Identification of the Optimal Quantitative RT-PCR Reference Gene for Paper Mulberry (Broussonetia papyrifera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction of RNA and cDNA Synthesis
2.3. Reference Gene Selection and Primer Design
2.4. Reference Gene RT-qPCR Analyses
2.5. Construction of Standard Curves for Reference Gene Primers
2.6. Data Processing
2.7. Stability Validation
3. Results
3.1. Assessment of RNA Quality and Primer Specificities
3.2. Expression of Candidate Reference Genes
3.3. Stability Analyses
3.3.1. BestKeeper Analyses
3.3.2. geNorm Analyses
3.3.3. NormFinder Analysis
3.3.4. ΔCt Analysis
3.3.5. RefFinder Analysis
3.4. Verification of Reference Gene Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, E.C.; Overholt, W.A. Wildland Weeds: Paper Mulberry, Broussonetia papyrifera; University of Florida, IFAS: Gainesville, FL, USA, 2004; Extension: 2. [Google Scholar]
- Chang, C.S.; Liu, H.L.; Moncada, X.; Chung, K.F. A holistic picture of Austronesian migrations revealed by phylogeography of Pacific Paper Mulberry. Proc. Natl. Acad. Sci. USA 2015, 112, 13537–13542. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Mu, L.; Wang, Z.L.; Liu, J.Y.; Liu, T.L.; Wanapat, M.; Huang, B.Z. Assessment of mulberry leaf as a potential feed supplement for animal feeding in P.R. China. Asian-Australas. J. Anim. Sci. 2019, 32, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Hu, N.; Ding, D.X.; Zheng, J.F.; Liu, Y.L.; Wang, Y.D.; Nie, X.Q. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull. Environ. Contam. Toxicol. 2011, 86, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, J.; Peng, X.; Ni, Z.; Wang, G.; Shen, S. Applied hybrid Paper Mulberry in ecological virescence of the coastal saline. Tianjin Agr. Sci. 2014, 20, 95–101. [Google Scholar]
- Bustin, S.; Mueller, R. Real-time reverse transcription PCR (RT-qPCR) and its potential use in clinical diagnosis. Clin. Sci. 2005, 109, 365–379. [Google Scholar] [CrossRef]
- Gibson, U.; Heid, C.; Williams, P. A novel method for real time quantitative RT-PCR. Genome Res. 1996, 6, 995–1001. [Google Scholar] [CrossRef]
- Dash, P.K.; Rai, R.; Pradhan, S.K.; Shivaraj, S.M.; Deshmukh, R.; Sreevathsa, R.; Singh, N.K. Drought and Oxidative Stress in Flax (Linum usitatissimum L.) Entails Harnessing Non-Canonical Reference Gene for Precise Quantification of qRT-PCR Gene Expression. Antioxidants 2023, 12, 950. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.W.; Wei, S.S.; Xie, J.; Huang, J.Q.; Li, D.D.; Hu, W.B.; Li, H.L.; Tang, H. Identification of RT-qPCR reference genes suitable for gene function studies in the pitaya canker disease pathogen Neoscytalidium dimidiatum. Sci. Rep. 2022, 12, 22357. [Google Scholar] [CrossRef]
- Fiume, E.; Fletcher, J.C. Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. Plant Cell 2012, 24, 1000–1012. [Google Scholar] [CrossRef]
