Effect of Arc Currents on the Mechanical, High Temperature Oxidation and Corrosion Properties of CrSiN Nanocomposite Coatings
Abstract
:1. Introduction
2. Experimental Details
2.1. Deposition Process
2.2. Characterization
3. Results and Discussion
3.1. Structure of the Coatings
3.2. Mechanical Properties
3.3. High Temperature Resistance Properties
3.4. Corrosion Resistance Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, H.; Tsai, M.T.; Chen, H.W.; Huang, J.C.; Duh, J.G. Improving high temperature tribological characteristics on nanocomposite CrAlSiN coating by Mo doping. Surf. Coat. Technol. 2018, 349, 752–756. [Google Scholar] [CrossRef]
- Tian, C.; Wang, Z.; Zou, C.; Tang, X.; Xie, X.; Li, S.; Liang, F.; Li, Z.; Liu, Y.; Su, F. Ternary and quarternary TiBN and TiBCN nanocomposite coatings deposited by arc ion plating. Surf. Coat. Technol. 2019, 359, 445–450. [Google Scholar] [CrossRef]
- Postolnyi, B.; Beresnev, V.; Abadias, G.; Bondar, O.; Rebouta, L.; de Araújo, J.P.E.; Pogrebnjak, A. Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness. J. Alloys Compd. 2017, 725, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Postolnyi, B.; Beresnev, V.; Abadias, G.; Bondar, O.; Rebouta, L.; de Araújo, J.P.E.; Pogrebnjak, A. Residual stress, mechanical and microstructure properties of multilayer Mo2N/CrN coating produced by R.F Magnetron discharge. Appl. Surf. Sci. 2017, 395, 117–121. [Google Scholar]
- Tian, C.; Han, B.; Zou, C.; Xie, X.; Li, S.; Liang, F.; Tang, X.; Wang, Z.; Pelenovich, V.; Zeng, X.; et al. Synthesis of monolayer MoNx and nanomultilayer CrN/Mo2N coatings using arc ion plating. Surf. Coat. Technol. 2019, 370, 125–129. [Google Scholar] [CrossRef]
- Mikula, M.; Grančič, B.; Drienovský, M.; Satrapinskyy, L.; Roch, T.; Hájovská, Z.; Gregor, M.; Plecenik, T.; Čička, R.; Kúš, P. Thermal stability and high-temperature oxidation behavior of Si–Cr–N coatings with high content of silicon. Surf. Coat. Technol. 2013, 232, 349–356. [Google Scholar] [CrossRef]
- Berger, L.-M.; Sempf, K.; Sohn, Y.J.; Vaßen, R. Influence of feedstock powder modification by heat treatments on the properties of APS-sprayed Al2O3-40% TiO2 coatings. J. Therm. Spray Technol. 2018, 27, 654–666. [Google Scholar] [CrossRef]
- Basha, G.M.T.; Srikanth, A.; Venkateshwarlu, B. A critical review on nano structured coatings for alumina-titania (Al2O3–TiO2) deposited by air plasma spraying process (APS). Mater. Today Proc. 2020, 22, 1554–1562. [Google Scholar]
- Paleu, C.C.; Munteanu, C.; Istrate, B.; Bhaumik, S.; Vizureanu, P.; Bălţatu, M.S.; Paleu, V. Microstructural analysis and tribological behavior of AMDRY 1371 (Mo–NiCrFeBSiC) atmospheric plasma spray deposited, Thin Coatings. Coatings 2020, 10, 1186. [Google Scholar] [CrossRef]
- Yao, H.; Zhou, Z.; Xue, Y.; Zhou, Z.; Tan, Z.; He, D.; Wang, B.; Wang, L. Microstructure and thermal conductivity of wire-arc sprayed FeCrNbBSiC amorphous coating. J. Alloy. Compd. 2019, 788, 514–521. [Google Scholar] [CrossRef]
- Boulos, M.I. RF induction plasma spraying: State-of-the-art review. J. Therm. Spray Technol. 1992, 1, 33–40. [Google Scholar] [CrossRef]
- Junior, P.R.C.A.; Pukasiewicz, A.G.M. Evaluation of microstructure, mechanical and tribological properties of a Babbitt alloy deposited by arc and flame spray processes. Tribol. Int. 2018, 131, 148–157. [Google Scholar] [CrossRef]
- Nutsch, G. Atmospheric Induction Plasma Spraying. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2011, 15, 61–74. [Google Scholar] [CrossRef]
- Yan, P.; Deng, J.X.; Lian, Y.S.; Zhao, J.; Chen, Z.; Ai, X. Effect of depositing parameters on microstructures and properties of multi arc ion plating ZrTiN films. Surf. Eng. 2012, 28, 17–23. [Google Scholar] [CrossRef]
