Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZnO and ZnO-Au Nanoparticles
2.2. Characterization Techniques
2.3. Photocatalytic Experiments
3. Results
3.1. Morphology and Structure of ZnO and ZnO-Au Nanoparticles
3.2. Vibrational and Chemical Composition Analysis
3.3. Optical Properties
3.4. Photo-Catalysis Activity
3.5. Photo-Degradation Kinetic
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radzimska, A.K.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Ahmaruzzaman, M.d. ZnO nanostructured materials and their potential applications: Progress, challenges, and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, S.; Javed, S.; Usman, M. A Review on Synthesis and Optoelectronic Applications of Nanostructured ZnO. Front. Mater. 2021, 8, 613825. [Google Scholar] [CrossRef]
- Kumaresan, N.; Ramamurthi, K.; Ramesh, B.R.; Sethuraman, K.; Moorthy, B.S. Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. 2017, 418, 138–146. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Alotibi, S. Synergistic Effect of Nonthermal Plasma and ZnO Nanoparticles on Organic Dye Degradation. Appl. Sci. 2023, 13, 10045. [Google Scholar] [CrossRef]
- Ma, S.; Yunyun, H.; Hong, R.; Lu, X.; Li, J.; Zheng, Y. Enhancing Photocatalytic Activity of ZnO Nanoparticles in a Circulating Fluidized Bed with Plasma Jets. Catalysts 2021, 11, 77. [Google Scholar] [CrossRef]
- Sheikh, M.; Pazirofteh, M.; Dehghani, M.; Asghari, M.; Rezakazemi, M.; Valderrama, C.; Cortina, J.-L. Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chem. Eng. J. 2020, 391, 123475. [Google Scholar] [CrossRef]
- Peter, R.; Omerzu, A.; Piltaver, I.K.; Speranza, R.; Salamon, K.; Podlogar, M.; Velican, K.; Percic, M.; Petravic, M. Large enhancement of visible light photocatalytic efficiency of ZnO films doped in-situ by copper during atomic layer deposition growth. Ceram. Int. 2023, 49, 35229–35238. [Google Scholar] [CrossRef]
- Pirhashemi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 2018, 62, 1–25. [Google Scholar] [CrossRef]
- Hezam, A.; Drmosh, Q.A.; Ponnamma, D.; Bajiri, M.A.; Qamar, M.; Namratha, K.; Zare, M.; Nayan, M.B.; Onaizi, S.A.; Byrappa, K. Strategies to Enhance ZnO Photocatalyst’s Performance for Water Treatment: A Comprehensive Review. Chem. Rec. 2022, 22, e202100299. [Google Scholar] [CrossRef]
- Kovács, Z.; Márta, V.; Gyulavári, T.; Ágoston, Á.; Baia, L.; Pap, Z.; Hernadi, K. Noble metal modified (002)-oriented ZnO hollow spheres for the degradation of a broad range of pollutants. J. Environ. Chem. Eng. 2022, 10, 107655. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Xu, J.; Ma, S. Synthesis of Pd/ZnO nanocomposites with high photocatalytic performance by a solvothermal method. Appl. Surf. Sci. 2012, 258, 10104–10109. [Google Scholar] [CrossRef]
- Singh, S. Natural sunlight driven photocatalytic performance of Ag/ZnO nanocrystals. Mater. Today Commun. 2022, 33, 104438. [Google Scholar] [CrossRef]
- Li, H.; Ding, J.; Cai, S.; Zhang, W.; Zhang, X.; Wu, T.; Wang, C.; Foss, M.; Yang, R. Plasmon-enhanced photocatalytic properties of Au/ZnO nanowires. Appl. Surf. Sci. 2022, 583, 152539. [Google Scholar] [CrossRef]
- Yao, C.; Lin, J.; Li, L.; Jiang, K.; Zhigao Hu, Z.; Xu, N.; Jian Sun, J.; Wu, J. Au-Decorated ZnO Nanorod Powder and Its Application in Photodegradation of Organic Pollutants in the Visible Region. Phys. Status Solidi A 2021, 218, 2000737. [Google Scholar] [CrossRef]
- Bora, T.; Zoepf, D.; Dutta, J. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods. Sci. Rep. 2016, 6, 26913. [Google Scholar] [CrossRef]
