Fundamental Results of Cyclic Codes over Octonion Integers and Their Decoding Algorithm
Abstract
:1. Introduction
2. Octonion Integers
- is free -module over
- 1 is a Multiplicative unit.
- where,isfor.
3. Cyclic Codes Based on Octonion Integers
3.1. Residue Class of Octonion Integers
3.2. Decoding Procedure of Cyclic Codes for Error of One Octonion Mannheim Weight
4. Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarabia, M.G.; Lara, J.N.; Márquez, C.R.; Rosales, E.S. Parameterized codes over cycles. An. Univ. Ovidius Constanta-Ser. Mat. 2013, 21, 241–256. [Google Scholar]
- Trajano, P.D.N.N.; Interlando, J.C.; Osvaldo, M.F.; Michele, E.; Reginaldo, P. Lattice constellations and codes from quadratic number fields. IEEE Trans. Inf. Theory 2001, 47, 1514–1527. [Google Scholar]
- Kostadinov, H.; Morita, H.; Iijima, N.; Vinck, A.H.; Manev, N. Soft decoding of integer codes and their application to coded modulation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2010, 93, 1363–1370. [Google Scholar] [CrossRef] [Green Version]
- Farhad, G.; Jurgen, F. Codes over Gaussian integer rings. In Proceedings of the 18th Telecommunications Forum TELFOR, Belgrade, Serbia, 23–25 November 2010. [Google Scholar]
- Klaus, H. Codes over Gaussian integers. IEEE Trans. Inf. Theory 1994, 40, 207–216. [Google Scholar]
- Josep, R. Groups of complex integers used as QAM signals. IEEE Trans. Inf. Theory 1995, 41, 1512–1517. [Google Scholar]
- Nishimura, S.; Hiramatsu, T. A generalization of the Lee distance and error correcting codes. Discret. Appl. Math. 2008, 156, 588–595. [Google Scholar] [CrossRef]
- Murat, G. Codes over Hurwitz integers. Discret. Math. 2013, 313, 704–714. [Google Scholar]
- Morita, H. On soft decoding of coded QAM using integer codes. In Proceedings of the International Symposium on Information Theory and its Applications (ISITA), Parma, Italy, 10–13 October 2004. [Google Scholar]
- Murat, G.; Mehmet, O. Cyclic Codes over Some Finite Rings. arXiv 2009, arXiv:0905.4163. [Google Scholar]
- Murat, G.; Olof, H. Perfect Mannheim, Lipschitz and Hurwitz weight codes. Math. Commun. 2014, 19, 253–276. [Google Scholar]
- Mehmet, O.; Murat, G. Codes over quaternion integers. Eur. J. Pure Appl. Math. 2010, 3, 670–677. [Google Scholar]
- Tariq, S.; Sumera, S.R. On codes over quaternion integers. Appl. Algebra Eng. Commun. Comput. 2013, 24, 477–496. [Google Scholar]
- Mehmet, O.; Murat, G. Cyclic codes over some finite quaternion integer rings. J. Frankl. Inst. 2011, 348, 1312–1317. [Google Scholar]
- Tariq, S.; Atlas, K.; Antonio, A.D.A. Constructions of codes through the semi group ring B [X; 122Z0] and encoding. Comput. Math. Appl. 2011, 62, 1645–1654. [Google Scholar]
- Muhammad, S.; Tariq, S.; Mohammad, M.H.; Adel, R.A.; Iqtadar, H. Quaternion integers based higher length cyclic codes and their decoding algorithm. Comput. Mater. Contin. 2022, 73, 1177–1194. [Google Scholar]
- Muhammad, S.; Tariq, S.; Robinson, J.S. Designing Pair of Nonlinear Components of a Block Cipher Over Gaussian Integers. Comput. Mater. Contin. 2022, 74, 1–17. [Google Scholar]
- Giuliana, D.; Peter, S.; Alian, V. Elementary Number Theory, Group Theory, and Ramanujan Graphs; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
u | ωu |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | |
15 | |
16 | |
17 | |
18 | |
19 | |
20 | |
21 | |
22 | |
23 | |
24 | |
25 | |
26 | |
27 | |
28 | |
29 | |
30 | |
31 | |
32 | |
33 | |
34 | |
35 | |
36 | |
37 | |
38 | |
39 | |
40 | |
41 | |
42 | |
43 | |
44 | |
45 | |
46 | |
47 | |
48 | |
49 | |
50 | |
51 | |
52 | |
53 | |
54 | |
55 | |
56 | |
57 | |
58 | |
59 | |
60 | |
61 | |
62 | |
63 | |
64 | |
65 | |
66 | |
67 | |
68 | |
69 | |
70 | |
71 | |
72 | |
73 | |
74 | |
75 | |
76 | |
77 | −52 + 17i1 + 17i2 + 17i3 + 17i4 + 17i5 + 17i6 + 17i7 |
78 | |
79 | |
80 | −16 − 57i1 − 57i2 − 57i3 − 57i4 − 57i5 − 57i6 − 57i7 |
81 | |
82 | |
83 | |
84 | |
85 | |
86 | |
87 | |
88 | |
89 | |
90 | |
91 | |
92 | |
93 | |
94 | −4 − 33i1 − 33i2 − 33i3 − 33i4 − 33i5 − 33i6 − 33i7 |
95 | |
96 | −4 − 46i1 − 46i2 − 46i3 − 46i4 − 46i5 − 46i6 − 46i7 |
97 | |
98 | |
99 | |
100 | |
101 | |
102 | |
103 | |
104 | |
105 | |
106 | |
107 | |
108 | |
109 | |
110 | 1 |
79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajjad, M.; Shah, T.; Serna, R.-J.; Suárez Aguilar, Z.E.; Delgado, O.S. Fundamental Results of Cyclic Codes over Octonion Integers and Their Decoding Algorithm. Computation 2022, 10, 219. https://doi.org/10.3390/computation10120219
Sajjad M, Shah T, Serna R-J, Suárez Aguilar ZE, Delgado OS. Fundamental Results of Cyclic Codes over Octonion Integers and Their Decoding Algorithm. Computation. 2022; 10(12):219. https://doi.org/10.3390/computation10120219
Chicago/Turabian StyleSajjad, Muhammad, Tariq Shah, Robinson-Julian Serna, Zagalo Enrique Suárez Aguilar, and Omaida Sepúlveda Delgado. 2022. "Fundamental Results of Cyclic Codes over Octonion Integers and Their Decoding Algorithm" Computation 10, no. 12: 219. https://doi.org/10.3390/computation10120219