Recurrent Supramolecular Patterns in a Series of Salts of Heterocyclic Polyamines and Heterocyclic Dicarboxylic Acids: Synthesis, Single-Crystal X-ray Structure, Hirshfeld Surface Analysis, Energy Framework, and Quantum Chemical Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Compounds 1–7
2.2. Single-Crystal X-ray Diffraction
2.3. Computational Details
2.3.1. Quantum Chemical Calculations
2.3.2. Hirshfeld Surface Analysis and Energy Frameworks
2.3.3. CSD Search
3. Results and Discussion
3.1. Crystal Structures and Hirshfeld Surface Analysis
3.2. Supramolecular Features of 1–7
3.3. Comparison with Other Carboxy-Pyrazine/Thiophene Crystal Structures Retrieved from the CSD
3.4. Intermolecular Interaction Energies and Energy Frameworks
3.5. Quantum Chemical Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Faizan, M.; Afroz, Z.; Alam, M.J.; Rodrigues, M.H.; Ahmad, S.; Ahmand, A. Structural, vibrational and electronic absorption characteristics of the monohydrate organic salt of 2-amino-5-bromo-6-methyl-4-pyrimidinol and 2,3-pyrazinedicarboxylic acid: A combined experimental and computational study. J. Mol. Struct. 2019, 1177, 229. [Google Scholar] [CrossRef]
- Faizan, M.; Alam, M.J.; Afroz, Z.; Rodrigues, V.H.N.; Ahmad, S. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal. J. Mol. Struct. 2018, 1155, 695–710. [Google Scholar] [CrossRef]
- Wu, R.; Chen, Z.; Gao, X.; Chen, X.; Jin, S.; He, L.; Chen, B.; Wang, D. Preparation and characterization of eight crystalline supramolecular salts from 4-dimethylaminopyridine and aromatic acids. J. Mol. Struct. 2021, 1246, 131088. [Google Scholar] [CrossRef]
- Clegg, W.; Harrington, R.W.; Knotts, J.A. CCDC 1937658: Experimental Crystal Structure Determination. 2019 (deposited on 1 July 2019); Newcastle University: Newcastle, UK. [CrossRef]
- Paramban, R.P.; Afroz, Z.; Mondal, P.K.; Sahoo, J.; Chopra, D. Structural insights into salts and a salt polymorph of nitrogen containing small organic molecules. J. Mol. Struct. 2018, 1170, 141–150. [Google Scholar] [CrossRef]
- Lynch, D.E.; Smith, G.; Byriel, K.A.; Kennard, C.H.L.; Whittaker, A.K. Molecular Cocrystals of Carboxylic Acids. XIV. The Crystal Structures of the Adducts of Pyrazine-2,3-dicarboxylic Acid With 4-Aminobenzoic Acid, 3-Hydroxypyridine and 3-Amino-1,2,4-triazole. Aust. J. Chem. 1994, 47, 309–319. [Google Scholar] [CrossRef]
- Smith, G.; Lynch, D.E.; Byriel, K.A.; Kennard, C.H.L. Molecular Co-Crystals of Carboxylic Acids. 22. The Adducts of Pyrazine-2,3-dicarboxylic Acid with 2-Aminobenzoic Acid (1:2) and 3-Aminobenzoic Acid (1:1 Dihydrate). Acta Cryst. C 1995, 51, 2629. [Google Scholar] [CrossRef]
- Das, B.; Srivastava, H.K. Influence of the Local Chemical Environment in the Formation of Multicomponent Crystals of L-Tryptophan with N-Heterocyclic Carboxylic Acids: Unusual Formation of Double Zwitterions. Cryst. Growth Des. 2017, 17, 3796. [Google Scholar] [CrossRef]
- Smith, G.; Wermuth, U.D. Hydrogen-bonding in the structures of the 1:1 salts of isonipecotamide with a set of four polyfunctional monocyclic heteroaromatic carboxylic acids. Z. Für Krist. Cryst. Mater. 2012, 227, 656. [Google Scholar] [CrossRef]
