annual audiological assessments using TEOAE and age-appropriate behavioral audiometry until 5 years of age.
- -
- Children with negative amniocentesis (low risk): annual audiological assessments using TEOAE and age-appropriate behavioral audiometry until 5 years of age.
- -
- Children whose mother was infected in the first trimester (high risk): biannual audiological assessments using threshold ABR and age-appropriate behavioral audiometry for the first 3 years of life, and then annual audiological assessments using TEOAE and age-appropriate behavioral audiometry from 3 to 5 years of age.
- -
- Children with positive amniocentesis (high risk): biannual audiological assessments using threshold ABR and age-appropriate behavioral audiometry for the first 3 years of life, and then annual audiological assessments using TEOAE and age-appropriate behavioral audiometry from 3 to 5 years of age.
- -
- Children treated with valganciclovir for 6 months started within the first month of life: audiological assessments using threshold ABR immediately after the 6-month treatment. Subsequently, if a normal threshold is found, audiological follow-up using TEOAE and age-appropriate behavioral audiometry at the same frequency as the program based on previous risk factors (trimester of maternal infection and amniocentesis results).
3. Vestibular Follow-Up
3.1. Current Vestibular Assessment Approaches for Children with Congenital Cytomegalovirus Infection
3.2. Proposal for a New Targeted Vestibular Follow-Up for Children with Congenital Cytomegalovirus Infection
- -
- Children whose mother was infected in the third trimester (no risk): no regular vestibular follow-up is needed. However, immediate vestibular evaluations are recommended if vestibular loss is suspected by parents and the primary care pediatrician, or in case of abnormal motor development.
- -
- Children whose mother was infected in the second trimester, with negative amniocentesis, normal hearing and no pathological lesions on brain MRI: annual vestibular assessments using cVEMPs and v-HIT of the horizontal canals until the age of 5 years, including oVEMPs and v-HIT of the vertical canals at least once after the third year of age.
- -
- Children whose mother was infected in the first trimester and/or with positive amniocentesis and/or diagnosed with SNHL and/or with pathological lesions on brain MRI (high risk): biannual vestibular assessments using cVEMPs and v-HIT of the horizontal canals for the first 3 years of life, and then annually with addition of oVEMPs and v-HIT of the vertical canals until the age of 5 years.
4. Rehabilitation Strategies for Children with Hearing and/or Vestibular Impairments
4.1. Hearing Rehabilitation
4.2. Vestibular Rehabilitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Buchfellner, M.; Ross, S. From diagnosis to management: Current perspectives on congenital cytomegalovirus infection. Curr. Opin. Infect. Dis. 2024, 37, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Aldè, M.; Binda, S.; Primache, V.; Pellegrinelli, L.; Pariani, E.; Pregliasco, F.; Di Berardino, F.; Cantarella, G.; Ambrosetti, U. Congenital Cytomegalovirus and Hearing Loss: The State of the Art. J. Clin. Med. 2023, 12, 4465. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Liu, X.; Sun, Y. The Pathogenesis of Cytomegalovirus and Other Viruses Associated with Hearing Loss: Recent Updates. Viruses 2023, 15, 1385. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, X.; Zong, Y.; Shi, X.; Sun, Y. Cellular Processes Induced by HSV-1 Infections in Vestibular Neuritis. Viruses 2023, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.L.; Schieffelin, J.S. Congenital Cytomegalovirus Infection. Ochsner J. 2019, 19, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Z.; Shi, X.; Zong, Y.; Sun, Y. The Effects of Viral Infections on the Molecular and Signaling Pathways Involved in the De-velopment of the PAOs. Viruses 2024, 16, 1342. [Google Scholar] [CrossRef]
- Aldè, M.; Caputo, E.; Di Berardino, F.; Ambrosetti, U.; Barozzi, S.; Piatti, G.; Zanetti, D.; Pignataro, L.; Cantarella, G. Hearing outcomes in children with congenital cytomegalovirus infection: From management controversies to lack of parents’ knowledge. Int. J. Pediatr. Otorhinolaryngol 2023, 164, 111420. [Google Scholar] [CrossRef]
