Compatibility and Efficacy Evaluations of Organic Protective Coatings for Contemporary Muralism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Mock-Up Samples
2.2. Protective Coatings: Choice and Application Methodologies
2.3. Investigation Techniques and Testing Methodologies
3. Results and Discussion
3.1. Compatibility Evaluation
3.2. Evaluation of Protective Efficacy
3.3. Testing Protocol and Discussion of the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mezzadri, P. Contemporary murals in the street and urban art field: Critical reflections between preventive conservation and restoration of public art. Heritage 2021, 4, 2515–2525. [Google Scholar] [CrossRef]
- Pagnin, L.; Guarnieri, N.; Izzo, F.C.; Goidanich, S.; Toniolo, L. Protecting Street Art from Outdoor Environmental Threats: What Are the Challenges? Coatings 2023, 13, 2044. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Rivas, T.; González, N.; Alonso-Villar, E.M. Deterioration of graffiti spray paints applied on granite after a decade of natural environment. Sci. Total Environ. 2022, 826, 154169. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Antonio, J.S.; Alonso-Villar, E.M.; Rivas, T.; Márquez, I. Evaluation of a protective acrylic finish applied to surfaces painted with acrylic paints for outdoor or indoor uses. Dye. Pigment. 2023, 212, 111141. [Google Scholar] [CrossRef]
- Cimino, D.; Lamuraglia, R.; Saccani, I.; Berzioli, M.; Izzo, F.C. Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage 2022, 5, 581–609. [Google Scholar] [CrossRef]
- Guarnieri, N.; Pagnin, L.; Di Benedetto, A.; Mirani, F.; Comelli, D.; Dellasega, D.; Goidanich, S.; Toniolo, L. The rapid chromatic alteration of paints of contemporary muralism: The case of “20 Years of Freedom and Democracy” in Milan. Dye. Pigment. 2025; submitted with reviews. [Google Scholar]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Schreiner, M. SO2- and NOx- initiated atmospheric degradation of polymeric films: Morphological and chemical changes, influence of relative humidity and inorganic pigments. Microchem. J. 2021, 164, 106087. [Google Scholar] [CrossRef]
- Pagnin, L.; Zendri, E.; Izzo, F.C. How Can Ozone and Relative Humidity Affect Artists’ Alkyd Paints? A FT-IR and Py-GC/MS Systematic Study. Polymers 2022, 14, 1831. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Weber, J.; Schreiner, M. Photodegradation Kinetics of Alkyd Paints: The Influence of Varying Amounts of Inorganic Pigments on the Stability of the Synthetic Binder. Front. Mater. 2020, 7, 600887. [Google Scholar] [CrossRef]
- Bosi, A.; Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Postorino, P.; Curini, R.; Bianco, A. Street art graffiti: Discovering their composition and alteration by FTIR and micro-Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117474. [Google Scholar] [CrossRef]
- La Nasa, J.; Campanella, B.; Sabatini, F.; Rava, A.; Shank, W.; Lucero-Gomez, P.; De Luca, D.; Legnaioli, S.; Palleschi, V.; Colombini, M.P.; et al. 60 years of street art: A comparative study of the artists’ materials through spectroscopic and mass spectrometric approaches. J. Cult. Herit. 2021, 48, 129–140. [Google Scholar] [CrossRef]
- Melchiorre Di Crescenzo, M.; Zendri, E.; Sánchez-Pons, M.; Fuster-López, L.; Yusá-Marco, D.J. The use of waterborne paints in contemporary murals: Comparing the stability of vinyl, acrylic and styrene-acrylic formulations to outdoor weathering conditions. Polym. Degrad. Stab. 2014, 107, 285–293. [Google Scholar] [CrossRef]
- Rivas, T.; Alonso-Villar, E.M.; Pozo-Antonio, J.S. Forms and factors of deterioration of urban art murals under humid temperate climate; influence of environment and material properties. Eur. Phys. J. Plus 2022, 137, 1257. [Google Scholar] [CrossRef]
- CAPuS—Conservation of Art in Public Spaces. Available online: https://www.capusproject.eu/ (accessed on 30 September 2023).