- Albuquerque, G.M.R.; Fonseca, F.C.; Boiteux, L.S.; Borges, R.C.; Miller, R.N.; Lopes, C.A.; Souza, E.B.; Fonseca, M.E.N. Stability analysis of reference genes for RT-qPCR assays involving compatible and incompatible Ralstonia solanacearum-tomato ‘Hawaii 7996’ interactions. Sci. Rep. 2021, 11, 18719. [Google Scholar] [CrossRef]
- Ciesielska, A.; Stączek, P. Selection and validation of reference genes for qPCR in the human dermatophyte Trichophyton rubrum exposed to different carbon sources which promote adhesion-inducing conditions. Mycoses 2021, 64, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Li, L.; Tang, S.; Yuan, C.; Tian, Q.; Su, Y.; Li, H.G.; Zhao, L.; Yin, W.L.; Zhao, R.; et al. Evaluation of Appropriate Reference Genes for Reverse Transcription-Quantitative PCR Studies in Different Tissues of a Desert Poplar via Comparision of Different Algorithms. Int. J. Mol. Sci. 2015, 16, 20468–20491. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, Y.; Jeong, J.; Kang, M.Y.; Kim, J.; Paek, N.C.; Choi, G. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 2014, 5, 4636. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, L.; Mauriat, M.; Guénin, S.; Pelloux, J.; Lefebvre, J.F.; Louvet, R.; Rusterucci, C.; Moritz, T.; Guerineau, F.; Bellini, C.; et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 2008, 6, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Remans, T.; Smeets, K.; Opdenakker, K.; Mathijsen, D.; Vangronsveld, J.; Cuypers, A. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 2008, 227, 1343–1349. [Google Scholar] [CrossRef]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef]
- Lv, Y.; Li, Y.Y.; Liu, X.H.; Xu, K. Identification of Ginger (Zingiber officinale Roscoe) Reference Genes for Gene Expression Analysis. Front. Genet. 2020, 11, 586098. [Google Scholar] [CrossRef]
- Zhou, F.W.; Xu, L.; Shi, C.G.; Yang, S.Z.; Chen, Y.H. Selection and Validation of Reliable Reference Genes for Liquidambar formosana Leaves with Different Leaf Colors. Curr. Issues Mol. Biol. 2024, 46, 9449–9462. [Google Scholar] [CrossRef]
- Reddy, P.S.; Reddy, D.S.; Sivasakthi, K.; Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Evaluation of sorghum Sorghum bicolor (L.) reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front. Plant Sci. 2016, 7, 529. [Google Scholar]
- Kong, Q.S.; Yuan, J.X.; Gao, L.Y.; Zhao, S.; Jiang, W.; Huang, Y.; Bie, Z.L. Identification of suitable reference genes for gene expression normalization in RT-qPCR analysis in watermelon. PLoS ONE 2014, 9, e90612. [Google Scholar]
- Kong, Q.S.; Yuan, J.X.; Niu, P.H.; Xie, J.J.; Jiang, W.; Huang, Y.; Bie, Z.L. Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon. PLoS ONE 2014, 9, e87197. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, J.G.; Hu, Y.H.; Yang, J. Selection of reference Genes for quantitative real-time PCR during flower development in Tree Peony (Paeonia suffruticosa Andr.). Front. Plant Sci. 2016, 7, 516. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Chen, J.H.; Tian, Q.Q.; Wang, S.; Xia, X.L.; Yin, W.L. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR. Physiol. Plant. 