- Dhondt, C.; Maes, L.; Rombaut, L.; Martens, S.; Vanaudenaerde, S.; Van Hoecke, H.; De Leenheer, E.; Dhooge, I. Vestibular Function in Children With a Congenital Cytomegalovirus Infection: 3 Years of Follow-Up. Ear Hear. 2021, 42, 76–86. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, S.; Xiang, J.; Peng, Z.; Sun, Y. Analysis of the Results of Cytomegalovirus Testing Combined with Genetic Testing in Children with Congenital Hearing Loss. J. Clin. Med. 2022, 11, 5335. [Google Scholar] [CrossRef]
- Shears, A.; Yan, G.; Mortimer, H.; Cross, E.; Sapuan, S.; Kadambari, S.; Luck, S.; Heath, P.T.; Walter, S.; Fidler, K.J. Vestibular and balance dysfunction in children with congenital CMV: A systematic review. Arch. Dis. Child Fetal Neonatal Ed. 2022, 107, 630–636. [Google Scholar] [CrossRef]
- Kettler, M.; Shoup, A.; Moats, S.; Steuerwald, W.; Jones, S.; Stiell, S.C.; Chappetto, J. American Academy of Audiology Position Statement on Early Identification of Cytomegalovirus in Newborns. J. Am. Acad. Audiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.E.; Wieringa, J.W.; Blázquez-Gamero, D.; Henneke, P.; Schuster, K.; Butler, K.; Capretti, M.G.; Cilleruelo, M.J.; Curtis, N.; Garofoli, F.; et al. Congenital Cytomegalovirus: A European Expert Consensus Statement on Diagnosis and Management. Pediatr. Infect. Dis. J. 2017, 36, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Walston, F.; McDevitt, K.; Walter, S.; Luck, S.; Holland-Brown, T. Clinical Guideline: Diagnosis and Management of Congenital Cytomegalovirus; National Health Service: London, UK, 2017. [Google Scholar]
- Palma, S.; Forli, F.; Rossi, C.; Filice, R.; D’adamo, C.; Roversi, M.F.; Monzani, D.; Lorenzoni, F.; Botti, C.; Berrettini, S.; et al. The Audiological Follow-Up of Children with Symptomatic Congenital Cytomegalovirus Infection: An Experience in Two Italian Centers. Children 2023, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- Royackers, L.; Rector, E.; Verhaert, N.; Desloovere, C. Long-term audiological follow-up of children with congenital cytomegalovirus. B-ENT 2013, 9 (Suppl. S21), 57–64. [Google Scholar]
- Foulon, I.; Vleurinck, L.; Kerkhofs, K.; Gordts, F. Hearing configuration in children with cCMV infection and proposal of a flow chart for hearing evaluation. Int. J. Audiol. 2015, 54, 714–719. [Google Scholar] [CrossRef]
- Gana, N.; Huluță, I.; Cătănescu, M.Ș.; Apostol, L.M.; Nedelea, F.M.; Sima, R.M.; Botezatu, R.; Panaitescu, A.M.; Gică, N. Congenital Cytomegalovirus-Related Hearing Loss. Audiol. Res. 2024, 14, 507–517. [Google Scholar] [CrossRef]
- Joint Committee on Infant Hearing. Year 2019 position statement: Principles and guidelines for early hearing detection and intervention programs. J. Early Hear. Detect. Interv. 2019, 4, 1–44. [Google Scholar] [CrossRef]
- Rawlinson, W.D.; Boppana, S.B.; Fowler, K.B.; Kimberlin, D.W.; Lazzarotto, T.; Alain, S.; Daly, K.; Doutré, S.; Gibson, L.; Giles, M.L.; et al. Congenital cytomegalovirus infection in pregnancy and the neonate: Consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect. Dis. 2017, 17, e177–e188. [Google Scholar] [CrossRef]
- Lanzieri, T.M.; Chung, W.; Flores, M.; Blum, P.; Caviness, A.C.; Bialek, S.R.; Grosse, S.D.; Miller, J.A.; Demmler-Harrison, G.; Congenital Cytomegalovirus Longitudinal Study Group. Hearing Loss in Children With Asymptomatic Congenital Cytomegalovirus Infection. Pediatrics 2017, 139, e20162610. [Google Scholar] [CrossRef]
- Iwasaki, S.; Yamashita, M.; Maeda, M.; Misawa, K.; Mineta, H. Audiological outcome of infants with congenital cytomegalovirus infection in a prospective study. Audiol. Neurootol. 2007, 12, 31–36. [Google Scholar] [CrossRef]
- Lanzieri, T.M.; Chung, W.; Leung, J.; Caviness, A.C.; Baumgardner, J.L.; Blum, P.; Bialek, S.R.; Demmler-Harrison, G.; Congenital Cytomegalovirus Longitudinal Study Group. Hearing Trajectory in Children with Congenital Cytomegalovirus Infection. Otolaryngol. Head Neck Surg. 2018, 158, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Roh, K.J.; Nam, G.S.; Son, E.J. Audiologic Status of Children with Confirmed Cytomegalovirus Infection: A Case Series. J. Korean Med. Sci. 2020, 35, e244. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, V.; Allen, C.M.; Greene, T.; Park, A.; Chung, W.; Lanzieri, T.M.; Demmler-Harrison, G. Should You Follow the Better-Hearing Ear for Congenital Cytomegalovirus Infection and Isolated Sensorineural Hearing Loss? Otolaryngol. Head Neck Surg. 2020, 162, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Turriziani Colonna, A.; Buonsenso, D.; Pata, D.; Salerno, G.; Chieffo, D.P.R.; Romeo, D.M.; Faccia, V.; Conti, G.; Molle, F.; Baldascino, A.; et al. Long-Term Clinical, Audiological, Visual, Neurocognitive and Behavioral Outcome in Children with Symptomatic and Asymptomatic Congenital Cytomegalovirus Infection Treated With Valganciclovir. Front. Med. 2020, 7, 268. [Google Scholar] [CrossRef]