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S.; Pellis, G.; Scalarone, D. Efficacy of Colour Protectors in Urban Art Paintings under Different Conditions: From a Real Mural to the Laboratory. Heritage 2023, 6, 3475–3498. [Google Scholar] [CrossRef]
- Cianci, C.; Andriulo, F.; Giorgi, R. Formulation of a new sustainable hybrid coating for the conservation of street-art: Characterization and application. Prog. Org. Coat. 2025, 200, 109026. [Google Scholar] [CrossRef]
- Bertasa, M.; Ricci, C.; Scarcella, A.; Zenucchini, F.; Pellis, G.; Croveri, P.; Scalarone, D. Overcoming challenges in street art murals conservation: A comparative study on cleaning approach and methodology. Coatings 2020, 10, 1019. [Google Scholar] [CrossRef]
- UNI EN 197-1; Cemento—Parte 1: Composizione, Specificazioni e Criteri di Conformità per Cementi Comuni. Italian Organization for Standardization: Milan, Italy, 2011.
- PRIN 2020 SUPERSTAR—Sustainable Preservation Strategies for Street Art. Available online: https://prin2020superstar.dcci.unipi.it/ (accessed on 30 September 2023).
- Learner, T.; Smithen, P.; Krueger, J.; Schilling, M. Modern Paints Uncovered; Proceeding; Getty Conservation Institute: Los Angeles, CA, USA, 2006. [Google Scholar]
- Cremonesi, P. L’uso Dei Solventi Organici Nella Pulitura di Opere Policrome; Il Prato: Padua, Italy, 2004. [Google Scholar]
- ImageJ. Available online: https://imagej.net/ (accessed on 6 September 2023).
- BS EN ISO 4287:2000; Geometrical Product Specifications (Gps)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneve, Switzeland, 2000.
- Ghodrati, S.; Kandi, S.G.; Mohseni, M. Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces. J. Opt. Soc. Am. A 2018, 35, 998–1013. [Google Scholar] [CrossRef]
- EN 15886:2000; Conservation of Cultural Property—Test Methods—Colour Measurements of Surfaces. European Committee for Standardization: Brussels, Belgium, 2000.
- Choudhury, A.K.R. Principles of Colour and Appearance Measurement Object Appearance, Colour Perception and Instrumental Measurement; Woodhead: Cambridge, UK, 2014. [Google Scholar]
- Lambert, M.S.; Timpledon, M.T.; Marseken, S.F. Student’s t-Test: Student’s T-Distribution, Probability Distribution, Normal Distribution, Probability, Statistics, Generalised Hyperbolic Distribution; Betascript Publishing: Birmingham, UK, 2010. [Google Scholar]
- Gambino, M.; Cappitelli, F.; Cattò, C.; Carpen, A.; Principi, P.; Ghezzi, L.; Bonaduce, I.; Galano, E.; Pucci, P.; Birolo, L.; et al. A simple and reliable methodology to detect egg white in art samples. J. Biosci. 2013, 38, 397–408. [Google Scholar] [CrossRef]
- UNI EN ISO 2813:2016; Paints and Varnishes—Determination of Gloss Value at 20 Degrees, 60 Degrees and 85 Degrees. Italian Organization for Standardization: Milan, Italy, 2016.
- Gruber, D.P.; Buder-Stroisznigg, M.; Wallner, G.; Strauß, B.; Jandel, L.; Lang, R.W. Characterization of gloss properties of differently treated polymer coating surfaces by surface clarity measurement methodology. Appl. Opt. 2012, 51, 4833–4840. [Google Scholar] [CrossRef]
- ASTM D523-14:2018; Standard Test Method for Specular Gloss. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018; pp. 35–39.
- EN15802:2009; Conservation of Cultural Property—Test Methods—Determination of Static Contact Angle. European Committee for Standardization: Brussels, Belgium, 2009.
