Ganoderma lucidum Extract Modulates Gene Expression Profiles Associated with Antioxidant Defense, Cytoprotection, and Senescence in Human Dermal Fibroblasts: Investigation of Quantitative Gene Expression by qPCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of Reagents
2.1.1. Preparation of Extract and Standard Substances
2.1.2. Dry Matter Determination
2.1.3. DPPH Assay
2.2. Cell Culture
2.2.1. Medium Preparation
2.2.2. Cells
2.2.3. Presto Blue Assay and SA-ß-Gal Assay
2.2.4. Phospho-Histone H2A.X Assay
2.2.5. Senescence Model
2.2.6. Main Experiment
2.2.7. IL-6 ELISA
2.3. qPCR-Analysis
2.3.1. RNA Extraction
2.3.2. Measurement of RNA and DNA
2.3.3. cDNA-Synthesis
2.3.4. Core Procedure
Primer Preparation
qPCR Execution and Evaluation
2.3.5. Screening of Genes
Comparison of Gene Expression Between Young and Old Cells
Gene Name | Forward Sequence (5′-3′) | Reverse Sequence (5′-3′) | Ref. |
---|---|---|---|
TUBA1A1 | CTTCGTCTCCGCCATCAG | CGTGTTCCAGGCAGTAGAGC | [18] |
VAMP7 | CAAACATGCTTGGTGTGGAG | AAATTAAAGGCTCGGGAACG | [18] |
TMEM199 | CACCAGCATCTGAGAGAAAGG | CCGTGGAGGCTTCACAAC | [18] |
L3MBTL2 | CCAAGACCAAGAGGTTCTGC | TTTGGTCGGTGGTTTTCC | [18] |
NRF2 | CGGTATGCAACAGGACATTG | GTTGGGGTCTTCTGTGGAGA | [19] |
KEAP1 | CACAGCAATGAACACCATCC | TGTGACCATCATAGCCTCCA | [19] |
BACH1 | TGTGCTTAGAGAAGGATGCTGCTC | TCTTCGTTTCTTCAGGTTCCATTGC | [19] |
HO-1 1 | GAGACGGCTTCAAGCTG | GTGTGTAGGGGATGACC | [19] |
HO-1 2 | GAGGAGTTGCAGGAGCTGCT | GAGTGTAAGGACCCATCGGA | [20] |
FTL | TCTCGGCCATCTCCTGCTTCTG | CGCCTTCCAGAGCCACATCATC | [19] |
FTH | GCCGCCGCCTCTCCTTAGTC | CAGTTTCTCAGCATGTTCCCTCTCC | [19] |
NQO1 | CGGCTTTGAAGAAGAAAGG | CTCGGCAGGATACTGAA | [19] |
γ GCS-L | TCACCTCCTATTGAAGATGG | GGTTACTATTTGGTTTTACCTGT | [19] |
γ GCS-H | GCAGAGGAGTACACCC | CCACTTCCATGTTTTCAAGG | [19] |
TXNRD1 | CCTATGTCGCTTTGGAG | CCCTACGGTTTCTAAGCC | [19] |
TXN | CTGCTTTTCAGGAAGCCTTG | ACCCACCTTTTGTCCCTTCT | [19] |
GSHPx | GGCTACTCTCTCGTTTCCTTTC | GTTCTTGGCGTTCTCCTACAG | [19] |
SOD1 | AGTGCAGGGCATCATCAATTTCGAGCAG | GATGCAATGGTCTCCTGAGAGTGAGATC | [19] |
SOD2 1 | GTCACCGAGGAGAAGTACCAGGAG | CACCAACAGATGCAGCCGTCAG | [19] |
CAT | CATTCGATCTCACCAAGGTTTGGCC | AGCACGGTAGGGACAGTTCACAGG | [19] |
SESN1-T1 | GGCAAACCATTTTGAGGAAA | TGGTCCCTGTCCTAGTGGTC | [19] |
SESN1-T2 | GCTGGGCTGCAAGCAGTG | CCAAGTTCCTCGTCCTGGT | [19] |
SESN2 | GCACCTACACCCCCTAGTGA | GTCTTCCACAAAGCACAGCA | [19] |
SESN3 | AGTGCTGCGGAAGGATAAAA | CCATGCGCAACATGTAAAAC | [19] |
Col1A1 1 | AGACATCCCACCAATCACCTG | GGCAGTTCTTGGTCTCGTCAC | [21] |
Col1A1 2 | AAGGGACACAGAGGTTTCAGTGG | CAGCACCAGTAGCACCATCATTTC | [22] |
ELN | GCCCCTGGATAAAAGACTCC | GTCCTCCTGCTCCTGCTGT | [23] |
MMP1 | AGTGACTGGGAAACCAGATGCTGA | CTCTTGGCAAATCTGGCCTGTAA | [24] |
MMP3 | CTGGACTCCGACACTCTGGA | CAGGAAAGGTTCTGAAGTGACC | [24] |
CISD2 | TCCCAGTCCCTGAAAGCATT | ACGAACTGCAAGGTAGCCAAGA | [25] |
SIRT1 | AGCCTTGTCAGATAAGGAAGGA | ACAGCTTCACAGTCAACTTTGT | [26] |
TERT | CACCTGCCGTCTTCACTTCC | GTGAACAATGGCGAATCTGG | [27] |
GDF11 1 | CCACCACCGAGACCGTCATT | GAGGGCTGCCATCTGTCTGT | [28] |
GDF11 2 | GCAAACTGCGGCTCAAGG | GCTAATGACGGTCTCGGTGG | [29] |
