Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device
Abstract
:1. Background & Summary
2. Methods
2.1. Participants
2.2. Ethics Statement
2.3. Experimental Design
2.4. Experimental Protocol
2.5. Videos
2.5.1. Quality-Check Session
- Clip 0. A quality-check session: A short series of pictures. The clip duration was 6 s.
2.5.2. Experiment Videos
- Clip 1. A negative experience (anxiety-inducing): The Present, a 2014 animated short film that won 59 international awards. The short film explores the challenging topic of disability and living with an amputated leg. It had 7,822,858 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=3XA0bB79oGc. The duration of the clip is 3 min and 16 s.
- Clip 2. A positive experience (non-anxiety-inducing): A cheerful children’s choir singing about how music brings happiness. The original video clip has been removed from YouTube. It had 77 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=Z_CB7IjjggY. The clip duration is 1 min and 59 s.
- Clip 3. A negative experience (anxiety-inducing): Anya, a short film that earned several award nominations over the span of 20 years. The film explores the sad life of a Russian orphan. It had 678,967 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=RdHyCwPvppI. The clip duration is 3 min and 38 s.
- Clip 4. A positive experience (non-anxiety-inducing): A series of photographs depicting happy or funny moments with short captions and cheerful music in the background. It had 3,502,628 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=JxJsai5nkGI. The clip duration is 1 min and 37 s.
- Clip 5. A negative experience (stress-inducing): A long series of car accidents filmed live. It had 1,548,780 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=TkidANiymRw. The clip duration is 5 min and 17 s.
- Clip 6. A positive experience (non-anxiety-inducing): A video featuring the characters of the animated cartoon “Minions” dancing on the notes of Pharrell William’s hit “Happy”. It had 92,496,747 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=MOWDb2TBYDg. The clip duration is 3 min and 51 s.
- Clip 7. A negative experience (anxiety-inducing): A series of natural disasters with documentary-style explanations. It had 6,905,750 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=8bBKENJHZYc. The clip duration is 14 min and 42 s.
- Clip 8. “The world’s most relaxing film” is a short video filmed along the west coast of Zealand in Denmark and released by a Danish tourism association in 2015. It shows beautiful and peaceful natural scenarios. The original video clip has been removed from YouTube. It had 8171 views on YouTube (23 November 2021). https://www.youtube.com/watch?v=dkFNdABPhC0. The clip duration is 7 min and 0 s.
2.6. Sensors and Instruments
2.6.1. ECG Sensor
2.6.2. Respiration Sensor
3. Data Records
Metadata
4. Technical Validation
4.1. Qualitative Validation
4.2. Quantitative Validation
4.3. Previous Studies
5. Usage Notes
Limitations and Future Work
6. Code Availability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elgendi, M.; Menon, C. Machine learning ranks ECG as an optimal wearable biosignal for assessing driving stress. IEEE Access 2020, 8, 34362–34374. [Google Scholar] [CrossRef]
- Suess, W.M.; Alexander, A.B.; Smith, D.D.; Sweeney, H.W.; Marion, R.J. The effects of psychological stress on respiration: A preliminary study of anxiety and hyperventilation. Psychophysiology 1980, 17, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Aquino, E.M.; Barreto, S.M.; Bensenor, I.M.; Carvalho, M.S.; Chor, D.; Duncan, B.B.; Lotufo, P.A.; Mill, J.G.; Molina, M.D.C.; Mota, E.L.; et al. Brazilian longitudinal study of adult health (ELSA-Brasil): Objectives and design. Am. J. Epidemiol. 2012, 175, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Henje Blom, E.; Olsson, E.; Serlachius, E.; Ericson, M.; Ingvar, M. Heart rate variability (HRV) in adolescent females with anxiety disorders and major depressive disorder. Acta Paediatr. 2010, 99, 604–611. [Google Scholar] [CrossRef]