- Smith, G.; Wermuth, U.D.; Healy, P.C.; White, J.M. The 1:1 proton-transfer compound of 8-quinolinol (oxine) with pyrazine-2,3-dicarboxylic acid: 8-hydroxy quinolinium 3-carboxy pyrazine-2-carboxyl ate dihydrate. Acta Crystallogr. E 2006, 62, o5089–o5091. [Google Scholar] [CrossRef]
- Attar Gharamaleki, J.; Derikvand, Z.; Stoeckli-Evans, H. Acridinium 3-carboxypyrazine-2-carboxyl ate. Acta Crystallogr. E 2010, 66, o2231. [Google Scholar] [CrossRef]
- Eshtiagh-Hosseini, H.; Alfi, N.; Mirzaei, M.; Necas, M. 1,4-Diazoniacyclohexane bis-(3-carboxypyrazine-2-carboxylate) dihydrate. Acta Cryst. E 2010, 66, o2810–o2811. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.; Jin, S.; Jin, S.; Guo, M.; Liu, H.; Guo, J.; Wang, D. Nine supramolecular assemblies from 5,7-dimethyl-1,8-naphthyridine-2-amine and carboxylic acids by strong classical H-bonds and other noncovalent associations. J. Mol. Struct. 2017, 1150, 595–613. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, R.; Li, E.; Xu, Q. Crystal structure of diaqua-bis(1,10-phenanthroline)-zinc(II) bis(thiophene-3-carboxy-4-carboxylate) heptahydrate, [Zn(H2O)2(C12H8N2)2][(C6H3O4S)2]*7H2O, C36H40N4O17S2Zn. Z. Kristallogr. New Cryst. Struct. 2014, 229, 141–142. [Google Scholar] [CrossRef]
- Li, Z.-H.; Xue, L.-P.; Li, S.-H.; Wang, J.-G.; Zhao, B.-T.; Kan, J.; Su, W.-P. Bis(pyridyl) ancillary ligands modulated uninodal 4-, 5- and 6-connected Cd(II) coordination polymers based on 3,4-thiophenedicarboxylate linker. CrystEngComm 2013, 15, 2745–2752. [Google Scholar] [CrossRef]
- Li, L.; Guo, J.B.; Wei-Liu, B.; Min-Wen, Y.; Wang, W.; Xia, X.D.; Mu, K. Crystal structure of bis(2,2′-bipyridine-κ2N,N′)-bis(thiophene-3,4-dicarboxylato-κ2O,O′)-cadmium(II), C32H22CdN4O8S2. Z. Kristallogr. New Cryst. Struct. 2015, 230, 323–325. [Google Scholar] [CrossRef]
- Chen, S.-J.; Li, S.-H. Crystal structure of tetra-aqua-bis(µ2-thiophene-3,4-dicarboxylato-κ4O,O′:O″,O‴)-bis(thiophene-3-carboxyl-4-carboxylato-κ1O)-bis(1,10- phenantroline-κ2N,N′)disamarium(III), C24H17N2O10S2Sm. Z. Kristallogr. New Cryst. Struct. 2015, 230, 259–260. [Google Scholar] [CrossRef]
- Li, Z.-H.; Xue, L.-P. Crystal structure of diaqua-bis-(1,10-phenanthroline)-manganese(II) thiophene-3,4-dicarboxylate heptahydrate, [Mn(H2O)2(C12H8N2)2(C6H3O4S)2]·7H2O, C36H39MnN4O17S2. Z. Kristallogr. New Cryst. Struct. 2012, 227, 453–454. [Google Scholar] [CrossRef]
- Li, S.-H.; Guo, D.-J.; Zhao, Y. Crystal structure of hexaquamanganese(II) (4-carboxythiophene-3-carboxylate hemihydrate, C12H16MnO16S2. Z. Kristallogr. New Cryst. Struct. 2014, 229, 349–350. [Google Scholar] [CrossRef]
- Nangia, A.K.; Desiraju, G.R. Crystal Engineering: An Outlook for the Future. Angew. Chem. Int. Ed. 2019, 58, 4100–4107. [Google Scholar] [CrossRef]
- Bolla, G.; Srma, B.; Nangia, A.K. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem. Rev. 2022, 122, 11514–11603. [Google Scholar] [CrossRef]
- Seoane, B.; Castellanos, S.; Dikhtiarenko, A.; Kapeijn, F.; Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 2016, 307, 147–187. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Stavila, A. Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm 2015, 17, 229–246. [Google Scholar] [CrossRef]