FOXO1 | TCATGTCAACCTATGGCAG | CATGGTGCTTACCGTGTG | [26] |
LMNB1 1 | AAGCAGCTGGAGTGGTTGTT | TTGGATGCTCTTGGGGTT | [30] |
LMNB1 2 | GGGAAGTTTATTCGCTTGAAGA | ATCTCCCAGCCTCCCATT | [30] |
JAK2 | TCTGGGGAGTATGTTGCAGAA | AGACATGGTTGGGTGGATACC | [31] |
MICA | TAAAATCCGGCGTAGTCCTG | GCATGTCACGGTAATGTTGC | [32] |
PD-L1 | TGGCATTTGCTGAACGCATTT | TGCAGCCAGGTCTAATTGTTTT | [33] |
ULBP1 | CCTGGAGCCTTCTCATCATC | AGGCCTTGAACTTCACACCA | [32] |
ULBP2 | CGCTACCAAGATCCTTCTGTG | GGGATGACGGTGATGTCATA | [32] |
ULBP4 | GACCTCAGGATGCTCCTTTG | GTGCACCGTTCTGCTTCAC | [32] |
MT1X | GCTCCTGTGCCTGTGCCG | AGCAAACGGGTCGGGTTGTAC | [19] |
MT1E | GCCCGACCTCCGTCTATAA | AACAAGCAGTCAGGCAGTTG | [19] |
MT2A | CGCCGCCGGTGACTCCTG | ACGGTCACGGTCAGGGTTGTAC | [19] |
MT1G | TCCTGTGCCGCTGGTGTCTC | ACGGGTCACTCTATTTGTACTTGGG | [19] |
IL-1β | GGACAGGATATGGAGCAACAAGTGG | TCATCTTTCAACACGCAGGACAGG | [34] |
IL-6 | GACAGCCACTCACCTCTTCAGAAC | GCCTCTTTGCTGCTTTCACACATG | [34] |
TNF-α | AAGGACACCATGAGCACTGAAAGC | AGGAAGGAGAAGAGGCTGAGGAAC | [34] |
hCOQ10A | TTTCAAGGATGCTGGCTCTT | GGCCTCAGCTTGTCAAATTC | [35] |
MSRA | TGGTTTTGCAGGAGGCTATAC | GTAGATGGCCGAGCGGTACT | [19] |
Further Evaluation Through Standard Curves
2.3.6. Main qPCR Experiment
2.4. Statistics
3. Results
3.1. Definition of Reagents
3.1.1. Fruiting Bodies Extracts
3.1.2. Celldescription
3.1.3. Definition of Senescent State
3.1.4. Expression of Relevant Genes in Etoposide-Induced Senescent Cells
3.1.5. Growth Curves
3.2. Ganoderma Lucidum and IL-6 Expression
3.3. Senolyotic Properties of Reishi
3.4. Analysis of Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayflick, L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp. Cell Res. 1965, 37, 614–636. [Google Scholar] [CrossRef] [PubMed]
- Hayflick, L.; Moorhead, P.S. The Serial Cultivation of Human Diploid Cell Strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef] [PubMed]
- Velarde, M.C.; Demaria, M.; Campisi, J. Senescent Cells and Their Secretory Phenotype as Targets for Cancer Therapy. In Cancer and Aging: From Bench to Clinics; Karger Publishers: Basel, Switzerland, 2013; ISBN 9783318023077. [Google Scholar]
- Zorina, A.; Zorin, V.; Isaev, A.; Kudlay, D.; Vasileva, M.; Kopnin, P. Dermal Fibroblasts as the Main Target for Skin Anti-Age Correction Using a Combination of Regenerative Medicine Methods. Curr. Issues Mol. Biol. 2023, 45, 3829–3847. [Google Scholar] [CrossRef] [PubMed]
- Chin, T.; Er Lee, X.; Yi Ng, P.; Lee, Y.; Dreesen, O. The Role of Cellular Senescence in Skin Aging and Age-Related Skin Pathologies. Front. Physiol. 2023, 14, 1297637. [Google Scholar] [CrossRef]
- Herranz, N.; Gil, J. Mechanisms and Functions of Cellular Senescence. J. Clin. Investig. 2018, 128, 1238–1246. [Google Scholar] [CrossRef]
- Di Micco, R.; Krizhanovsky, V.; Baker, D.; dAdda di Fagagna, F. Cellular Senescence in Ageing: From Mechanisms to Therapeutic Opportunities. Nat. Rev. Mol. Cell Biol. 2020, 22, 75–95. [Google Scholar] [CrossRef]
- Waters, D.W.; Schuliga, M.; Pathinayake, P.S.; Wei, L.; Tan, H.-Y.; Blokland, K.E.C.; Jaffar, J.; Westall, G.P.; Burgess, J.K.; Prêle, C.M.; et al. A Senescence Bystander Effect in Human Lung Fibroblasts. Biomedicines 2021, 9, 1162. [Google Scholar] [CrossRef]