- Vladisavljević, G.T. Chapter 10—Fabrication of Nanoemulsions by Membrane Emulsification. In Nanoemulsions; Jafari, S.M., McClements, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 287–346. ISBN 978-0-12-811838-2. [Google Scholar]
- Smith, S.M.; Taft, B.S.; Moulton, J. Contact Angle Measurements For Advanced Thermal Management Technologies. Front. Heat Mass Transf. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- UNI EN 16581:2015; Conservation of Cultural Heritage—Surface Protection for Porous Inorganic Materials—Laboratory Test Methods for Evaluating the Performance of Water-Repellent Products. Italian Organization for Standardization: Milan, Italy, 2015.
- UNI 10859:2000; Cultural Heritage—Natural and Artificial Stone Materials—Determination of Water Absorption by Capillarity. Italian Organization for Standardization: Milan, Italy, 2000.
- Fischer, E.K. Rheological properties of commercial paints. J. Colloid Sci. 1950, 5, 271–281. [Google Scholar] [CrossRef]
- Helsel, J.L. Avoiding Fading Paint—Uneven paint at a retail store offers lessons for specifying high-performance paint. J. Prot. Coat. Linings 2014, 4, 45–51. [Google Scholar]
- Mokrzycki, W.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Gabriele, F.; Casieri, C.; Vetrano, A.; Spreti, N. Evaluation of acrylic and silane coatings on limestone through macroscopic and microscopic analyses. Mater. Chem. Phys. 2023, 307, 128194. [Google Scholar] [CrossRef]
- Tortora, M.; Chiarini, M.; Spreti, N.; Casieri, C. 1H-NMR-relaxation and colorimetry for evaluating nanopolymeric dispersions as stone protective coatings. J. Cult. Herit. 2020, 44, 204–210. [Google Scholar] [CrossRef]
- Macchia, A.; Ruffolo, S.A.; Rivaroli, L.; Malagodi, M.; Licchelli, M.; Rovella, N.; Randazzo, L.; La Russa, M.F. Comparative study of protective coatings for the conservation of Urban Art. J. Cult. Herit. 2020, 41, 232–237. [Google Scholar] [CrossRef]
- de la Rie, E.R. The influence of varnishes on the appearance of paintings. Stud. Conserv. 1987, 32, 1–13. [Google Scholar] [CrossRef]
- Minolta, K. Konica Minolta’s Precise Color Communication; Minolta: Tokyo, Japan, 2007. [Google Scholar]
- Hanson, A.R. Good practice guide for the measurement of gloss. Measurement Good Practice Guide, National Physical Laboratory: Middlesex, NJ, USA, 2006. [Google Scholar]
- Owen, L.; Ploeger, R.; Murray, A. The Effects of Water Exposure on Surface Characteristics of Acrylic Emulsion Paints. J. Can. Assoc. Conserv. 2005, 29, 8–25. [Google Scholar]
- Ploeger, R.; Murray, A.; Hesp, S.; Scalarone, D. An Investigation of the Chemical Changes of Artists’ Acrylic Paint Films When Exposed to Water. MRS Online Proc. Libr. 2004, 852, 116–123. [Google Scholar] [CrossRef]
- Krainer, S.; Hirn, U. Contact angle measurement on porous substrates: Effect of liquid absorption and drop size. Colloids Surf. A Physicochem. Eng. Asp. 2021, 619, 126503. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technol. 2020, 371, 55–63. [Google Scholar] [CrossRef]
