Effect of Loading Direction on Tensile-Compressive Mechanical Behaviors of Mg-5Zn-2Gd-0.2Zr Alloy with Heterogeneous Grains
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Sample Preparations
2.2. Microstructure Characterizations and Mechanical Tests
3. Results
3.1. Microstructure and Texture Under Different Loading Directions
3.2. Mechanical Properties of Tension and Compression Under Different Loading Directions
3.3. Tensile and Compressive Fracture Under Different Loading Directions
4. Discussion
4.1. Revealing the Variation of the Strength Along Different Loading Directions
4.2. Tensile and Compressive Fracture Mechanisms Under Different Loading Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirzadeh, H. Grain refinement of magnesium alloys by dynamic recrystallization (DRX): A review. J. Mater. Res. Technol. 2023, 25, 7050–7077. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.L.; Wang, M.; Wang, W.Z.; Zhao, D.; Huang, H.M.; Zhao, Q.; Xu, X.F.; Zhang, H.X.; Huang, G.S. Research progress of heterogeneous structure magnesium alloys: A review. J. Magnes. Alloys 2024, 12, 2147–2181. [Google Scholar] [CrossRef]
- Han, J.; Sun, J.P.; Song, Y.M.; Xu, B.Q.; Yang, Z.Q.; Xu, S.S.; Han, Y.; Wu, G.S.; Zhao, J.Y. Achieving gradient heterogeneous structure in Mg alloy for excellent strength-ductility synergy. J. Magnes. Alloys 2023, 11, 2392–2403. [Google Scholar] [CrossRef]
- Tong, L.; Jiang, J.; Bi, G.L.; Li, Y.D.; Chen, T.J.; Zhang, X.R.; Fang, D.Q. Microstructure and mechanical properties of extruded Mg-Sn alloys with a heterogeneous grain structure. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.H.; Wang, W.K.; Liu, S.J.; Sun, B.; Xie, J.S.; Xiao, T.X. Unveiling the deformation mechanism of highly deformable magnesium alloy with heterogeneous grains. Scr. Mater. 2022, 221, 114963. [Google Scholar] [CrossRef]
- Wang, T.; Zha, M.; Du, C.F.; Jia, H.L.; Wang, C.; Guan, K.; Gao, Y.P.; Wang, H.Y. High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy. Mater. Res. Lett. 2023, 11, 187–195. [Google Scholar] [CrossRef]
- Sun, J.P.; Xu, B.Q.; Yang, Z.Q.; Zhuo, X.R.; Ma, A.B. Developing an industrial-scale ECAP Mg-Al-Zn alloy with multi-heterostructure for synchronously high strength and good ductility. Mater. Charact. 2020, 164, 110341. [Google Scholar] [CrossRef]
- Sun, W.T.; Wu, B.; Fu, H.; Yang, X.S.; Shi, S.Q. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy. J. Mater. Sci. Technol. 2021, 99, 223–238. [Google Scholar] [CrossRef]
- Xu, N.; Feng, R.N.; Song, Q.N.; Zhao, J.H.; Bao, Y.F. Influence of heterogeneous microstructures on the mechanical properties of low-temperature friction stir processed AZ91D Mg alloy. Mater. Sci. Eng. A 2021, 809, 141004. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, F.; Kang, F.W.; Du, H.Q.; Chen, Z.Y. Recent research and advances in extrusion forming of magnesium alloys: A review. J. Alloys Compd. 2023, 953, 170080. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.H.; Xie, J.S.; Liu, S.J.; He, Y.Y.; Guan, K.; Wu, R.Z. Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation. Scr. Mater. 2022, 209, 114414. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, G.Y.; Pei, R.S.; Zhen, Z.L.; Jie, W.Q. Effects of extrusion ratio and subsequent heat treatment on the tension-compression yield asymmetry of Mg-4.58Zn-2.6Gd-0.18Zr alloys. Mater. Sci. Eng. A 2021, 810, 141021. [Google Scholar] [CrossRef]
- Robson, J. Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature. Metall. Mater. Trans. A 2014, 45, 5226–5235. [Google Scholar] [CrossRef]
- Kleiner, S.; Uggowitzer, P.J. Mechanical anisotropy of extruded Mg-6%Al-1%Zn alloy. Mater. Sci. Eng. A 2004, 379, 258–263. [Google Scholar] [CrossRef]