- Petrova, N.V.; Velichko, A.K.; Razin, S.V.; Kantidze, O.L. Small Molecule Compounds That Induce Cellular Senescence. Aging Cell 2016, 15, 999–1017. [Google Scholar] [CrossRef]
- Kühnel, H.; Pasztorek, M.; Kuten-Pella, O.; Kramer, K.; Bauer, C.; Lacza, Z.; Nehrer, S. Effects of Blood-Derived Products on Cellular Senescence and Inflammatory Response: A Study on Skin Rejuvenation. Curr. Issues Mol. Biol. 2024, 46, 1865–1885. [Google Scholar] [CrossRef]
- Imb, M.; Véghelyi, Z.; Maurer, M.; Kühnel, H. Exploring Senolytic and Senomorphic Properties of Medicinal Plants for Anti-Aging Therapies. Int. J. Mol. Sci. 2024, 25, 10419. [Google Scholar] [CrossRef]
- Odeh, A.; Dronina, M.; Domankevich, V.; Shams, I.; Manov, I. Downregulation of the Inflammatory Network in Senescent Fibroblasts and Aging Tissues of the Long-Lived and Cancer-Resistant Subterranean Wild Rodent, Spalax. Aging Cell 2020, 19, e13045. [Google Scholar] [CrossRef] [PubMed]
- Georget, M.; Defois, A.; Guiho, R.; Bon, N.; Allain, S.; Boyer, C.; Halgand, B.; Waast, D.; Grimandi, G.; Fouasson-Chailloux, A.; et al. Development of a DNA Damage-Induced Senescence Model in Osteoarthritic Chondrocytes. Aging 2023, 15, 8576–8593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, H.; Man, M.; Hu, L. Aging in the Dermis: Fibroblast Senescence and Its Significance. Aging Cell 2024, 23, e14054. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O.; Kogod, A. Cellular Senescence: The Good, the Bad and the Unknown. Nat. Rev. Nephrol. 2022, 18, 611. [Google Scholar] [CrossRef]
- Nousis, L.; Kanavaros, P.; Barbouti, A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants 2023, 12, 1250. [Google Scholar] [CrossRef]
- Nandita, H.; Manohar, M. Gowda DV Recent Review on Oxidative Stress, Cellular Senescence and Age-Associated Diseases. Int. J. Res. Pharm. Sci. 2020, 11, 1331–1342. [Google Scholar] [CrossRef]
- Hernandez-Segura, A.; Rubingh, R.; Demaria, M. Identification of Stable Senescence-associated Reference Genes. Aging Cell 2019, 18, e12911. [Google Scholar] [CrossRef]
- Marionnet, C.; Pierrard, C.; Lejeune, F.; Sok, J.; Thomas, M.; Bernerd, F. Different Oxidative Stress Response in Keratinocytes and Fibroblasts of Reconstructed Skin Exposed to Non Extreme Daily-Ultraviolet Radiation. PLoS ONE 2010, 5, e12059. [Google Scholar] [CrossRef]
- Patwardhan, J.; Bhatt, P. Flavonoids Derived from Abelmoschus Esculentus AttenuatesUV-B Induced Cell Damage in Human Dermal Fibroblasts ThroughNrf2-ARE Pathway. Pharmacogn. Mag. 2016, 12, 129. [Google Scholar] [CrossRef]
- Marcheggiani, F.; Kordes, S.; Cirilli, I.; Orlando, P.; Silvestri, S.; Vogelsang, A.; Möller, N.; Blatt, T.; Weise, J.M.; Damiani, E.; et al. Anti-Ageing Effects of Ubiquinone and Ubiquinol in a Senescence Model of Human Dermal Fibroblasts. Free Radic. Biol. Med. 2021, 165, 282–288. [Google Scholar] [CrossRef]