- Noorbakhsh, S.; Joghataei, M.T.; Farhadi, M.; Haghighi, F.; Emamjomeh, H.; Haghighi Hasanabad, M. Assessment of Hearing Loss in Two-Year Follow-up Study of Neonates with Congenital Cytomegalovirus Infection. Iran. J. Child Neurol. 2022, 16, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.K.; Schornagel, F.A.J.; Soede, W.; van Zwet, E.W.; Kroes, A.C.M.; Oudesluys-Murphy, A.M.; Vossen, A.C.T.M. Valganciclovir in Infants with Hearing Loss and Clinically Inapparent Congenital Cytomegalovirus Infection: A Nonrandomized Controlled Trial. J. Pediatr. 2024, 268, 113945. [Google Scholar] [CrossRef]
- Puhakka, L.; Lappalainen, M.; Lönnqvist, T.; Nieminen, T.; Boppana, S.; Saxen, H.; Niemensivu, R. Hearing outcome in congenitally CMV infected children in Finland—Results from follow-up after three years age. Int. J. Pediatr. Otorhinolaryngol. 2022, 156, 111099. [Google Scholar] [CrossRef]
- Salomè, S.; Corrado, F.R.; Mazzarelli, L.L.; Maruotti, G.M.; Capasso, L.; Blazquez-Gamero, D.; Raimondi, F. Congenital cytomegalovirus infection: The state of the art and future perspectives. Front. Pediatr. 2023, 11, 1276912. [Google Scholar] [CrossRef]
- Kuki, S.; Chadha, S.; Dhingra, S.; Gulati, A. The role of current audiological tests in the early diagnosis of hearing impairment in infant. Indian J. Otolaryngol. Head Neck Surg. 2013, 65, 244–250. [Google Scholar] [CrossRef]
- Grosse, S.D.; Dollard, S.C.; Ortega-Sanchez, I.R. Economic assessments of the burden of congenital cytomegalovirus infection and the cost-effectiveness of prevention strategies. Semin. Perinatol. 2021, 45, 151393. [Google Scholar] [CrossRef]
- Fowler, K.B.; McCollister, F.P.; Sabo, D.L.; Shoup, A.G.; Owen, K.E.; Woodruff, J.L.; Cox, E.; Mohamed, L.S.; Choo, D.I.; Boppana, S.B.; et al. A Targeted Approach for Congenital Cytomegalovirus Screening within Newborn Hearing Screening. Pediatrics 2017, 139, e20162128. [Google Scholar] [CrossRef] [PubMed]
- Zappas, M.P.; Devereaux, A.; Pesch, M.H. The Psychosocial Impact of Congenital Cytomegalovirus on Caregivers and Families: Lived Experiences and Review of the Literature. Int. J. Neonatal Screen. 2023, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Vandrevala, T.; Barber, V.; Mbire-Chigumba, E.; Calvert, A.; Star, C.; Khalil, A.; Griffiths, P.; Book, A.S.; Book, G.M.; Heath, P.; et al. Parenting a child with congenital cytomegalovirus infection: A qualitative study. BMJ Paediatr. Open 2020, 4, e000844. [Google Scholar] [CrossRef] [PubMed]
- Lanzieri, T.M.; Hall, M.A.K.; Rau, A.; McBride, H.; Watson, D.; Rheaume, C.; Demmler-Harrison, G. Parental Perspectives on Communication from Health Care Providers following a Newborn Diagnosis of Congenital Cytomegalovirus Infection: A Secondary Analysis of a Qualitative Study. Int. J. Neonatal Screen. 2023, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Sabo, D.L. The audiologic assessment of the young pediatric patient: The clinic. Trends Amplif. 1999, 4, 51–60. [Google Scholar] [CrossRef]
- Gorga, M.P.; Johnson, T.A.; Kaminski, J.R.; Beauchaine, K.L.; Garner, C.A.; Neely, S.T. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds. Ear Hear. 2006, 27, 60–74. [Google Scholar] [CrossRef]
- Rouillon, I.; Parodi, M.; Denoyelle, F.; Loundon, N. How to perform ABR in young children. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 431–435. [Google Scholar] [CrossRef]
- Farinetti, A.; Raji, A.; Wu, H.; Wanna, B.; Vincent, C. International consensus (ICON) on audiological assessment of hearing loss in children. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, S41–S48. [Google Scholar] [CrossRef]
- Bonino, A.Y.; Hemann, A.; Mood, D.; Kay, E.; Pancoast, E.S.; Sommerfeldt, K.K. Visual Reinforcers Designed for Children with Developmental Disabilities. J. Early Hear. Detect. Interv. 2021, 6, 69–76. [Google Scholar] [CrossRef]
- Kleinhuis, J.J.G.; de Graaff-Korf, K.; van Straaten, H.L.M.; van Dommelen, P.; Benard, M.R. An eight-year follow-up on auditory outcomes after neonatal hearing screening. PLoS ONE 2024, 19, e0297363, Erratum in PLoS ONE 2024, 19, e0308470. [Google Scholar] [CrossRef]
- Sommerfeldt, J.; Kolb, C.M. Hearing Loss Assessment in Children; [Updated 27 February 2023]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK580492/ (accessed on 1 September 2024).