- Rimer, J.D.; Chawla, A.; Le, T.T. Crystal Engineering for Catalysis. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 283–309. [Google Scholar] [CrossRef] [PubMed]
- Bojarska, J.; Łyczko, K.; Mieczkowski, A. Synthesis, Crystal Structure and Supramolecular Features of Novel 2,4-Diaminopyrimidine Salts. Crystals 2024, 14, 133. [Google Scholar] [CrossRef]
- Bojarska, J.; Łyczko, K.; Mieczkowski, A. Novel Salts of Heterocyclic Polyamines and 5-Sulfosalicylic Acid: Synthesis, Crystal Structure, and Hierarchical Supramolecular Interactions. Crystals 2024, 14, 497. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lighfoot, M.P.; Warda, S.C. The Cambridge Structural Database. Acta Crystallogr. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Dolzhenko, A.V.; Dolzhenko, A.V.; Chui, W.-K. Synthesis of 5,7-diamino[1,2,4]triazolo[1,2-a][1,3,5]triazines via annulation of 1,3,5-triazine ring onto 3(5)-amino-1,2,4-triazoles. Heterocycles 2007, 71, 429–436. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. Structure Validation in chemical crystallography. Acta Cryst. D 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, version D.01; Gaussian Inc.: Wallingford, CT, USA, 2011. [Google Scholar]
- Parr, R.G.; Wang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Head-Gordon, T. Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer. Chem. Phys. Lett. 1994, 220, 122–128. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1990; ISBN 9780198558651. [Google Scholar]
- Biegler-König, F.; Schönbohm, J.; Bayles, D. AIM2000—A Program to Analyze and Visualize Atoms in Molecules. J. Comput. Chem. 2001, 22, 545–559. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; McKinnon, J.J.; Wol, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer, version 3.1; The University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc. Perkin Trans. 1987, 2, S1–S19. [Google Scholar] [CrossRef]
- Jayatilaka, D.; Grimwood, D.J. Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography. In Proceedings of the International Conference on Computational Science 2003, Petersburg, Russia, 2–4 June 2003; pp. 142–151. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Jelsch, C.; Ejsmont, K.; Huder, L. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 2014, 1, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.A.; Olsson, T.S.G.; Cole, J.C.; Cottrell, S.J.; Feeder, N.; Galek, P.T.A.; Groom, C.R.; Pidcock, E. Evaluation of Molecular Crystal Structures Using Full Interaction Maps. CrystEngComm 2013, 15, 65–72. [Google Scholar] [CrossRef]
- Smith, G.; White, J.M. Short Communication: Molecular Cocrystals of Carboxylic Acids: The Preparation of the 1:1 Proton-Transfer Compounds of Creatinine with a Series of Aromatic Acids and the Crystal Structure of that with Pyrazine-2,3-dicarboxylic Acid. Aust. J. Chem. 2001, 54, 97–100. [Google Scholar] [CrossRef]
- Kitaigorodskii, A.I. Organic Chemical Crystallography; Consultants Bureau: New York, NY, USA, 1961; pp. 1–30, 65–112. [Google Scholar]
- Kitaigorodskii, A.I. Molecular Crystals and Molecules; Academic Press: London, UK, 1973; pp. 1–133. [Google Scholar]