- Caporarello, N.; Meridew, J.A.; Jones, D.L.; Tan, Q.; Haak, A.J.; Choi, K.M.; Manlove, L.J.; Prakash, Y.S.; Tschumperlin, D.J.; Ligresti, G. PGC1α Repression in IPF Fibroblasts Drives a Pathologic Metabolic, Secretory and Fibrogenic State. Thorax 2019, 74, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.R.; Sivaprakasam, T.O.; Mishra, A.; Kumar, L.M.S.; Prakash, N.S.; Prabhu, S.; Ramakrishnan, S. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes. PLoS ONE 2016, 11, e0145921. [Google Scholar] [CrossRef] [PubMed]
- Noh, E.-M.; Lee, G.; Lim, C.-H.; Kwon, K.B.; Kim, J.-M.; Song, H.-K.; Yang, H.J.; Kim, M.J.; Kim, M.; Lee, Y.-R. Protective Effects of Evodiae Fructus Extract against Ultraviolet-Induced MMP-1 and MMP-3 Expression in Human Dermal Fibroblasts. J. Herb. Med. 2022, 35, 100586. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chiang, T.-H.; Chen, W.-J.; Sun, Y.-Y.; Lee, Y.-H.; Lin, M.-S. CISD2 Serves a Novel Role as a Suppressor of Nitric Oxide Signalling and Curcumin Increases CISD2 Expression in Spinal Cord Injuries. Injury 2015, 46, 2341–2350. [Google Scholar] [CrossRef]
- Yu, S.-L.; Lee, S.-I.; Park, H.-W.; Lee, S.K.; Kim, T.-H.; Kang, J.; Park, S.-R. SIRT1 Suppresses in Vitro Decidualization of Human Endometrial Stromal Cells through the Downregulation of Forkhead Box O1 Expression. Reprod. Biol. 2022, 22, 100672. [Google Scholar] [CrossRef]
- Xie, L.; Yin, W.; Tang, F.; He, M. Pan-Cancer Analysis of TERT and Validation in Osteosarcoma Cell Lines. Biochem. Biophys. Res. Commun. 2023, 639, 106–116. [Google Scholar] [CrossRef]
- Frohlich, J.; Mazza, T.; Sobolewski, C.; Foti, M.; Vinciguerra, M. GDF11 Rapidly Increases Lipid Accumulation in Liver Cancer Cells through ALK5-Dependent Signaling. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2021, 1866, 158920. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Zhao, Y.; Qin, Y.; Chen, X.; Zhou, Y.; Pang, H.; Xu, Z.; Liu, X.; Yu, Y.; et al. Extracellular Vesicles Derived from Human Dermal Fibroblast Effectively Ameliorate Skin Photoaging via MiRNA-22-5p-GDF11 Axis. Chem. Eng. J. 2023, 452, 139553. [Google Scholar] [CrossRef]
- Freund, A.; Laberge, R.M.; Demaria, M.; Campisi, J. Lamin B1 Loss Is a Senescence-Associated Biomarker. Mol. Biol. Cell 2012, 23, 2066–2075. [Google Scholar] [CrossRef]
- Liew, E.L.; Araki, M.; Hironaka, Y.; Mori, S.; Tan, T.Z.; Morishita, S.; Edahiro, Y.; Ohsaka, A.; Komatsu, N. Identification of AIM2 as a Downstream Target of JAK2V617F. Exp. Hematol. Oncol. 2015, 5, 2. [Google Scholar] [CrossRef]
- Sagiv, A.; Krizhanovsky, V. Immunosurveillance of Senescent Cells: The Bright Side of the Senescence Program. Biogerontology 2013, 14, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Zeisbrich, M.; Chevalier, N.; Sehnert, B.; Rizzi, M.; Venhoff, N.; Thiel, J.; Voll, R.E. CMTM6-Deficient Monocytes in ANCA-Associated Vasculitis Fail to Present the Immune Checkpoint PD-L1. Front. Immunol. 2021, 12, 673912. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Wang, X.; Wang, H.; Wang, Y.; Zhang, Y.; Chen, J.; Zhu, X.; Chen, B. GDF11 Ameliorates Severe Acute Pancreatitis through Modulating Macrophage M1 and M2 Polarization by Targeting the TGFβR1/SMAD-2 Pathway. Int. Immunopharmacol. 2022, 108, 108777. [Google Scholar] [CrossRef] [PubMed]