- Kim, S.H.; Moon, Y.J.; Chae, M.S.; Lee, Y.J.; Karm, M.H.; Joo, E.Y.; Min, J.J.; Koo, B.N.; Choi, J.H.; Hwang, J.Y.; et al. Korean clinical practice guidelines for diagnostic and procedural sedation. Korean J. Anesthesiol. 2024, 77, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Leruez-Ville, M.; Chatzakis, C.; Lilleri, D.; Blazquez-Gamero, D.; Alarcon, A.; Bourgon, N.; Foulon, I.; Fourgeaud, J.; Gonce, A.; Jones, C.E.; et al. Consensus recommendation for prenatal, neonatal and postnatal management of congenital cytomegalovirus infection from the European congenital infection initiative (ECCI). Lancet Reg. Health Eur. 2024, 40, 100892, Erratum in Lancet Reg. Health Eur. 2024, 42, 100974. [Google Scholar] [CrossRef] [PubMed]
- Rohren, L.; Shanley, R.; Smith, M.; Yue, M.; Huang, T.C.; Nelson, P.; Hernandez-Alvarado, N.; Schleiss, M.R.; Gravel, K.E. Congenital Cytomegalovirus-Associated Sensorineural Hearing Loss in Children: Identification Following Universal Newborn Hearing Screening, Effect of Antiviral Treatment, and Long-Term Hearing Outcomes. Ear Hear. 2024, 45, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Pontes, K.F.M.; Nardozza, L.M.M.; Peixoto, A.B.; Werner, H.; Tonni, G.; Granese, R.; Araujo Júnior, E. Cytomegalovirus and Pregnancy: A Narrative Review. J. Clin. Med. 2024, 13, 640. [Google Scholar] [CrossRef]
- Foulon, I.; De Brucker, Y.; Buyl, R.; Lichtert, E.; Verbruggen, K.; Piérard, D.; Camfferman, F.A.; Gucciardo, L.; Gordts, F. Hearing Loss With Congenital Cytomegalovirus Infection. Pediatrics 2019, 144, e20183095. [Google Scholar] [CrossRef]
- Chatzakis, C.; Ville, Y.; Makrydimas, G.; Dinas, K.; Zavlanos, A.; Sotiriadis, A. Timing of primary maternal cytomegalovirus infection and rates of vertical transmission and fetal consequences. Am. J. Obstet. Gynecol. 2020, 223, 870–883.e11. [Google Scholar] [CrossRef]
- Faure-Bardon, V.; Magny, J.F.; Parodi, M.; Couderc, S.; Garcia, P.; Maillotte, A.M.; Benard, M.; Pinquier, D.; Astruc, D.; Patural, H.; et al. Sequelae of Congenital Cytomegalovirus Following Maternal Primary Infections Are Limited to Those Acquired in the First Trimester of Pregnancy. Clin. Infect. Dis. 2019, 69, 1526–1532. [Google Scholar] [CrossRef]
- Foulon, I.; Naessens, A.; Foulon, W.; Casteels, A.; Gordts, F. Hearing loss in children with congenital cytomegalovirus infection in relation to the maternal trimester in which the maternal primary infection occurred. Pediatrics 2008, 122, e1123–e1127. [Google Scholar] [CrossRef]
- Buca, D.; Di Mascio, D.; Rizzo, G.; Giancotti, A.; D’Amico, A.; Leombroni, M.; Makatsarya, A.; Familiari, A.; Liberati, M.; Nappi, L.; et al. Outcome of fetuses with congenital cytomegalovirus infection and normal ultrasound at diagnosis: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2021, 57, 551–559. [Google Scholar] [CrossRef]
- Elkan Miller, T.; Weisz, B.; Yinon, Y.; Weissbach, T.; De Castro, H.; Avnet, H.; Hoffman, C.; Katorza, E.; Lipitz, S. Congenital Cytomegalovirus Infection Following Second and Third Trimester Maternal Infection Is Associated with Mild Childhood Adverse Outcome Not Predicted by Prenatal Imaging. J. Pediatr. Infect. Dis. Soc. 2021, 10, 562–568. [Google Scholar] [CrossRef]
- Chatzakis, C.; Sotiriadis, A.; Dinas, K.; Ville, Y. Neonatal and long-term outcomes of infants with congenital cytomegalovirus infection and negative amniocentesis: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2023, 61, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Gilad, N.; Agrawal, S.; Philippopoulos, E.; Murphy, K.E.; Shinar, S. Is a Higher Amniotic Fluid Viral Load Associated with a Greater Risk of Fetal Injury in Congenital Cytomegalovirus Infection-A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 2136. [Google Scholar] [CrossRef] [PubMed]
- Kimberlin, D.W.; Jester, P.M.; Sánchez, P.J.; Ahmed, A.; Arav-Boger, R.; Michaels, M.G.; Ashouri, N.; Englund, J.A.; Estrada, B.; Jacobs, R.F.; et al. Valganciclovir for symptomatic congenital cytomegalovirus disease. N. Engl. J. Med. 2015, 372, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Bilavsky, E.; Shahar-Nissan, K.; Pardo, J.; Attias, J.; Amir, J. Hearing outcome of infants with congenital cytomegalovirus and hearing impairment. Arch. Dis. Child. 2016, 101, 433–438. [Google Scholar] [CrossRef]
- Ohyama, S.; Morioka, I.; Fukushima, S.; Yamana, K.; Nishida, K.; Iwatani, S.; Fujioka, K.; Matsumoto, H.; Imanishi, T.; Nakamachi, Y.; et al. Efficacy of Valganciclovir Treatment Depends on the Severity of Hearing Dysfunction in Symptomatic Infants with Congenital Cytomegalovirus Infection. Int. J. Mol. Sci. 2019, 20, 1388. [Google Scholar] [CrossRef]