- Peng, J.H.; Zhang, Z.; Chen, H.H.; Long, C.; Wu, Y.; Huang, J.A.; Zhou, W.; Wu, Y.C. Investigation on the anisotropy of mechanical properties along different orientations of an AZ31 hot-extrusion bar. J. Alloys Compd. 2021, 854, 157108. [Google Scholar] [CrossRef]
- Shi, B.D.; Yang, C.; Peng, Y.; Zhang, F.C.; Pan, F.S. Anisotropy of wrought magnesium alloys: A focused overview. J. Magnes. Alloys 2022, 10, 1476–1510. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, G.Y.; Chen, J.M.; Luo, S.F.; Li, J.H.; Jie, W.Q. Microstructure, texture evolution and tensile properties of extruded Mg-4.58Zn-2.6Gd-0.16Zr alloy. Mater. Sci. Eng. A 2019, 744, 277–289. [Google Scholar] [CrossRef]
- Fu, W.; Dang, P.F.; Guo, S.W.; Ren, Z.J.; Fang, D.Q.; Ding, X.D.; Sun, J. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy. J. Mater. Sci. Technol. 2023, 134, 67–68. [Google Scholar] [CrossRef]
- Wu, J.L.; Jin, L.; Dong, J.; Wang, F.H.; Dong, S. The texture and its optimization in magnesium alloy. J. Mater. Sci. Technol. 2020, 42, 175–189. [Google Scholar] [CrossRef]
- Hama, T.; Suzuki, T.; Hatakeyama, S.; Fujimoto, H.; Takuda, H. Role of twinning on the stress and strain behaviors during reverse loading in rolled magnesium alloy sheets. Mater. Sci. Eng. A 2018, 725, 8–18. [Google Scholar] [CrossRef]
- Chen, P.; Li, B.; Culbertson, D.; Jiang, Y. Contribution of extension twinning to plastic strain at low stress stage deformation of a Mg-3Al-1Zn alloy. Mater. Sci. Eng. A 2018, 709, 40–45. [Google Scholar] [CrossRef]
- Jain, A.; Agnew, S.R. Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mater. Sci. Eng. A 2007, 462, 29–36. [Google Scholar] [CrossRef]
- Yin, D.L.; Wang, J.T.; Liu, J.Q.; Zhao, X. On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy. J. Alloys Compd. 2009, 478, 789–795. [Google Scholar] [CrossRef]
- Bounezour, H.; Laouar, L.; Bourbia, M.; Ouzine, B. Effects of work hardening on mechanical metal properties-experimental analysis and simulation by experiments. Int. J. Adv. Manuf. Technol. 2019, 101, 2475–2485. [Google Scholar] [CrossRef]
- Kan, Z.Y.; Yang, G.Y.; Xiao, L.; Wang, C.H.; Qin, H.; Wang, B.S.; Jie, W.Q. Asymmetric tension-compression mechanical behaviors of extruded Mg-4.58Zn-2.6Gd-0.18Zr alloy with double-peak fiber texture. J. Alloys Compd. 2024, 989, 174291. [Google Scholar] [CrossRef]
- Jahedi, M.; Mcwilliams, B.A.; Moy, P.; Knezevic, M. Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: Influence on strain hardening and texture evolution. Acta Mater. 2017, 131, 221–232. [Google Scholar] [CrossRef]
- Marko, K.; Amanda, L.; Ryan, H.; Raja, K.M.; Roger, D.D.; Surya, R.K. Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater. 2010, 58, 6230–6242. [Google Scholar] [CrossRef]
- Fang, D.R.; Duan, Q.Q.; Zhao, N.Q.; Li, J.J.; Wu, S.D.; Zhang, Z.F. Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing. Mater. Sci. Eng. A 2007, 459, 137–144. [Google Scholar] [CrossRef]
- El-Magd, E.; Abouridouane, M. Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. Int. J. Impact Eng. 2006, 32, 741–758. [Google Scholar] [CrossRef]
- Nie, J.F.; Shin, K.S.; Zeng, Z.R. Microstructure, Deformation, and Property of Wrought Magnesium Alloys. Metall. Mater. Trans. A 2020, 51, 6045–6109. [Google Scholar] [CrossRef]
- Liu, G.B.; Zhang, J.; Xi, G.Q.; Zuo, R.L.; Liu, S. Designing Mg alloys with high ductility: Reducing the strength discrepancies between soft deformation modes and hard deformation modes. Acta Materialia. 2017, 141, 1–9. [Google Scholar] [CrossRef]
- Sánchez-Martín, R.; Pérez-Prado, M.T.; Segurado, J.; Bohlen, J.; Gutiérrez-Urrutia, I.; Llorca, J.; Molina-Aldareguia, J.M. Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation. Acta Materialia. 2014, 71, 283–292. [Google Scholar] [CrossRef]