- Stavreva, D.A.; Varticovski, L.; Levkova, L.; George, A.A.; Davis, L.; Pegoraro, G.; Blazer, V.; Iwanowicz, L.; Hager, G.L. Novel Cell-Based Assay for Detection of Thyroid Receptor Beta-Interacting Environmental Contaminants. Toxicology 2016, 368–369, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.A.; Zhang, M.; Yin, F.; Maines, M.D. Heme Oxygenase-1, Oxidation, Inflammation, and Atherosclerosis. Front. Pharmacol. 2012, 3, 119. [Google Scholar] [CrossRef]
- Kim, H.J.; Zheng, M.; Kim, S.-K.; Cho, J.J.; Shin, C.H.; Joe, Y.; Chung, H.T. CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation. Immune Netw. 2011, 11, 376. [Google Scholar] [CrossRef]
- Cuong, V.T.; Chen, W.; Shi, J.; Zhang, M.; Yang, H.; Wang, N.; Yang, S.; Li, J.; Yang, P.; Fei, J. The Anti-Oxidation and Anti-Aging Effects of Ganoderma Lucidum in Caenorhabditis Elegans. Exp. Gerontol. 2019, 117, 99–105. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, Y.; Luo, Y.; Zhang, J.; Zhu, X.; Xiao, J. Ganoderic Acid D Prevents Oxidative Stress-induced Senescence by Targeting 14-3-3ε to Activate CaM/CaMKII/NRF2 Signaling Pathway in Mesenchymal Stem Cells. Aging Cell 2022, 21, e13686. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, H.; Luo, Y.; Zhao, Y.-J.; Xiao, J.-H. Ganoderic Acid D Protects Human Amniotic Mesenchymal Stem Cells against Oxidative Stress-Induced Senescence through the PERK/NRF2 Signaling Pathway. Oxid. Med. Cell Longev. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Kuhnel, H.; Adilijiang, A.; Dadak, A.; Wieser, M.; Upur, H.; Stolze, K.; Grillari, J.; Strasser, A. Investigations into Cytotoxic Effects of the Herbal Preparation Abnormal Savda Munziq. Chin. J. Integr. Med. 2015. [Google Scholar] [CrossRef]
- Pole, A.; Dimri, M.; Dimri, G.P. Oxidative Stress, Cellular Senescence and Ageing. AIMS Mol. Sci. 2016, 3, 300–324. [Google Scholar] [CrossRef]
- Abdelmoaty, A.A.A.; Chen, J.; Zhang, K.; Wu, C.; Li, Y.; Li, P.; Xu, J. Senolytic Effect of Triterpenoid Complex from Ganoderma Lucidum on Adriamycin-Induced Senescent Human Hepatocellular Carcinoma Cells Model in Vitro and in Vivo. Front. Pharmacol. 2024, 15, 1422363. [Google Scholar] [CrossRef]
- Wanqing, S.; Yishi, W.; Yang, Z.; Nanhu, Q. The Emerging Role of Sestrin2 in Cell Metabolism, and Cardiovascular and Age-Related Diseases. Aging Dis. 2020, 11, 154. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Chen, Z.; Li, C.; Han, T.; Liu, H.; Wang, X. Sestrin2 as a Gatekeeper of Cellular Homeostasis: Physiological Effects for the Regulation of Hypoxia-related Diseases. J. Cell Mol. Med. 2021, 25, 5341–5350. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mercado, V.J.; Fridley, B.L.; Saligan, L.N. Sestrin Family of Genes and Their Role in Cancer-Related Fatigue. Support. Care Cancer 2018, 26, 2071–2074. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Hammerberg, C.; Li, Y.; He, T.; Quan, T.; Voorhees, J.J.; Fisher, G.J. Expression of Catalytically Active Matrix Metalloproteinase-1 in Dermal Fibroblasts Induces Collagen Fragmentation and Functional Alterations That Resemble Aged Human Skin. Aging Cell 2013, 12, 661–671. [Google Scholar] [CrossRef]