- Suganuma, E.; Sakata, H.; Adachi, N.; Asanuma, S.; Furuichi, M.; Uejima, Y.; Sato, S.; Abe, T.; Matsumoto, D.; Takahashi, R.; et al. Efficacy, safety, and pharmacokinetics of oral valganciclovir in patients with congenital cytomegalovirus infection. J. Infect. Chemother. 2021, 27, 185–191. [Google Scholar] [CrossRef]
- Pata, D.; Buonsenso, D.; Turriziani-Colonna, A.; Salerno, G.; Scarlato, L.; Colussi, L.; Ulloa-Gutierrez, R.; Valentini, P. Role of Valganciclovir in Children with Congenital CMV Infection: A Review of the Literature. Children 2023, 10, 1246. [Google Scholar] [CrossRef]
- Pasternak, Y.; Ziv, L.; Attias, J.; Amir, J.; Bilavsky, E. Valganciclovir Is Beneficial in Children with Congenital Cytomegalovirus and Isolated Hearing Loss. J. Pediatr. 2018, 199, 166–170. [Google Scholar] [CrossRef]
- Bernard, S.; Wiener-Vacher, S.; Van Den Abbeele, T.; Teissier, N. Vestibular Disorders in Children with Congenital Cytomegalovirus Infection. Pediatrics 2015, 136, e887–e895. [Google Scholar] [CrossRef]
- Corazzi, V.; Hatzopoulos, S.; Bianchini, C.; Skarżyńska, M.B.; Pelucchi, S.; Skarżyński, P.H.; Ciorba, A. Vestibular and postural impairment in congenital Cytomegalovirus infection. Int. J. Pediatr. Otorhinolaryngol. 2022, 152, 111005. [Google Scholar] [CrossRef]
- Kokkola, E.; Niemensivu, R.; Lappalainen, M.; Palomäki, M.; Nieminen, T.; Boppana, S.; Saxèn, H.; Puhakka, L. Long-term outcome of vestibular function and hearing in children with congenital cytomegalovirus infection: A prospective cohort study. Eur. Arch. Otorhinolaryngol. 2023, 280, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Dhondt, C.; Maes, L.; Van Acker, E.; Martens, S.; Vanaudenaerde, S.; Rombaut, L.; De Cuyper, E.; Van Hoecke, H.; De Leenheer, E.; Dhooge, I. Vestibular Follow-up Program for Congenital Cytomegalovirus Based on 6 Years of Longitudinal Data Collection. Ear Hear. 2023, 44, 1354–1366. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.S.B.; Cabral, A.M.L.; Britto, D.B.L.A. Vestibular assessment in children aged zero to twelve years: An integrative review. Braz. J. Otorhinolaryngol. 2022, 88 (Suppl. S3), S212–S224. [Google Scholar] [CrossRef]
- Korndewal, M.J.; Oudesluys-Murphy, A.M.; Kroes, A.C.M.; van der Sande, M.A.B.; de Melker, H.E.; Vossen, A.C.T.M. Long-term impairment attributable to congenital cytomegalovirus infection: A retrospective cohort study. Dev. Med. Child Neurol. 2017, 59, 1261–1268. [Google Scholar] [CrossRef]
- Pinninti, S.; Christy, J.; Almutairi, A.; Cochrane, G.; Fowler, K.B.; Boppana, S. Vestibular, Gaze, and Balance Disorders in Asymptomatic Congenital Cytomegalovirus Infection. Pediatrics 2021, 147, e20193945. [Google Scholar] [CrossRef] [PubMed]
- Chebib, E.; Maudoux, A.; Benoit, C.; Bernard, S.; Van Den Abbeele, T.; Teissier, N.; Wiener Vacher, S.R. Audiovestibular Consequences of Congenital Cytomegalovirus Infection: Greater Vulnerability of the Vestibular Part of the Inner Ear. Ear Hear. 2022, 43, 1730–1739. [Google Scholar] [CrossRef]
- Pellegrinelli, L.; Galli, C.; Primache, V.; Alde’, M.; Fagnani, E.; Di Berardino, F.; Zanetti, D.; Pariani, E.; Ambrosetti, U.; Binda, S. Diagnosis of congenital CMV infection via DBS samples testing and neonatal hearing screening: An observational study in Italy. BMC Infect. Dis. 2019, 19, 652. [Google Scholar] [CrossRef]
- Aldè, M.; DIBerardino, F.; Marchisio, P.; Cantarella, G.; Iacona, E.; Ambrosetti, U.; Zanetti, D. Sudden sensorineural hearing loss in children with dual positivity of serum anti-EBV IgM and anti-CMV IgM antibodies: A preliminary study. Minerva Pediatr. 2021. [Google Scholar] [CrossRef]
- Gabrielli, L.; Bonasoni, M.P.; Santini, D.; Piccirilli, G.; Chiereghin, A.; Guerra, B.; Landini, M.P.; Capretti, M.G.; Lanari, M.; Lazzarotto, T. Human fetal inner ear involvement in congenital cytomegalovirus infection. Acta Neuropathol. Commun. 2013, 1, 63. [Google Scholar] [CrossRef]
- Barozzi, S.; Socci, M.; Soi, D.; Di Berardino, F.; Fabio, G.; Forti, S.; Gasbarre, A.M.; Brambilla, D.; Cesarani, A. Reliability of postural control measures in children and young adolescents. Eur. Arch. Otorhinolaryngol. 2014, 271, 2069–2077. [Google Scholar] [CrossRef]
- Verbecque, E.; Vereeck, L.; Hallemans, A. Postural sway in children: A literature review. Gait Posture 2016, 49, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Wiener-Vacher, S.R.; Wiener, S.I. Video Head Impulse Tests with a Remote Camera System: Normative Values of Semicircular Canal Vestibulo-Ocular Reflex Gain in Infants and Children. Front. Neurol. 2017, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Janky, K.L.; Rodriguez, A.I. Quantitative Vestibular Function Testing in the Pediatric Population. Semin. Hear. 2018, 39, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.J.; Lavender, V.H.; Hunter, L.L.; McGuire, S.E.; Meinzen-Derr, J.; Keith, R.W.; Greinwald, J.H. Ocular Vestibular Evoked Myogenic Potentials: Normative Findings in Children. J. Am. Acad. Audiol. 2018, 29, 443–450. [Google Scholar] [CrossRef]