- Quéré, D. Rough ideas on wetting. Phys. A Stat. Mech. Its Appl. 2002, 313, 32–46. [Google Scholar] [CrossRef]
- O’Brien, D.J.; Sedlack, A.J.H.; Bhatia, P.; Jensen, C.J.; Quintana-Puebla, A.; Paranjape, M. Systematic Characterization of Hydrophilized Polydimethylsiloxane. J. Microelectromechanical Syst. 2020, 29, 1216–1224. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, X.; Feng, X.; Ma, Y.; Zou, H. Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°. Polymer 2007, 48, 7455–7460. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M. Novel Attribute of Organic–Inorganic Hybrid Coatings for Protection and Preservation of Materials (Stone and Wood) Belonging to Cultural Heritage. Coatings 2018, 8, 319. [Google Scholar] [CrossRef]
- Alessandrini, G.; Aglietto, M.; Castelvetro, V.; Ciardelli, F.; Peruzzi, R.; Toniolo, L. Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone. J. Appl. Polym. Sci. 2000, 76, 962–977. [Google Scholar] [CrossRef]
- Toniolo, L.; Gherardi, F. The Protection of Marble Surfaces: The Challenge to Develop Suitable Nanostructured Treatments. In Advanced Materials for the Conservation of Stone; Hosseini, M., Karapanagiotis, I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 57–78. ISBN 978-3-319-72260-3. [Google Scholar]
- Zielecka, M.; Bujnowska, E. Silicone-containing polymer matrices as protective coatings: Properties and applications. Prog. Org. Coat. 2006, 55, 160–167. [Google Scholar] [CrossRef]
- Jones, F.N.; Mao, W.; Ziemer, P.D.; Xiao, F.; Hayes, J.; Golden, M. Artist paints—An overview and preliminary studies of durability. Prog. Org. Coat. 2005, 52, 9–20. [Google Scholar] [CrossRef]
- Melo, R.H.; Falcão, J.R.; Bersch, J.D.; Baptista, D.T.; Masuero, A.B. Performance and Durability of Paints for the Conservation of Historic Façades. Buildings 2024, 14, 1016. [Google Scholar] [CrossRef]
Paint Abbreviation | Chemical Composition from Technical Datasheet | Chemical Identification * | ||
---|---|---|---|---|
Acr | Acrylic emulsion | Acrylic emulsion + PR122 + PR254 + PW6 | ||
Alk | Alkyd resin | Alkyd resin + PR122 + PW6 + Talc (filler) | ||
Sty | Styrene-acrylic emulsion | Styrene-acrylic emulsion + Eosin B + CaCO3 (filler) | ||
Protective Treatment Abbreviation | Product Class from Technical Data Sheet | Chemical Composition from Technical Datasheet | Chemical Characterization by ATR-FTIR | |
A1 | Acrylic | Water-based Acrylic | Acrylic polymer, polyurethane, Si-containing filler | |
A2 | Acrylic | Acrylic resin copolymer MA-EMA | Copolymer MA-EMA | |
S1 | Silane | Alkyl alkoxy silane with catalyst | Silane/acrylic polymer | |
S2 | Silane/Siloxane | Micromolecular silane/siloxane | Dimethyl-siloxane/silane | |
SF3 | Fluoro-silane | Water dispersion of fluoro-silane at nano scale | Not resolved formulation |
Coating | Application Modalities | Recommended amount of Product per Surface Unit (L/m2) | Amount of Product on Mock-Ups, After Curing (g) |