- Stefan, M.; Popa, A.; Toloman, D.; Leostean, C.; Barbu-Tudoran, L.; Falamas, A. Enhanced Plasmonic Photocatalysis of Au-Decorated ZnO Nanocomposites. Inorganics 2023, 11, 157. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chan, C.-H.; Chien, C.-H.; Yaseen, M.T.; Liang, C.-T.; Chang, Y.-C. Enhanced Emission and Photoconductivity Due to Photo-Induced Charge Transfer from Au Nanoislands to ZnO. Appl. Phys. Lett. 2016, 108, 041104. [Google Scholar] [CrossRef]
- Chamorro, W.; Ghanbaja, J.; Battie, Y.; Naciri, A.E.; Soldera, F.; Mücklich, F.; Horwat, D. Local Structure-Driven Localized Surface Plasmon Absorption and Enhanced Photoluminescence in ZnO-Au Thin Films. J. Phys. Chem. C 2016, 120, 29405–29413. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y. A simple plasma reduction for synthesis of Au and Pd nanoparticles at room temperature. Chin. J. Chem. Eng. 2015, 23, 1060–1063. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Kaushik, N.; Linh, N.N.; Ghimire, B.; Pengkit, A.; Sornsakdanuphap, J.; Lee, S.-J.; Choi, E.H. Plasma and Nanomaterials: Fabrication and Biomedical Applications. Nanomaterials 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, E. Polyimide Surface Modification Using He-H2O Atmospheric Pressure Plasma Jet-Discharge Power Effect. Coatings 2020, 10, 662. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Yehia, A.; Bazavan, M.; Ishijima, T. Optical emission and surface characterization of stainless steel treated by pulsed microwave-atmospheric helium plasma jet. Eur. Phys. J. D 2017, 71, 1–9. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Ogawa, D.; Nakamura, K. Nitrogen functionalization of MWCNTs in Ar-N2 dielectric barrier discharge–Gas ratio effect. Mater. Sci. Eng. B 2020, 261, 114680. [Google Scholar] [CrossRef]
- Abdel-Fattah, E. Atmospheric pressure helium plasma jet and its applications to methylene blue degradation. J. Electrost. 2019, 101, 103360. [Google Scholar] [CrossRef]
- Sun, D.; McLaughlan, J.; Zhang, L.; Falzon, B.G.; Mariotti, D.; Maguire, P.; Sun, D. Atmospheric Pressure Plasma-Synthesized Gold Nanoparticle/Carbon Nanotube Hybrids for Photothermal Conversion. Langmuir 2019, 35, 4577–4588. [Google Scholar] [CrossRef]
- Habib, T.; Caiut, J.M.A.; Cailier, B. Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au+ ions and a capping agent. Plasma Sci. Technol. 2023, 26, 075505. [Google Scholar] [CrossRef]
- Abdel-Fattah, E. Surface modifications of PET in argon atmospheric pressure plasma: Gas flow rate effect. Surf. Interface Anal. 2022, 54, 794–802. [Google Scholar] [CrossRef]
- Abdel-Fattah, E. Surface and thermal characteristics relationship of atmospheric pressure plasma treated natural luffa fibers. Eur. Phys. J. D 2019, 73, 71. [Google Scholar] [CrossRef]
- Pillai, S.; Seery, M. A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C 2008, 112, 13563–13570. [Google Scholar]
- Noua, A.E.; Kaya, D.; Sigircik, G.; Tuken, T.; Karadag, F.; Ekicibil, A. Enhanced photocatalytic activity in AgCu-decorated ZnO nanoparticles under UV and sunlight. J. Mater. Sci. Mater. Electron. 2024, 35, 1220. [Google Scholar] [CrossRef]
- Abdel-Fattah, E.; Elsayed, I.A.; Fahmy, T. Substrate temperature and laser fluence effects on properties of ZnO thin films deposited by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 2018, 29, 19942. [Google Scholar] [CrossRef]
- Šćepanović, M.; Grujić-Brojčin, M.; Vojisavljević, K.; Bernik, S.; Srećković, T. Raman study of structural disorder in ZnO nanopowders. J. Raman Spectrosc. 2010, 41, 914–921. [Google Scholar] [CrossRef]