- Bachmann, K.; Sipos, K.; Lavender, V.; Hunter, L.L. Video Head Impulse Testing in a Pediatric Population: Normative Findings. J. Am. Acad. Audiol. 2018, 29, 417–426. [Google Scholar] [CrossRef]
- Caldani, S.; Baghdadi, M.; Moscoso, A.; Acquaviva, E.; Gerard, C.L.; Marcelli, V.; Peyre, H.; Atzori, P.; Delorme, R.; Bucci, M.P. Vestibular Functioning in Children with Neurodevelopmental Disorders Using the Functional Head Impulse Test. Brain Sci. 2020, 10, 887. [Google Scholar] [CrossRef]
- Wiener-Vacher, S.R.; Campi, M.; Boizeau, P.; Thai-Van, H. Cervical vestibular evoked myogenic potentials in healthy children: Normative values for bone and air conduction. Front. Neurol. 2023, 14, 1157975. [Google Scholar] [CrossRef]
- Martens, S.; Dhooge, I.; Dhondt, C.; Vanaudenaerde, S.; Sucaet, M.; Rombaut, L.; Maes, L. Pediatric Vestibular Assessment: Clinical Framework. Ear Hear. 2023, 44, 423–436. [Google Scholar] [CrossRef]
- Martens, S.; Maes, L.; Dhondt, C.; Vanaudenaerde, S.; Sucaet, M.; De Leenheer, E.; Van Hoecke, H.; Van Hecke, R.; Rombaut, L.; Dhooge, I. Vestibular Infant Screening-Flanders: What is the Most Appropriate Vestibular Screening Tool in Hearing-Impaired Children? Ear Hear. 2023, 44, 385–398. [Google Scholar] [CrossRef]
- Dhondt, C.; Maes, L.; Martens, S.; Vanaudenaerde, S.; Rombaut, L.; Sucaet, M.; Keymeulen, A.; Van Hoecke, H.; De Leenheer, E.; Dhooge, I. Predicting Early Vestibular and Motor Function in Congenital Cytomegalovirus Infection. Laryngoscope 2023, 133, 1757–1765. [Google Scholar] [CrossRef]
- Gerdsen, M.; Hundscheid, T.M.; Boudewyns, A.; Van Rompaey, V.; Van De Berg, R.; Widdershoven, J.C.C. Vestibular assessment in children with sensorineural hearing loss: Diagnostic accuracy and proposal for a diagnostic algorithm. Front. Neurol. 2024, 15, 1349554. [Google Scholar] [CrossRef] [PubMed]
- Janky, K.L.; Patterson, J. The Relationship Between Rotary Chair and Video Head Impulse Testing in Children and Young Adults with Cochlear Implants. Am. J. Audiol. 2020, 29, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Yun, A.; Wang, A.; Brodsky, J.R. Comparing Video Head Impulse Testing With Rotary Chair in Pediatric Patients: A Controlled Trial. Otolaryngol. Head Neck Surg. 2024. [Google Scholar] [CrossRef] [PubMed]
- Chisari, D.; Vitkovic, J.; Clark, R.; Rance, G. Vestibular function and balance performance in children with sensorineural hearing loss. Int. J. Audiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Corallo, G.; Versino, M.; Mandalà, M.; Colnaghi, S.; Ramat, S. The functional head impulse test: Preliminary data. J. Neurol. 2018, 265 (Suppl. S1), 35–39. [Google Scholar] [CrossRef]
- Ölçek, G.; Çelik, İ.; Başoǧlu, Y.; Kaymakçı, S.; Gürlek, E. Comparison of children with and without dyslexia using functional head impulse test and pediatric balance scale. Front. Neurol. 2023, 14, 1153650. [Google Scholar] [CrossRef]
- Melo, R.S. How to Help Deaf Children Who Do Not Understand Their Vestibular Symptoms and Motor Disorders as Abnormal? J. Audiol. Otol. 2024. [Google Scholar] [CrossRef]
- Kraaijenga, V.J.C.; Van Houwelingen, F.; Van der Horst, S.F.; Visscher, J.; Huisman, J.M.L.; Hollman, E.J.; Stegeman, I.; Smit, A.L. Cochlear implant performance in children deafened by congenital cytomegalovirus—A systematic review. Clin. Otolaryngol. 2018, 43, 1283–1295. [Google Scholar] [CrossRef]
- Park, L.R.; Griffin, A.M.; Sladen, D.P.; Neumann, S.; Young, N.M. American Cochlear Implant Alliance Task Force Guidelines for Clinical Assessment and Management of Cochlear Implantation in Children with Single-Sided Deafness. Ear Hear. 2022, 43, 255–267. [Google Scholar] [CrossRef]
- Aldè, M.; Zanetti, D.; Ambrosetti, U.; Monaco, E.; Gasbarre, A.M.; Pignataro, L.; Cantarella, G.; Barozzi, S. Unilateral Sensorineural Hearing Loss in Children: Etiology, Audiological Characteristics, and Treatment. Children 2024, 11, 324. [Google Scholar] [CrossRef]
- Gerdsen, M.; Jorissen, C.; Pustjens, D.C.F.; Hof, J.R.; Van Rompaey, V.; Van De Berg, R.; Widdershoven, J.C.C. Effect of cochlear implantation on vestibular function in children: A scoping review. Front. Pediatr. 2022, 10, 949730. [Google Scholar] [CrossRef] [PubMed]