- Etter, M.C. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res. 1990, 23, 120–126. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Drebushchak, T.N.; Drebushchak, N.A.; Pankrushina, N.A.; Boldyreva, E.V. Single-crystal to single-crystal conformational polymorphic transformation in tolbutamide at 313 K. Relation to other polymorphic transformations in tolbutamide and chlorpropamide. CrystEngComm 2016, 18, 5736–5743. [Google Scholar] [CrossRef]
- Loots, L.; Barbour, L.J. A simple and robust method for the identification of π–π packing motifs of aromatic compounds. CrystEngComm 2012, 14, 300–304. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Gavezzotti, A. Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure. Acta Cryst. B 1989, B45, 473–482. [Google Scholar] [CrossRef]
- Finkelstein, P.; Gershoni-Poranne, R. An Additivity Scheme for Aromaticity: The Heteroatom Case. ChemPhysChem 2019, 20, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
Crystal | Eele | Epol | Edis | Erep | Etot |
---|---|---|---|---|---|
1 | −44.4 | −36 | −100.1 | 233.8 | 46.6 |
2 | −129.7 | −37.6 | −183.9 | 218.2 | −145.2 |
3 | −76.5 | −32.3 | −61.7 | 44.2 | −118.4 |
4 | −54.5 | −13.7 | −107.1 | 125.4 | −58.8 |
5 | 105.6 | −51.8 | −114.5 | 72.3 | 36.9 |
6 | −60.7 | −32.6 | −111 | 200.4 | −20.2 |
7 | −23.7 | −40 | −83.2 | 43.1 | −89.8 |
A− | B− | |
Interatomic distances [Å] | ||
OH–HO | 1.186 1.202 | 1.099 1.313 |
OH∙∙∙OH | 2.388 | 2.401 |
CO2–OH | 1.293 1.291 | 1.306 1.285 |
Carom–CO2 | 1.515 1.516 | 1.530 1.536 |
Bond angles [°] | ||
OH–HO–OH | 178.2 | 169.7 |
CO2–OH–HO | 112.1 (2×) | 110.5 108.9 |
QTAIM characteristics | ||
ρBCP(OH–HO) [e/bohr3] | 0.1825 0.1749 | 0.2349 0.1281 |
∇2ρBCP(OH–HO) [e/bohr5] | −0.5129 −0.4257 | −1.2432 −0.0388 |
εBCP(OH–HO) | 0.010 (2×) | 0.008 0.039 |
ρBCP(CO2–OH) [e/bohr3] | 0.3472 0.3484 | 0.3363 0.3533 |
∇2ρBCP(CO2–OH) [e/bohr5] | −0.5537 −0.5520 | −0.5603 −0.5440 |
εBCP(CO2–OH) | 0.092 0.094 | 0.086 0.100 |
ρBCP(Carom–CO2) [e/bohr3] | 0.2583 0.2577 | 0.2563 0.2529 |
∇2ρBCP(Carom–CO2) [e/bohr5] | −0.6889 −0.6855 | −0.6728 −0.6568 |
εBCP(Carom–CO2) | 0.102 (2×) | 0.093 0.085 |
Q(OH) [e] | −1.22 (2×) | −1.27 −1.23 |
Q(HO) [e] | 0.67 | 0.68 |
Q(CO2) [e] | 1.77 (2×) | 1.76 1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojarska, J.; Łyczko, K.; Breza, M.; Mieczkowski, A. Recurrent Supramolecular Patterns in a Series of Salts of Heterocyclic Polyamines and Heterocyclic Dicarboxylic Acids: Synthesis, Single-Crystal X-ray Structure, Hirshfeld Surface Analysis, Energy Framework, and Quantum Chemical Calculations. Crystals 2024, 14, 733. https://doi.org/10.3390/cryst14080733
Bojarska J, Łyczko K, Breza M, Mieczkowski A. Recurrent Supramolecular Patterns in a Series of Salts of Heterocyclic Polyamines and Heterocyclic Dicarboxylic Acids: Synthesis, Single-Crystal X-ray Structure, Hirshfeld Surface Analysis, Energy Framework, and Quantum Chemical Calculations. Crystals. 2024; 14(8):733. https://doi.org/10.3390/cryst14080733
Chicago/Turabian StyleBojarska, Joanna, Krzysztof Łyczko, Martin Breza, and Adam Mieczkowski. 2024. "Recurrent Supramolecular Patterns in a Series of Salts of Heterocyclic Polyamines and Heterocyclic Dicarboxylic Acids: Synthesis, Single-Crystal X-ray Structure, Hirshfeld Surface Analysis, Energy Framework, and Quantum Chemical Calculations" Crystals 14, no. 8: 733. https://doi.org/10.3390/cryst14080733