2014, 152, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.A.; Breton, M.C.; Bastolla, F.M.; Camargo, S.D.S.; Margis, R.; Frazzon, J.; Pasquali, G. Reference genes for the normalization of gene expression in Eucalyptus species. Plant Cell Physiol. 2012, 53, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.Y.; Lu, H.B.; Tian, C.J.; Xu, T.; Song, C.; Wang, W.; Wei, P.P.; Gu, F.L.; Liu, D.; Cai, Y.P.; et al. Selection of Suitable Reference Genes for Gene Expression Normalization Studies in Dendrobium huoshanense. Genes 2022, 13, 1486. [Google Scholar] [CrossRef]
- Li, H.Y.; Chen, M.D.; Wang, Z.B.; Hao, Z.Y.; Liu, L.C.; Zhao, X.P.; Ni, J.W. Screening and validation of qRT PCR reference genes in Broussonetia papyrifera under cadmium stress. For. Sci. Res. 2023, 36, 129–138. [Google Scholar]
- Peng, X.J.; Liu, H.; Chen, P.L.; Tang, F.; Hu, Y.M.; Wang, F.F.; Pi, Z.; Zhao, M.L.; Chen, N.Z.; Chen, H.; et al. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. Mol. Plant 2019, 12, 661–677. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De, P.A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Li, L.; Li, N.; Fang, H.L.; Qi, X.W.; Zhou, Y.F. Selection and Validation of Reference Genes for Normalisation of Gene Expression in Glehnia littoralis. Sci. Rep. 2020, 10, 7374. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.L.; Xiao, P.; Chen, D.L.; Xu, L.; Zhang, B.H. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆ct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Brockington, S.F.; Ruben, A.F.; Landis, J.B.; Alcorn, K.; Walker, R.H.; Thomas, M.M.; Hileman, L.C.; Glover, B.J. Evolutionary Analysis of the MIXTA Gene Family Highlights Potential Targets for the Study of Cellular Differentiation. Mol. Biol. Evol. 2013, 30, 526–540. [Google Scholar] [CrossRef]
- Zhou, F.W.; Wu, H.T.; Chen, Y.N.; Wang, M.X.; Tuskan, G.A.; Yin, T.M. Function and molecular mechanism of a poplar placenta limited MIXTA gene in regulating differentiation of plant epidermal cells. Int. J. Biol. Macromol. 2023, 242 Pt 2, 124743. [Google Scholar] [CrossRef]
- Wu, H.T.; Tian, Y.; Wan, Q.; Fang, L.; Guan, X.Y.; Chen, J.D.; Hu, Y.; Ye, W.X.; Zhang, H.; Guo, W.Z.; et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol. 2018, 217, 883–895. [Google Scholar] [CrossRef]
- Yan, T.X.; Li, L.; Xie, L.H.; Chen, M.H.; Shen, Q.; Pan, Q.F.; Fu, X.Q.; Shi, P.; Tang, Y.L.; Huang, H.Y.; et al. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytol. 2018, 218, 567–578. [Google Scholar] [CrossRef]
- Yang, S.; Cai, Y.L.; Liu, X.W.; Dong, M.M.; Zhang, Y.Q.; Chen, S.Y.; Zhang, W.B.; Li, Y.J.; Tang, M.; Zhai, X.L.; et al. CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. J. Exp. Bot. 2018, 69, 1887–1902. [Google Scholar] [CrossRef]
- Si, B.W.; Xu, W.C.; Guo, J.P.; Cui, K.; Wang, S.Y.; Tu, Y.; Diao, Q.Y. Effect of Broussonetia papyrifera L. (Paper Mulberry) silage on growth performance, biochemical indexes of serum and fatty acid composition in the longissimus dorsi muscle in dorper×thin-tailed han crossbred sheep. Chinese J. Anim. Vet. Sci. 2019, 50, 1424–1432. [Google Scholar]