- Cho, J.H.; Rollett, A.D.; Oh, K.H. Determination of a mean orientation in electron backscatter diffraction measurements. Metall. Mater. Trans. A 2005, 36, 3427–3438. [Google Scholar] [CrossRef]
- Godet, S.; Jiang, L.; Luo, A.A.; Jonas, J.J. Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scripta materialia. 2006, 55, 1055–1058. [Google Scholar] [CrossRef]
- Barnett, M.; Keshavarz, Z.; Ma, X. A semianalytical sachs model for the flow stress of a magnesium alloy. Metall. Mater. Trans. A 2006, 37, 2283–2293. [Google Scholar] [CrossRef]
- Cho, J.H.; Han, S.H.; Jeong, H.T.; Choi, S.H. The effect of aging on mechanical properties and texture evolution of ZK60 alloys during warm compression. J. Alloys Compd. 2018, 743, 553–563. [Google Scholar] [CrossRef]
- Valle, J.A.D.; Rey, P.; Gesto, D.; Verdera, D.; Jimenez, J.A.; Ruano, O.A. Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing. Mater. Sci. Eng. A 2015, 628, 198–206. [Google Scholar] [CrossRef]
- Zhang, D.P.; Zhang, D.D.; Zhang, Y.Q.; Chen, S.R.; Meng, J. Analysis of strain hardening behavior in a ductile Mg–Yb based alloy. Mater. Sci. Eng. A 2021, 819, 141462. [Google Scholar] [CrossRef]
- Wang, R.F.; Mao, P.L.; Liu, Y.Y.; Chen, Y.; Wang, Z.; Wang, F.; Zhou, L.; Liu, Z. Influence of pre-twinning on high strain rate compressive behavior of AZ31 Mg-alloys. Mater. Sci. Eng. A 2019, 742, 309–317. [Google Scholar] [CrossRef]
- Lv, L.C.; Xin, Y.C.; Yu, H.H.; Hong, R.; Liu, Q. The role of dislocations in strain hardening of an extension twinning predominant deformation. Mater. Sci. Eng. A 2015, 636, 389–395. [Google Scholar] [CrossRef]
- Wang, B.S.; Xin, R.L.; Huang, G.J.; Liu, Q. Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Mater. Sci. Eng. A 2012, 534, 588–593. [Google Scholar] [CrossRef]
- Barnett, M.R. Twinning and the ductility of magnesium alloys Part II. "Contraction" twins. Mater. Sci. Eng. A 2007, 464, 8–16. [Google Scholar] [CrossRef]
- Ando, D.; Koike, J.; Sutou, Y. The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys. Mater. Sci. Eng. A 2014, 600, 145–152. [Google Scholar] [CrossRef]
- Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature. Metall. Mater. Trans. A 2018, 49, 2441–2454. [Google Scholar] [CrossRef]
- Kadiri, H.E.; Kapil, J.; Oppedal, A.L.; Hector, L.G.; Agnew, S.R.; Cherkaoui, M.; Vogel, S.C. The effect of twin-twin interactions on the nucleation and propagation of {1012} twinning in magnesium. Acta Mater. 2013, 61, 3549–3563. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xiao, L.; Wang, X.; Li, Z.; Wang, C.; Wang, B.; Chen, J.; Liu, P.; Zhang, X. Effect of Loading Direction on Tensile-Compressive Mechanical Behaviors of Mg-5Zn-2Gd-0.2Zr Alloy with Heterogeneous Grains. Crystals 2024, 14, 908. https://doi.org/10.3390/cryst14100908
Chen J, Xiao L, Wang X, Li Z, Wang C, Wang B, Chen J, Liu P, Zhang X. Effect of Loading Direction on Tensile-Compressive Mechanical Behaviors of Mg-5Zn-2Gd-0.2Zr Alloy with Heterogeneous Grains. Crystals. 2024; 14(10):908. https://doi.org/10.3390/cryst14100908
Chicago/Turabian StyleChen, Jieming, Lei Xiao, Xuefang Wang, Zhuo Li, Chen Wang, Bingshu Wang, Junfeng Chen, Pan Liu, and Xinyao Zhang. 2024. "Effect of Loading Direction on Tensile-Compressive Mechanical Behaviors of Mg-5Zn-2Gd-0.2Zr Alloy with Heterogeneous Grains" Crystals 14, no. 10: 908. https://doi.org/10.3390/cryst14100908
APA StyleChen, J., Xiao, L., Wang, X., Li, Z., Wang, C., Wang, B., Chen, J., Liu, P., & Zhang, X. (2024). Effect of Loading Direction on Tensile-Compressive Mechanical Behaviors of Mg-5Zn-2Gd-0.2Zr Alloy with Heterogeneous Grains. Crystals, 14(10), 908. https://doi.org/10.3390/cryst14100908