- Cushing, S.L.; Papsin, B.C. Cochlear Implants and Children with Vestibular Impairments. Semin. Hear. 2018, 39, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Derieppe, A.; Gendre, A.; Bourget-Aguilar, K.; Bordure, P.; Michel, G. Comparative study of vestibular function preservation in manual versus robotic-assisted cochlear implantation. Cochlear Implants Int. 2024, 25, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.D.; Herdman, S.J.; Whitney, S.L.; Anson, E.R.; Carender, W.J.; Hoppes, C.W.; Cass, S.P.; Christy, J.B.; Cohen, H.S.; Fife, T.D.; et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Updated Clinical Practice Guideline from the Academy of Neurologic Physical Therapy of the American Physical Therapy Association. J. Neurol. Phys. Ther. 2022, 46, 118–177. [Google Scholar] [CrossRef] [PubMed]
- Rine, R.M. Vestibular Rehabilitation for Children. Semin. Hear. 2018, 39, 334–344. [Google Scholar] [CrossRef]
- Reynard, P.; Ortega-Solís, J.; Tronche, S.; Darrouzet, V.; Thai-Van, H. Guidelines of the French Society of Otorhinolaryngology and Head and Neck Surgery (SFORL) for vestibular rehabilitation in children with vestibular dysfunction. A systematic review. Arch. Pediatr. 2024, 31, 217–223. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, Q.; Zhang, K.; Xie, D.; Wu, W. Vestibular function in children with cochlear implant: Impact and evaluation. Front. Neurol. 2022, 13, 938751. [Google Scholar] [CrossRef]
- Chow, M.R.; Ayiotis, A.I.; Schoo, D.P.; Gimmon, Y.; Lane, K.E.; Morris, B.J.; Rahman, M.A.; Valentin, N.S.; Boutros, P.J.; Bowditch, S.P.; et al. Posture, Gait, Quality of Life, and Hearing with a Vestibular Implant. N. Engl. J. Med. 2021, 384, 521–532. [Google Scholar] [CrossRef]
Audiological Test | Age Range (Approximately) | What It Studies | Limitations | Test Duration |
---|---|---|---|---|
Behavioral Observation Audiometry (BOA) | <6 months | Behavioral responses to sound stimuli (e.g., startle reflex, eye-widening, or changes in sucking patterns). | Depends on observer’s interpretation; influenced by infant’s state (e.g., sleep, hunger); cannot quantify degree of hearing loss. | Variable (generally 10–20 min) |
Visual Reinforcement Audiometry (VRA) | 6 months to 24–30 months | Behavioral responses to sound stimuli (child turns head toward sound source). | Depends on the child’s cooperation and ability to focus on the visual reinforcers; quick habituation can decrease response rate; may not be feasible for children with developmental disabilities. | Variable (generally 10–20 min). |
Conditioned Play Audiometry (CPA) | 24–30 months to 5 years | Behavioral responses to sound stimuli through a play activity are recorded to determine hearing thresholds at various frequencies. | Requires the child’s cooperation and attention; may not be possible for children with developmental disabilities. | Variable (generally 15–30 min). |
Pure-Tone Audiometry (PTA) | ≥5 years | Hearing thresholds at various frequencies (audiogram) using AC and BC to identify the softest sound a person can hear. | Requires consistent child cooperation and response; not suitable for children with cognitive impairments; may miss auditory processing disorders. | Variable (generally 15–30 min). |
Otoacoustic Emissions (OAEs) | All ages | Evaluates cochlear (outer hair cell) function by measuring sounds generated by the inner ear in response to auditory stimuli; can determine the presence of emissions typically indicating normal hearing thresholds up to approximately 30–40 dB HL. | Does not assess beyond cochlea; affected by outer or middle ear conditions (e.g., wax, fluid); provides a pass/fail result without detailed threshold information; can give a false positive in presence of outer/middle ear pathology, or a false negative (missing mild hearing loss); can be affected by the presence of noise or patient movement; cannot detect auditory neuropathy or retrocochlear pathologies. | Variable (generally 5–10 min). |
Automated Auditory Brainstem Responses (AABRs) | All ages | Screens auditory nerve and brainstem function by detecting electrical activity in response to sound; the test automatically analyzes the responses to determine if they are present or absent, providing a pass/fail result for hearing screening. | Provides a pass/fail result without detailed threshold information; may miss mild hearing loss; cannot differentiate between types of hearing loss (e.g., sensorineural vs. conductive); requires a quiet and still environment; necessitates natural sleep or often sedation in older children. | Variable (generally 5–15 min). |
Threshold Auditory Brainstem Responses (ABRs) | All ages | Measures electrical activity from auditory nerve and brainstem in response to sound at different frequencies (click-evoked ABR for medium/high frequencies [2–4 kHz] and tone burst-evoked ABR for low frequencies [250–500 Hz] and intensity levels to determine hearing thresholds. | Time-consuming; requires a quiet and still environment; necessitates natural sleep or often sedation in older children. | Variable (generally 30–90 min). |