- Du, Z.; Sun, L.; Chen, C.; Lin, J.; Yang, F.; Cai, Y. Exploring microbial community structure and metabolic gene clusters during silage fermentation of Paper Mulberry, a high-protein woody plant. Anim. Feed. Sci. Technol. 2020, 275, 114766. [Google Scholar] [CrossRef]
- Ko, H.H.; Chang, W.L.; Lu, T.M. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod. 2008, 71, 1930–1933. [Google Scholar] [CrossRef] [PubMed]
- Mei, R.Q.; Wang, Y.H.; Du, G.H.; Liu, G.M.; Zhang, L.; Cheng, Y.X. Antioxidant lignans from the fruits of Broussonetia papyrifera. J. Nat. Prod. 2009, 72, 621–625. [Google Scholar] [CrossRef]
- Lee, J.M.; Choi, S.S.; Park, M.H.; Jang, H.; Lee, Y.H.; Khim, K.W.; Oh, S.R.; Park, J.; Ryu, H.W.; Choi, J.H. Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially via AMPK Activation. Nutrients 2020, 12, 773. [Google Scholar] [CrossRef]
- Ye, B.; Li, J.; Xu, L.J.; Liu, H.; Yang, M.J. Metabolomic Effects of the Dietary Inclusion of Hermetia illucens Larva Meal in Tilapia. Metabolites 2022, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Fillippo, A.A.; Teunkens, B.; Leirs, H.; Frouz, J.; Diggelen, R.; Miko, L. Quantitative assessment of the dispersal of soil-dwelling oribatid mites via rodents in restored heathlands. Ecol. Evol. 2022, 12, e9653. [Google Scholar] [CrossRef]
- Narsai, R.; Ivanova, A.; Ng, S.; Whelan, J. Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol. 2010, 10, 56. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, J.Y.; Su, W.J.; Wu, H.X.; Shah, K.; Xing, L.B.; Ma, J.J.; Zhang, D.; Zhao, C.P. Selection and Validation of Reliable Reference Genes for Gene Expression Studies in Different Genotypes and TRV-Infected Fruits of Peach (Prunus persica L. Batsch) during Ripening. Genes 2022, 13, 160. [Google Scholar] [CrossRef]
- Zhou, F.W.; Chen, Y.N.; Wu, H.T.; Yin, T.M. Selection of Reliable Reference Genes for Gene Expression Analysis of Female and Male Flowers of Salix suchowensis. Plants 2022, 11, 647. [Google Scholar] [CrossRef]
- Unnikrishnan, B.; Shankaranarayan, D.G.; Sharma, N. Selection of reference gene in Eucalyptus camaldulensis for real-time RT-qPCR. BMC Proc. 2011, 5 (Suppl. S7), P125. [Google Scholar] [CrossRef]
- Ciesielska, A.; Oleksak, B.; Stączek, P. Reference genes for accurate evaluation of expression levels in Trichophyton interdigitale grown under different carbon sources, pH levels and phosphate levels. Sci. Rep. 2019, 9, 5566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Fan, W.; Chen, D.; Jiang, L.; Li, Y.; Yao, Z.Q.; Yang, Y.; Qiu, D. Selection and validation of reference genes for quantitative gene expression normalization in Taxus spp. Sci. Rep. 2020, 10, 22205. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.K.; Cao, X.X.; Liu, H.; Guo, L.N.; Lin, Y.L.; Liu, X.J.; Xiong, Y.; Ni, K.K.; Yang, F.Y. Effects of Lactic Acid Bacteria on Microbial Metabolic Functions of Paper Mulberry Silage: A BIOLOG ECO Microplates Approach. Front. Microbiol. 2021, 12, 689174. [Google Scholar] [CrossRef] [PubMed]