- De Lourdes Ruiz Peralta, M.; Pal, U.; Sánchez Zeferino, R. Photoluminescence (PL) Quenching and Enhanced Photocatalytic Activity of Au-Decorated ZnO Nanorods Fabricated through Microwave-Assisted Chemical Synthesis. ACS Appl. Mater. Interfaces 2012, 4, 4807–4816. [Google Scholar] [CrossRef] [PubMed]
- Manjon, F.J.; Mari, B.B.; Serrano, J.; Romero, A.H. Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 2005, 97, 053516. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Lee, J.; Cho, M.H. Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag-ZnO Nanocomposite. J. Phys. Chem. C 2013, 117, 27023–27030. [Google Scholar] [CrossRef]
- Rakshit, T.; Mondal, S.P.; Manna, I.; Ray, S.K. CdS-Decorated ZnO Nanorod Heterostructures for Improved Hybrid Photovoltaic Devices. ACS Appl. Mater. Interfaces 2012, 4, 6085–6095. [Google Scholar] [CrossRef]
- Ono, L.K.; Cuenya, B.R. Formation and Thermal Stability of Au2O3 on Gold Nanoparticles: Size and Support Effects. J. Phys. Chem. C 2008, 112, 4676–4686. [Google Scholar] [CrossRef]
- Dhara, S.; Giri, P.K. On the Origin of Enhanced Photoconduction and Photoluminescence from Au and Ti Nanoparticles Decorated Aligned ZnO Nanowire Heterostructures. J. Appl. Phys. 2011, 110, 124317. [Google Scholar] [CrossRef]
- Yao, C.; Lin, J.; Wu, L.; Li, L.; Xu, N.; Sun, J.; Wu, J. High-Visible-Light Photocatalytic Activity of ZnO–Au Nanocomposites Synthesized by a Controlled Hydrothermal Method. Phys. Status Solidi A 2021, 218, 2100150. [Google Scholar] [CrossRef]
- Foo, K.L.; Hashim, U.; Muhammad, K.; Voon, C.H. Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 2014, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Fu, Z.; Jia, Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79, 943. [Google Scholar] [CrossRef]
- McCluskey, M.D.; Jokela, S.J. Defects in ZnO. J. Appl. Phys. 2009, 106, 071101. [Google Scholar] [CrossRef]
- Fageria, P.; Gangopadhyay, S.; Pande, S. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 2014, 4, 24962–24972. [Google Scholar] [CrossRef]
- Patil, S.A.; Shrestha, N.K.; Hussain, S.; Jung, J.; Lee, S.-W.; Bathula, C.; Kadam, A.N.; Im, H.; Kim, H. Catalytic decontamination of organic/inorganic pollutants in water and green H2 generation using nanoporous SnS2 micro-flower structured film. J. Hazard. Mater. 2021, 5, 126105. [Google Scholar] [CrossRef]
- Ozer, L.Y.; Garlisi, C.; Oladipo, H.; Pagliaro, M.; Sharief, S.A.; Yusuf, A.; Almheiri, S.; Palmisano, G. Inorganic semiconductorsgraphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. J. Photochem. Photobiol. C Photochem. Rev. 2017, 33, 132–164. [Google Scholar] [CrossRef]
Sample | Crystal Size (nm) | a (Å) | c (Å) |
---|---|---|---|
ZnO | 22.0 | 3.25 | 5.218 |
Au/ZnO | 19.0 | 3.272 | 5.242 |
Sample | Kinetic Model Parameters | ||
---|---|---|---|
Zeroth Order | Pseudo-First Order | Pseudo-Second Order | |
ZnO | Ko = 0.01036 | K1 = 0.00569 | K2 = 0.00327 |
R2 = 0.975 | R2 = 0.964 | R2 = 0.860 | |
Au/ZnO | Ko = 0.01822 | K1 = 01682 | K2 = 0.0234 |
R2 = 0.9666 | R2 = 0.809 | R2 = 0.5812 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Fattah, E.M. Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis. Crystals 2024, 14, 890. https://doi.org/10.3390/cryst14100890
Abdel-Fattah EM. Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis. Crystals. 2024; 14(10):890. https://doi.org/10.3390/cryst14100890
Chicago/Turabian StyleAbdel-Fattah, Essam M. 2024. "Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis" Crystals 14, no. 10: 890. https://doi.org/10.3390/cryst14100890
APA StyleAbdel-Fattah, E. M. (2024). Plasmonic ZnO-Au Nanocomposites: A Synergistic Approach to Enhanced Photocatalytic Activity through Nonthermal Plasma-Assisted Synthesis. Crystals, 14(10), 890. https://doi.org/10.3390/cryst14100890