Auditory Steady-State Responses (ASSR) | All ages | Measures frequency-specific auditory thresholds using continuous modulated tones; predicts hearing thresholds in very young children at lower frequencies (including 0.5 kHz). | Time-consuming; necessitates natural sleep or often sedation in older children; may be less effective in cases of auditory neuropathy; results can be influenced by neurological conditions; less effective at very high frequencies. | Variable (generally 30–90 min). |
Vestibular Test | Age Range (Approximately) | What It Studies | Limitations | Test Duration |
---|---|---|---|---|
Cervical Vestibular-Evoked Myogenic Potentials (cVEMPs) | >2 months | Evaluates the saccule and inferior vestibular nerve (and also utricle through BC). | AC cVEMPs are often absent in the presence of middle ear pathologies; maintaining SCM contraction may be difficult; the test may not be reliable in patients with neck problems. | Variable (generally 15–20 min) |
Video Head Impulse Test (v-HIT) of Lateral Canals | ≥3 months | Measures the gain of the VOR and the presence of corrective saccades specific to lateral semicircular canals; assesses the superior branch of the vestibular nerve. | Tightly fitting goggles may be uncomfortable for children; artifacts can affect accuracy, especially in uncooperative children (requires their attention); the test does not assess functional implications of vestibular deficits. | Variable (generally 10–15 min) |
Rotary Chair Testing | >6 months | Evaluates the overall function of the vestibular system by assessing the VOR gain, phase, and symmetry. | Goggles may be uncomfortable for children; rotary chair gain is affected by the child’s attention; children often sit on their parent’s lap during testing, which can artificially inflate rotary chair gain. | Variable (generally < 15 min) |
Ocular Vestibular-Evoked Myogenic Potentials (oVEMPs) | >2 years | Evaluates the utricle and the superior vestibular nerve. | Children might struggle to maintain an up-gaze position; AC oVEMPs are often absent in the presence of middle ear pathologies. | Variable (generally 15–20 min) |
Video Head Impulse Test (v-HIT) of Vertical Canals | >2 years | Measures the gain of the VOR and the presence of corrective saccades specific to vertical semicircular canals; assesses the superior (anterior semicircular canals) and the inferior branch (posterior semicircular canals) of the vestibular nerve. | Same limitations as v-HIT for lateral canals and also requires more cooperation from children. | Variable (generally 10–15 min) |
Posturography | >5 years | Analyzes balance control and postural stability. | Limited in diagnosing specific vestibular disorders; influenced by other factors affecting balance, such as proprioception and vision; younger children may have difficulty following instructions. | Variable (generally 20–30 min) |
Functional Head Impulse Test (f-HIT) | >5 years | Evaluates functional impact of vestibular disorders on gaze stability. | Requires high patient cooperation and quick head movements; limited normative data for younger children. | Variable (generally 15–20 min) |
Caloric testing | >5 years | Evaluates the horizontal canal and superior branch of the vestibular nerve. | Uncomfortable for patients; time-consuming; can cause dizziness, nausea, and discomfort; younger children may find it particularly distressing. | Variable (generally 20–25 min) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldè, M.; Fancello, V.; Di Mauro, P.; Canelli, R.; Zaouche, S.; Falanga, C. Audiological and Vestibular Follow-Up for Children with Congenital Cytomegalovirus Infection: From Current Limitations to Future Directions. Children 2024, 11, 1211. https://doi.org/10.3390/children11101211
Aldè M, Fancello V, Di Mauro P, Canelli R, Zaouche S, Falanga C. Audiological and Vestibular Follow-Up for Children with Congenital Cytomegalovirus Infection: From Current Limitations to Future Directions. Children. 2024; 11(10):1211. https://doi.org/10.3390/children11101211
Chicago/Turabian StyleAldè, Mirko, Virginia Fancello, Paola Di Mauro, Rachele Canelli, Sandra Zaouche, and Chiara Falanga. 2024. "Audiological and Vestibular Follow-Up for Children with Congenital Cytomegalovirus Infection: From Current Limitations to Future Directions" Children 11, no. 10: 1211. https://doi.org/10.3390/children11101211
APA StyleAldè, M., Fancello, V., Di Mauro, P., Canelli, R., Zaouche, S., & Falanga, C. (2024). Audiological and Vestibular Follow-Up for Children with Congenital Cytomegalovirus Infection: From Current Limitations to Future Directions. Children, 11(10), 1211. https://doi.org/10.3390/children11101211