- Kulic, D.; Croft, E. Anxiety detection during human-robot interaction. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 616–621. [Google Scholar]
- Miranda, D.; Calderón, M.; Favela, J. Anxiety detection using wearable monitoring. In Proceedings of the 5th Mexican Conference on Human-Computer Interaction, Oaxaca, Mexico, 3–5 November 2014; pp. 34–41. [Google Scholar]
- Park, C.Y.; Cha, N.; Kang, S.; Kim, A.; Khandoker, A.H.; Hadjileontiadis, L.; Oh, A.; Jeong, Y.; Lee, U. K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. Sci. Data 2020, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, D.; Arreghini, A.; Lombardo, L.; Visentin, A.; Cerea, S.; Castroflorio, T.; Siciliani, G. Assessment of anxiety and coping features in bruxers: A portable electromyographic and electrocardiographic study. J. Oral Fac. Pain Headache 2016, 30, 249–254. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Xu, Q.; Yuan, Q.; Bai, C.; Ban, X.J. Analysis of differences in ECG characteristics for different types of drivers under anxiety. Adv. Civ. Eng. 2021, 2021, 6640527. [Google Scholar] [CrossRef]
- Uyarel, H.; Kasıkcıoglu, H.; Dayi, S.U.; Tartan, Z.; Karabulut, A.; Uzunlar, B.; Samur, H.; Sarı, I.; Okmen, E.; Cam, N. Anxiety and P wave dispersion in a healthy young population. Cardiology 2005, 104, 162–168. [Google Scholar] [CrossRef]
- Dussault, C.; Jouanin, J.C.; Philippe, M.; Guezennec, C.Y. EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviat. Space Environ. Med. 2005, 76, 344–351. [Google Scholar]
- Chalmers, J.A.; Heathers, J.A.; Abbott, M.J.; Kemp, A.H.; Quintana, D.S. Worry is associated with robust reductions in heart rate variability: A transdiagnostic study of anxiety psychopathology. BMC Psychol. 2016, 4, 1–9. [Google Scholar] [CrossRef]
- Yeragani, V.K.; Tancer, M.; Seema, K.; Josyulab, K.; Desai, N. Increased pulse-wave velocity in patients with anxiety: Implications for autonomic dysfunction. J. Psychosom. Res. 2006, 61, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, J.A.; Chang, J. Electrocardiogram abnormalities among men with stress-related psychiatric disorders: Implications for coronary heart disease and clinical research. Ann. Behav. Med. 1999, 21, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, P. Respiratory sinus arrhythmia as a function of state anxiety in healthy individuals. Int. J. Psychophysiol. 2007, 63, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.A.; Latman, V.V.; Katz, J. Effects of a 12-minute smartphone-based mindful breathing task on heart rate variability for students with clinically relevant chronic pain, depression, and anxiety: Protocol for a randomized controlled trial. JMIR Res. Protoc. 2019, 8, e14119. [Google Scholar] [CrossRef]
- Tiwari, A.; Cassani, R.; Narayanan, S.; Falk, T.H. A comparative study of stress and anxiety estimation in ecological settings using a smart-shirt and a smart-bracelet. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2213–2216. [Google Scholar]
- Pittig, A.; Arch, J.J.; Lam, C.W.; Craske, M.G. Heart rate and heart rate variability in panic, social anxiety, obsessive–compulsive, and generalized anxiety disorders at baseline and in response to relaxation and hyperventilation. Int. J. Psychophysiol. 2013, 87, 19–27. [Google Scholar] [CrossRef]