Gene | Gene Description | Gene ID | Primer Sequence F/R(5′-3′) | Product Size (bp) | Efficiency (%) | R2 |
---|---|---|---|---|---|---|
α-TUB1 | Alpha-tubulin1 | Bp02g1361.1 | GGTGGAGCCATACAACAGT | 178 | 98.92 | 0.9951 |
GGCAGTGAGCGATGAGAT | ||||||
α-TUB2 | Alpha-tubulin2 | Bp11g0006.1 | CACTGGACTACAAGGGTTT | 138 | 102.45 | 0.9971 |
GGTGAAGGGTAGATGGTG | ||||||
β-TUB | β-tubulin | Bp06g0215.1 | CGGATGATGCTCACCTTCTC | 117 | 105.83 | 0.9947 |
CATACACTCGTCGGCGTTCT | ||||||
TIP41 | Type 2A phosphatase activator | Bp11g1240.1 | TGCTTATGAGACTAAGGGAC | 136 | 107.77 | 0.9955 |
GCGGAATCAGTAGGGTAT | ||||||
ACT | Actin | Bp01g3225.1 | AATGGTGAAGGCTGGGTT | 178 | 101.28 | 0.9954 |
ACCGTGCTCAATGGGATA | ||||||
CDC2 | Cyclin dependent kinase-putative | Bp07g1967.1 | GGCATTGCTTACTGTCATTC | 175 | 106.73 | 0.9913 |
GTGCTCTGTACCAAAGGGTC | ||||||
H2A | Histone H2A | Bp05g0572.1 | TGGCTGCTGAGGTGCTAGAGTT | 174 | 107.61 | 0.9961 |
GGAGGAGGTTGTGGATGTTGG | ||||||
DnaJ | Chaperone protein DnaJ 49 | Bp05g0847.1 | AGAGGCGAACCACGAGACAT | 196 | 109.48 | 0.9920 |
ACATTGAACCCACCAGACCC | ||||||
UBQ | Ubiquitin family | Bp10g1600.1 | CCCTCGCCGACTACAACA | 189 | 109.12 | 0.9955 |
TCAGCCTCTGGACCTTGC | ||||||
Target gene | ||||||
BpMYB090 | MYB | Bp12g0904.1 | TACCTGACGGCTTGGCTAC | 185 | 103.21 | 0.9942 |
ATCCTCAATCCACCGCTCT |
α-TUB1 | α-TUB2 | β-TUB | DnaJ | ACT | TIP41 | H2A | UBQ | CDC2 | |
---|---|---|---|---|---|---|---|---|---|
Leaf | |||||||||
SD | 1.51 | 1.51 | 1.12 | 0.74 | 0.64 | 0.79 | 0.96 | 0.57 | 1.74 |
CV | 6.22 | 2.53 | 5.52 | 3.2 | 3.4 | 3.58 | 4.28 | 2.72 | 5.15 |
Stem | |||||||||
SD | 2 | 0.8 | 2 | 0.95 | 0.73 | 1 | 1.53 | 0.61 | 1.95 |
CV | 7.32 | 3.6 | 7.45 | 3.75 | 3.38 | 3.73 | 5.78 | 2.63 | 6.99 |
Young fruit | |||||||||
SD | 1.96 | 0.87 | 1.91 | 0.95 | 0.82 | 1.07 | 1.46 | 0.69 | 0.94 |
CV | 7.08 | 3.87 | 6.93 | 3.82 | 3.77 | 3.96 | 5.5 | 2.99 | 3.94 |
Petiole | |||||||||
SD | 2.34 | 0.77 | 1.07 | 0.75 | 0.77 | 0.83 | 1.54 | 0.6 | 1.31 |
CV | 8.47 | 3.48 | 4.53 | 3.08 | 3.57 | 3.12 | 5.71 | 2.55 | 4.54 |
Root | |||||||||
SD | 0.83 | 0.58 | 1.32 | 0.3 | 0.48 | 0.89 | 1.12 | 0.58 | 1.62 |
CV | 2.81 | 2.59 | 4.63 | 1.21 | 2.2 | 3.35 | 4.12 | 2.44 | 5.67 |
Mature fruit | |||||||||
SD | 1.32 | 0.75 | 2 | 0.89 | 0.6 | 1.12 | 1.56 | 0.49 | 1.3 |
CV | 5.09 | 3.4 | 7.54 | 3.59 | 2.75 | 4.19 | 5.9 | 2.07 | 5.82 |
Total | |||||||||
SD | 2.01 | 0.73 | 1.93 | 0.8 | 0.7 | 0.98 | 1.43 | 0.64 | 1.78 |
CV | 7.26 | 3.26 | 7.05 | 3.25 | 3.21 | 3.66 | 5.39 | 2.74 | 6.27 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
Leaf | Gene | ACT | UBQ | β-TUB | DnaJ | TIP41 | H2A | α-TUB2 | α-TUB1 | CDC2 |
stability | 0.119 | 0.120 | 0.317 | 0.375 | 0.418 | 0.446 | 0.493 | 0.541 | 0.723 | |
Stem | Gene | UBQ | ACT | DnaJ | TIP41 | β-TUB | α-TUB1 | α-TUB2 | H2A | CDC2 |
stability | 0.095 | 0.178 | 0.203 | 0.226 | 0.230 | 0.281 | 0.343 | 0.347 | 0.562 | |
Young fruit | Gene | DnaJ | UBQ | ACT | β-TUB | α-TUB2 | H2A | α-TUB1 | TIP41 | CDC2 |
stability | 0.064 | 0.064 | 0.107 | 0.216 | 0.305 | 0.333 | 0.445 | 0.450 | 0.776 | |