---|---|---|---|
A1 | Pure | 0.10–0.15 | 0.34 ± 0.03 |
A2 | 30% in ethyl acetate; 15% in isopropanol | 0.1–0.3 | 0.14 ± 0.02 |
S1 | 10% diluted in distilled water | 0.1–0.2 | 0.15 ± 0.05 |
S2 | Pure | 0.4 | 0.30 ± 0.05 |
SF3 | Pure | 0.1–0.2 | 0.15 ± 0.05 |
Paint | Ra Value [μm] | Average Hole Diameter [μm] | Total Hole Frequency [a.u.] |
---|---|---|---|
Acr | 13.4 ± 0.7 | 0.34 ± 0.04 | 76.5 ± 0.13 |
Alk | 15.6 ± 0.4 | 0.27 ± 0.02 | 51.3 ± 0.11 |
Sty | 21.0 ± 0.2 | 0.23 ± 0.03 | 24.5 ± 0.07 |
PrAcr | 12.3 ± 0.5 | 0.40 ± 0.01 | 31.5 ± 0.15 |
PrAlk | 13.7 ± 0.5 | 0.29 ± 0.03 | 40.1 ± 0.1 |
PrSty | 19.4 ± 0.4 | 0.17 ± 0.02 | 15.5 ± 0.03 |
ΔE | ΔGU | ΔE | ΔGU | ||
---|---|---|---|---|---|
Acr_A1 | 1.8 ± 0.2 | −0.37 ± 0.2 | Pr-Acr_A1 | 1.7 ± 0.2 | −0.42 ± 0.1 |
Acr_A2 | 3.3 ± 0.7 | 0.48 ± 0.4 | Pr-Acr_A2 | 4.7 ± 0.7 | 0.53 ± 0.2 |
Acr_S1 | 2.0 ± 0.4 | −0.18 ± 0.3 | Pr-Acr_S1 | 1.5 ± 0.2 | −0.14 ± 0.2 |
Acr_S2 | 4.4 ± 0.5 | 1.91 ± 0.1 | Pr-Acr_S2 | 4.8 ± 0.5 | 1.79 ± 0.3 |
Acr_SF3 | 2.3 ± 0.8 | −0.14 ± 0.7 | Pr-Acr_SF3 | 1.9 ± 0.3 | −0.10 ± 0.5 |
Alk_A1 | 3.3 ± 0.2 | 1.02 ± 0.3 | Pr-Alk_A1 | 2.7 ± 0.1 | 0.94 ± 0.2 |
Alk_A2 | 4.4 ± 0.2 | 2.29 ± 0.1 | Pr-Alk_A2 | 4.7 ± 0.3 | 2.04 ± 0.2 |
Alk_S1 | 5.4 ± 0.5 | 1.53 ± 0.4 | Pr-Alk_S1 | 6.2 ± 0.5 | 1.47 ± 0.4 |
Alk_S2 | 6.6 ± 0.9 | 4.98 ± 0.5 | Pr-Alk_S2 | 4.5 ± 0.3 | 4.97 ± 0.2 |
Alk_SF3 | 4.0 ± 0.8 | 0.60 ± 0.3 | Pr-Alk_SF3 | 3.9 ± 0.7 | 0.56 ± 0.2 |
Sty_A1 | 1.3 ± 0.2 | 3.03 ± 0.2 | Pr-Sty_A1 | 1.1 ± 0.2 | 2.95 ± 0.1 |
Sty_A2 | 1.8 ± 0.9 | 3.47 ± 0.6 | Pr-Sty_A2 | 1.0 ± 0.3 | 3.37 ± 0.3 |
Sty_S1 | 3.3 ± 0.7 | 3.56 ± 0.4 | Pr-Sty_S1 | 3.2 ± 0.8 | 3.48 ± 0.3 |
Sty_S2 | 3.5 ± 0.8 | 9.49 ± 0.7 | Pr-Sty_S2 | 2.4 ± 0.4 | 9.35 ± 0.3 |
Sty_SF3 | 2.9 ± 0.5 | 1.07 ± 0.3 | Pr-Sty_SF3 | 2.3 ± 0.4 | 0.96 ± 0.2 |
Sample | ICrel |
---|---|
Mortar | 0.90 ± 0.02 |
Alk | 0.66 ± 0.02 |
Acr | 0.69 ± 0.01 |
Sty | 0.69 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagnin, L.; Goidanich, S.; Izzo, F.C.; Zhang, Y.; Scalarone, D.; Toniolo, L. Compatibility and Efficacy Evaluations of Organic Protective Coatings for Contemporary Muralism. Coatings 2025, 15, 166. https://doi.org/10.3390/coatings15020166
Pagnin L, Goidanich S, Izzo FC, Zhang Y, Scalarone D, Toniolo L. Compatibility and Efficacy Evaluations of Organic Protective Coatings for Contemporary Muralism. Coatings. 2025; 15(2):166. https://doi.org/10.3390/coatings15020166
Chicago/Turabian StylePagnin, Laura, Sara Goidanich, Francesca Caterina Izzo, Yezi Zhang, Dominique Scalarone, and Lucia Toniolo. 2025. "Compatibility and Efficacy Evaluations of Organic Protective Coatings for Contemporary Muralism" Coatings 15, no. 2: 166. https://doi.org/10.3390/coatings15020166
APA StylePagnin, L., Goidanich, S., Izzo, F. C., Zhang, Y., Scalarone, D., & Toniolo, L. (2025). Compatibility and Efficacy Evaluations of Organic Protective Coatings for Contemporary Muralism. Coatings, 15(2), 166. https://doi.org/10.3390/coatings15020166