- Penninx, B.W.; Beekman, A.T.; Smit, J.H.; Zitman, F.G.; Nolen, W.A.; Spinhoven, P.; Cuijpers, P.; De Jong, P.J.; Van Marwijk, H.W.; Assendelft, W.J.; et al. The Netherlands Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. Int. J. Methods Psychiatr. Res. 2008, 17, 121–140. [Google Scholar] [CrossRef]
- Comijs, H.C.; van Marwijk, H.W.; van der Mast, R.C.; Naarding, P.; Voshaar, R.C.O.; Beekman, A.T.; Boshuisen, M.; Dekker, J.; Kok, R.; de Waal, M.W.; et al. The Netherlands study of depression in older persons (NESDO); a prospective cohort study. BMC Res. Notes 2011, 4, 1–10. [Google Scholar] [CrossRef]
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.L.; et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data 2019, 6, 1–21. [Google Scholar] [CrossRef]
- Healey, J.; Picard, R. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Schäfer, S.K.; Ihmig, F.R.; Lara, K.A.; Neurohr, F.; Kiefer, S.; Staginnus, M.; Lass-Hennemann, J.; Michael, T. Effects of heart rate variability biofeedback during exposure to fear-provoking stimuli within spider-fearful individuals: Study protocol for a randomized controlled trial. Trials 2018, 19, 1–11. [Google Scholar] [CrossRef]
- Ihmig, F.R.; Neurohr-Parakenings, F.; Schäfer, S.K.; Lass-Hennemann, J.; Michael, T. On-line anxiety level detection from biosignals: Machine learning based on a randomized controlled trial with spider-fearful individuals. PLoS ONE 2020, 15, e0231517. [Google Scholar] [CrossRef] [PubMed]
- Luck, A.; Pearson, S.; Maddem, G.; Hewett, P. Effects of video information on precolonoscopy anxiety and knowledge: A randomised trial. Lancet 1999, 354, 2032–2035. [Google Scholar] [CrossRef]
- Ruffinengo, C.; Versino, E.; Renga, G. Effectiveness of an informative video on reducing anxiety levels in patients undergoing elective coronarography: An RCT. Eur. J. Cardiovasc. Nurs. 2009, 8, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.R.; Seelamantula, C.S. On the selection of optimum Savitzky-Golay filters. IEEE Trans. Signal Process. 2012, 61, 380–391. [Google Scholar] [CrossRef]
- Sharma, P.; Hui, X.; Zhou, J.; Conroy, T.B.; Kan, E.C. Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate. NPJ Digit. Med. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Bosse, T.; Gerritsen, C.; de Man, J.; Stam, M. Inducing anxiety through video material. In Proceedings of the International Conference on Human-Computer Interaction, Toronto, ON, Canada, 23–26 September 2014; Springer: Berlin, Germany, 2014; pp. 301–306. [Google Scholar]
- Eryilmaz, H.; Van De Ville, D.; Schwartz, S.; Vuilleumier, P. Impact of transient emotions on functional connectivity during subsequent resting state: A wavelet correlation approach. Neuroimage 2011, 54, 2481–2491. [Google Scholar] [CrossRef]
- Frazier, T.W.; Strauss, M.E.; Steinhauer, S.R. Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology 2004, 41, 75–83. [Google Scholar] [CrossRef]
- Schaefer, A.; Nils, F.; Sanchez, X.; Philippot, P. Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cognit. Emot. 2010, 24, 1153–1172. [Google Scholar] [CrossRef]
- Giardino, N.D.; Friedman, S.D.; Dager, S.R. Anxiety, respiration, and cerebral blood flow: Implications for functional brain imaging. Compr. Psychiatry 2007, 48, 103–112. [Google Scholar] [CrossRef]
- Homma, I.; Masaoka, Y. Breathing rhythms and emotions. Exp. Physiol. 2008, 93, 1011–1021. [Google Scholar] [CrossRef]
- Masaoka, Y.; Homma, I. The effect of anticipatory anxiety on breathing and metabolism in humans. Respir. Physiol. 2001, 128, 171–177. [Google Scholar] [CrossRef]
- Hasnul, M.A.; Aziz, N.A.A.; Alelyani, S.; Mohana, M.; Aziz, A.A. Electrocardiogram-Based Emotion Recognition Systems and Their Applications in Healthcare—A Review. Sensors 2021, 21, 5015. [Google Scholar] [CrossRef]