Petiole | Gene | UBQ | DnaJ | ACT | β-TUB | α-TUB2 | TIP41 | H2A | α-TUB1 | CDC2 |
stability | 0.217 | 0.227 | 0.239 | 0.275 | 0.310 | 0.323 | 0.350 | 0.420 | 0.650 | |
Root | Gene | ACT | UBQ | DnaJ | β-TUB | α-TUB2 | TIP41 | H2A | α-TUB1 | CDC2 |
stability | 0.217 | 0.227 | 0.239 | 0.275 | 0.310 | 0.323 | 0.350 | 0.420 | 0.650 | |
Mature fruit | Gene | ACT | UBQ | DnaJ | α-TUB1 | β-TUB | TIP41 | α-TUB2 | H2A | CDC2 |
stability | 0.110 | 0.123 | 0.260 | 0.314 | 0.334 | 0.349 | 0.364 | 0.495 | 1.070 | |
Total | Gene | ACT | UBQ | DnaJ | β-TUB | TIP41 | H2A | α-TUB2 | α-TUB1 | CDC2 |
stability | 0.133 | 0.229 | 0.287 | 0.291 | 0.304 | 0.332 | 0.337 | 0.351 | 0.718 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
Leaf | Gene | DnaJ | β-TUB | UBQ | ACT | H2A | TIP41 | α-TUB2 | α-TUB1 | CDC2 |
STEDV | 0.64 | 0.65 | 0.73 | 0.77 | 0.82 | 0.83 | 0.86 | 0.9 | 1.11 | |
Stem | Gene | ACT | β-TUB | H2A | UBQ | TIP41 | α-TUB1 | α-TUB2 | DnaJ | CDC2 |
STEDV | 0.47 | 0.48 | 0.51 | 0.52 | 0.53 | 0.57 | 0.6 | 0.6 | 0.86 | |
Young fruit | Gene | ACT | DnaJ | α-TUB2 | β-TUB | TIP41 | H2A | UBQ | α-TUB1 | CDC2 |
STEDV | 0.5 | 0.52 | 0.55 | 0.58 | 0.61 | 0.68 | 0.73 | 0.74 | 1.15 | |
Petiole | Gene | UBQ | β-TUB | α-TUB2 | TIP41 | ACT | α-TUB1 | H2A | DnaJ | CDC2 |
STEDV | 0.59 | 0.59 | 0.61 | 0.62 | 0.64 | 0.64 | 0.71 | 0.75 | 1.01 | |
Root | Gene | UBQ | DnaJ | α-TUB1 | ACT | α-TUB2 | β-TUB | H2A | TIP41 | CDC2 |
STEDV | 0.55 | 0.55 | 0.57 | 0.61 | 0.63 | 0.72 | 0.75 | 0.87 | 1.07 | |
Mature fruit | Gene | ACT | β-TUB | α-TUB1 | DnaJ | α-TUB2 | TIP41 | UBQ | H2A | CDC2 |
STEDV | 0.6 | 0.58 | 0.65 | 0.65 | 0.65 | 0.68 | 0.68 | 0.95 | 1.56 | |
Total | Gene | ACT | UBQ | DnaJ | β-TUB | TIP41 | α-TUB2 | α-TUB1 | H2A | CDC2 |
STEDV | 0.63 | 0.58 | 0.64 | 0.67 | 0.68 | 0.69 | 0.70 | 0.75 | 1.13 |
Method | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Ranking order in Leaf (Better–Good–Average) | |||||||||
BestKeeper | UBQ | ACT | DnaJ | TIP41 | H2A | β-TUB | α-TUB1 | α-TUB2 | CDC2 |
geNorm | α-TUB1/ UBQ | ACT | TIP41 | β-TUB | DnaJ | α-TUB2 | H2A | CDC2 | |
NormFinder | ACT | UBQ | β-TUB | DnaJ | TIP41 | H2A | α-TUB2 | α-TUB1 | CDC2 |
Delta CT | DnaJ | β-TUB | UBQ | ACT | H2A | TIP41 | α-TUB2 | α-TUB1 | CDC2 |
RefFinder | UBQ | ACT | DnaJ | β-TUB | TIP41 | α-TUB1 | H2A | α-TUB2 | CDC2 |
Ranking order in Stem (Better–Good–Average) | |||||||||
BestKeeper | UBQ | ACT | α-TUB2 | DnaJ | TIP41 | H2A | CDC2 | β-TUB | α-TUB1 |
geNorm | TIP41/ H2A | UBQ | ACT | β-TUB | α-TUB1 | α-TUB2 | DnaJ | CDC2 | |
NormFinder | UBQ | ACT | DnaJ | TIP41 | β-TUB | α-TUB1 | α-TUB2 | H2A | CDC2 |
Delta CT | ACT | β-TUB | H2A | UBQ | TIP41 | α-TUB1 | α-TUB2 | DnaJ | CDC2 |
RefFinder | UBQ | ACT | TIP41 | DnaJ | β-TUB | H2A | α-TUB1 | α-TUB2 | CDC2 |
Ranking order in Young Fruit (Better–Good–Average) | |||||||||
BestKeeper | UBQ | ACT | α-TUB2 | CDC2 | DnaJ | TIP41 | H2A | β-TUB | α-TUB1 |
geNorm | DnaJ/ TIP41 | β-TUB | α-TUB2 | ACT | UBQ | α-TUB1 | H2A | CDC2 | |
NormFinder | DnaJ | UBQ | ACT | β-TUB | α-TUB2 | H2A | α-TUB1 | TIP41 | CDC2 |