- Hayami, T.; Kapila, Y.L.; Kapila, S. MMP-1 (Collagenase-1) and MMP-13 (Collagenase-3) Differentially Regulate Markers of Osteoblastic Differentiation in Osteogenic Cells. Matrix Biol. 2008, 27, 682–692. [Google Scholar] [CrossRef]
- Milara, J.; Hernandez, G.; Ballester, B.; Morell, A.; Roger, I.; Montero, P.; Escrivá, J.; Lloris, J.M.; Molina-Molina, M.; Morcillo, E.; et al. The JAK2 Pathway Is Activated in Idiopathic Pulmonary Fibrosis. Respir. Res. 2018, 19, 24. [Google Scholar] [CrossRef]
- Silvennoinen, O.; Hubbard, S.R. Molecular Insights into Regulation of JAK2 in Myeloproliferative Neoplasms. Blood 2015, 125, 3388–3392. [Google Scholar] [CrossRef]
- Kirkland, J.L.; Tchkonia, T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Tan, K.M.; Wong, P.F.; Murugan, D.D.; Hu, Z.; Lin, Y. Exploring the Perspectives of Pharmaceutical Experts and Healthcare Practitioners on Senolytic Drugs for Vascular Aging-Related Disorder: A Qualitative Study. Front. Pharmacol. 2023, 14, 1254470. [Google Scholar] [CrossRef]
Priming | Reverse Transcription | Inactivation | Hold | |
---|---|---|---|---|
Temperature [°C] | 25 | 46 | 95 | 4 |
Duration [min] | 5 | 20 | 1 | 10 |
Polymerase Activation | Denaturation | Annealing | |
---|---|---|---|
Temperature [°C] | 95 | 95 | 60 |
Duration [s] | 30 | 5 | 30 |
Cycles | 1 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kühnel, H.; Seiler, M.; Feldhofer, B.; Ebrahimian, A.; Maurer, M. Ganoderma lucidum Extract Modulates Gene Expression Profiles Associated with Antioxidant Defense, Cytoprotection, and Senescence in Human Dermal Fibroblasts: Investigation of Quantitative Gene Expression by qPCR. Curr. Issues Mol. Biol. 2025, 47, 130. https://doi.org/10.3390/cimb47020130
Kühnel H, Seiler M, Feldhofer B, Ebrahimian A, Maurer M. Ganoderma lucidum Extract Modulates Gene Expression Profiles Associated with Antioxidant Defense, Cytoprotection, and Senescence in Human Dermal Fibroblasts: Investigation of Quantitative Gene Expression by qPCR. Current Issues in Molecular Biology. 2025; 47(2):130. https://doi.org/10.3390/cimb47020130
Chicago/Turabian StyleKühnel, Harald, Markus Seiler, Barbara Feldhofer, Atefeh Ebrahimian, and Michael Maurer. 2025. "Ganoderma lucidum Extract Modulates Gene Expression Profiles Associated with Antioxidant Defense, Cytoprotection, and Senescence in Human Dermal Fibroblasts: Investigation of Quantitative Gene Expression by qPCR" Current Issues in Molecular Biology 47, no. 2: 130. https://doi.org/10.3390/cimb47020130
APA StyleKühnel, H., Seiler, M., Feldhofer, B., Ebrahimian, A., & Maurer, M. (2025). Ganoderma lucidum Extract Modulates Gene Expression Profiles Associated with Antioxidant Defense, Cytoprotection, and Senescence in Human Dermal Fibroblasts: Investigation of Quantitative Gene Expression by qPCR. Current Issues in Molecular Biology, 47(2), 130. https://doi.org/10.3390/cimb47020130