- Hiroyuki, H.; Ayako, K.; Tetsuya, S. Ti1−xAlxN, Ti1−xZrxN and Ti1−xCrxN films synthesized by the AIP method. Surf. Coat. Technol. 2000, 132, 76–79. [Google Scholar]
- Hiroyuki, H.; Masahiro, K.; Tetsuya, S. Effects of Al contents on microstructures of Cr1-xAlxN and Zr1−xAlxN films synthesized by cathodic arc method. Surf. Coat. Technol. 2005, 200, 2409–2413. [Google Scholar]
- Anders, A. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS). Surf. Coat. Technol. 2014, 257, 308–325. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Park, I.W.; Kim, K. Influence of N2 gas pressure and negative bias voltage on the microstructure and properties of Cr-Si-N films by a hybrid coating system. J. Vac. Sci. Technol. A Vac. Surf. Film. 2008, 26, 1188–1194. [Google Scholar] [CrossRef]
- Veprek, S. Conventional and new approaches towards the design of novel super-hard materials. Surf. Coat. Technol. 1997, 97, 15–22. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, B.H. Mechanical properties and oxidation behavior of Ti–Si–N films prepared by plasma assisted CVD. Adv. Mater. 1999, 11, 275–279. [Google Scholar] [CrossRef]
- Diserens, M.; Patscheider, J.; Lévy, F. Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 1998, 108, 241–246. [Google Scholar] [CrossRef]
- Hu, X.P.; Han, Z.H.; Li, G.Y. Microstructure and properties of Ti–Si–N nanocomposite films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2002, 20, 1921–1926. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Deepthi, B.; Rajamk, S. Deposition and characterization of CrN/Si3N4 and CrAlN/Si3N4 Nanocomposite coatings prepared using reactive DC unbalanced magnetron sputtering. Surf. Coat. Technol. 2007, 20, 9468–9475. [Google Scholar] [CrossRef]
- Wang, Q.M.; Kim, K.H. Microstructural control of Cr–Si–N Films by a Hybrid arc ion plating and magnetron sputtering process. Acta Mater. 2009, 57, 4974–4987. [Google Scholar] [CrossRef]
- Martinez, E.; Sanjinés, R.; Banakh, O.; Lévy, F. Electrical, optical and mechanical properties of sputtered CrNy and Cr1−xSixN1.02 thin films. Thin Solid Film. 2004, 447, 332–336. [Google Scholar] [CrossRef]
- Musil, J.; Jirout, M. Toughness of hard nanostructured ceramic thin films. Surf. Coat. Technol. 2007, 201, 5148–5152. [Google Scholar] [CrossRef]
- Huang, F.; Ge, F.F.; Zhu, P. Superhard V–Si–N Coatings (>50 GPa) with the Cell-like Nanostructure Prepared by Magnetron Sputtering. Surf. Coat. Technol. 2013, 232, 600–605. [Google Scholar] [CrossRef]
- Veprek, S.; Reiprich, S. A concept for the design of novel superhard coatings. Thin Solid Film. 1995, 268, 64–71. [Google Scholar] [CrossRef]
Deposition Parameters | Cr Adhesive Layer | CrN Inter Layer | CrSiN |
---|---|---|---|
Ar (sccm) | 9 | / | / |
N2 (sccm) | / | 60 | 38 |
Working pressure (Pa) | 1.0 | 1.0 | 1.0 |
Deposition time (min) | 5 | 5 | 40 |
Cr currents (A) | 80 | 80 | / |
CrSi currents (A) | / | / | 50–90 |
Nias voltage (V) | −160 | −140 | −60 |
Coating Sample | Ecorr (−V) | Icorr (μA/cm2) | Rp (kΩ·cm2) |
---|---|---|---|
cemented carbide | 0.4653 | 2.70 | 13.01 |
CrSiN | 0.2503 | 0.34 | 124.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Zou, C. Effect of Arc Currents on the Mechanical, High Temperature Oxidation and Corrosion Properties of CrSiN Nanocomposite Coatings. Coatings 2022, 12, 40. https://doi.org/10.3390/coatings12010040
Xiang Y, Zou C. Effect of Arc Currents on the Mechanical, High Temperature Oxidation and Corrosion Properties of CrSiN Nanocomposite Coatings. Coatings. 2022; 12(1):40. https://doi.org/10.3390/coatings12010040
Chicago/Turabian StyleXiang, Yanxiong, and Changwei Zou. 2022. "Effect of Arc Currents on the Mechanical, High Temperature Oxidation and Corrosion Properties of CrSiN Nanocomposite Coatings" Coatings 12, no. 1: 40. https://doi.org/10.3390/coatings12010040