Delta CT | ACT | DnaJ | α-TUB2 | β-TUB | TIP41 | H2A | UBQ | α-TUB1 | CDC2 |
RefFinder | DnaJ | ACT | UBQ | β-TUB | α-TUB2 | TIP41 | H2A | α-TUB1 | CDC2 |
Ranking order in Petiole (Better–Good–Average) | |||||||||
BestKeeper | UBQ | DnaJ | α-TUB2 | ACT | TIP41 | β-TUB | CDC2 | H2A | α-TUB1 |
geNorm | ACT/ UBQ | α-TUB1 | β-TUB | TIP41 | α-TUB2 | DnaJ | H2A | CDC2 | |
NormFinder | UBQ | DnaJ | ACT | β-TUB | α-TUB2 | TIP41 | H2A | α-TUB1 | CDC2 |
Delta CT | UBQ | β-TUB | α-TUB2 | TIP41 | ACT | α-TUB1 | H2A | DnaJ | CDC2 |
RefFinder | UBQ | ACT | DnaJ | β-TUB | α-TUB2 | TIP41 | α-TUB1 | H2A | CDC2 |
Ranking order in Root (Better–Good–Average) | |||||||||
BestKeeper | α-TUB1 | DnaJ | ACT | α-TUB2 | UBQ | TIP41 | H2A | β-TUB | CDC2 |
geNorm | α-TUB1/ ACT | DnaJ | β-TUB | UBQ | α-TUB2 | H2A | TIP41 | CDC2 | |
NormFinder | ACT | UBQ | DnaJ | β-TUB | α-TUB2 | TIP41 | H2A | α-TUB1 | CDC2 |
Delta CT | UBQ | DnaJ | α-TUB1 | ACT | α-TUB2 | β-TUB | H2A | TIP41 | CDC2 |
RefFinder | α-TUB1 | ACT | DnaJ | UBQ | β-TUB | α-TUB2 | H2A | TIP41 | CDC2 |
Ranking order in Mature Fruit (Better–Good–Average) | |||||||||
BestKeeper | UBQ | ACT | α-TUB2 | DnaJ | TIP41 | CDC2 | α-TUB1 | H2A | β-TUB |
geNorm | α-TUB1 /DnaJ | ACT | TIP41 | UBQ | β-TUB | α-TUB2 | H2A | CDC2 | |
NormFinder | ACT | UBQ | DnaJ | α-TUB1 | β-TUB | TIP41 | α-TUB2 | H2A | CDC2 |
Delta CT | ACT | β-TUB | α-TUB1 | DnaJ | α-TUB2 | TIP41 | UBQ | H2A | CDC2 |
RefFinder | ACT | DnaJ | UBQ | α-TUB1 | TIP41 | β-TUB | α-TUB2 | H2A | CDC2 |
Ranking order in Total ( Better–Good–Average) | |||||||||
BestKeeper | UBQ | ACT | α-TUB2 | DnaJ | TIP41 | H2A | CDC2 | β-TUB | α-TUB1 |
geNorm | ACT/UBQ | α-TUB1 | β-TUB | TIP41 | DnaJ | α-TUB2 | H2A | CDC2 | |
NormFinder | ACT | UBQ | DnaJ | β-TUB | TIP41 | H2A | α-TUB2 | α-TUB1 | CDC2 |
Delta CT | ACT | UBQ | DnaJ | β-TUB | TIP41 | α-TUB2 | α-TUB1 | H2A | CDC2 |
RefFinder | ACT | UBQ | DnaJ | β-TUB | TIP41 | α-TUB2 | α-TUB1 | H2A | CDC2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Xu, L.; Shi, C.; Wu, F.; Yang, S. Identification of the Optimal Quantitative RT-PCR Reference Gene for Paper Mulberry (Broussonetia papyrifera). Curr. Issues Mol. Biol. 2024, 46, 10779-10794. https://doi.org/10.3390/cimb46100640
Zhou F, Xu L, Shi C, Wu F, Yang S. Identification of the Optimal Quantitative RT-PCR Reference Gene for Paper Mulberry (Broussonetia papyrifera). Current Issues in Molecular Biology. 2024; 46(10):10779-10794. https://doi.org/10.3390/cimb46100640
Chicago/Turabian StyleZhou, Fangwei, Liang Xu, Congguang Shi, Fengying Wu, and Shaozong Yang. 2024. "Identification of the Optimal Quantitative RT-PCR Reference Gene for Paper Mulberry (Broussonetia papyrifera)" Current Issues in Molecular Biology 46, no. 10: 10779-10794. https://doi.org/10.3390/cimb46100640
APA StyleZhou, F., Xu, L., Shi, C., Wu, F., & Yang, S. (2024). Identification of the Optimal Quantitative RT-PCR Reference Gene for Paper Mulberry (Broussonetia papyrifera). Current Issues in Molecular Biology, 46(10), 10779-10794. https://doi.org/10.3390/cimb46100640