- Adheena, M.; Sindhu, N.; Jerritta, S. Physiological Detection of Anxiety. In Proceedings of the 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), Kottayam, India, 21–22 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Szakonyi, B.; Vassányi, I.; Schumacher, E.; Kósa, I. Efficient methods for acute stress detection using heart rate variability data from Ambient Assisted Living sensors. Biomed. Eng. Online 2021, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aguilar, L.; Navarro-Bravo, B.; Ricarte, J.; Ros, L.; Latorre, J.M. How effective are films in inducing positive and negative emotional states? A meta-analysis. PLoS ONE 2019, 14, e0225040. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, J.; Murugappan, M.; Wan, K.; Yaacob, S. Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst. Biomed. Eng. Online 2013, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
Participant | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | A10 | A11 | A13 | A14 | A15 | A16 | A18 | A19 | A20 | A21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beck Score | 20 | 11 | 0 | 9 | 13 | 25 | 10 | 2 | 7 | 2 | 14 | 12 | 1 | 7 | 23 | 6 | 7 | 4 | 7 |
Beck (Low Anxiety) | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
Beck (Moderate Anxiety) | √ | √ | |||||||||||||||||
Hamilton Score | 20 | 12 | 5 | 4 | 12 | 18 | 12 | 1 | 6 | 4 | 11 | 14 | 4 | 6 | 15 | 13 | 9 | 3 | 3 |
Hamilton (Mild Anxiety) | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
Hamilton (Mild–Moderate Anxiety) | √ | √ |
Participant | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | A10 | A11 | A13 | A14 | A15 | A16 | A18 | A19 | A20 | A21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ECG | Mean [mV] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Std [mV] | 0.08 | 0.11 | 0.10 | 0.07 | 0.09 | 0.06 | 0.10 | 0.06 | 0.09 | 0.11 | 0.10 | 0.46 | 0.12 | 0.06 | 0.10 | 0.05 | 0.10 | 0.09 | 0.20 | |
Median [mV] | −0.01 | −0.03 | −0.02 | −0.01 | −0.02 | −0.01 | −0.01 | −0.01 | −0.02 | 0.00 | −0.02 | −0.02 | −0.03 | −0.02 | −0.03 | 0.00 | −0.02 | −0.02 | −0.01 | |
Range [mV] | 0.94 | 1.41 | 2.91 | 0.93 | 1.94 | 0.64 | 1.49 | 1.23 | 1.11 | 1.75 | 1.70 | 9.87 | 1.95 | 2.20 | 1.01 | 0.88 | 1.40 | 1.83 | 12.00 | |
SNR [dB] | 49.46 | 51.29 | 46.23 | 49.39 | 51.96 | 49.41 | 53.17 | 47.23 | 53.26 | 52.52 | 42.18 | 26.98 | 37.82 | 31.59 | 41.53 | 36.80 | 34.90 | 45.72 | 44.62 | |
RES | Mean [mV] | 5.66 | 5.08 | 2.26 | −2.16 | −2.63 | −1.74 | −1.36 | −1.81 | −2.49 | −4.20 | 3.10 | 5.71 | 6.44 | 5.55 | 4.69 | 4.80 | −0.69 | 2.64 | 0.38 |
Std [mV] | 0.54 | 0.86 | 2.56 | 0.33 | 0.16 | 0.32 | 0.14 | 0.27 | 0.88 | 0.12 | 0.92 | 1.67 | 0.37 | 0.84 | 0.93 | 1.12 | 3.82 | 1.77 | 3.92 | |
Median [mV] | 5.76 | 5.02 | 2.16 | −2.07 | −2.61 | −1.66 | −1.39 | −1.73 | −2.30 | −4.21 | 3.21 | 6.02 | 6.48 | 5.71 | 4.80 | 4.92 | −0.06 | 2.66 | 0.75 | |
Range [mV] | 4.76 | 7.87 | 14.86 | 3.06 | 1.53 | 4.84 | 0.86 | 2.38 | 7.71 | 1.78 | 7.80 | 14.71 | 4.91 | 7.69 | 13.93 | 9.89 | 14.29 | 8.22 | 14.43 | |
SNR [dB] | −20.80 | −18.74 | −1.04 | −24.50 | −26.97 | −19.29 | −27.20 | −21.38 | −12.43 | −31.24 | −21.96 | −16.96 | −25.77 | −19.57 | −16.28 | −14.79 | 5.98 | −4.68 | 4.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgendi, M.; Galli, V.; Ahmadizadeh, C.; Menon, C. Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device. Data 2022, 7, 132. https://doi.org/10.3390/data7090132
Elgendi M, Galli V, Ahmadizadeh C, Menon C. Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device. Data. 2022; 7(9):132. https://doi.org/10.3390/data7090132
Chicago/Turabian StyleElgendi, Mohamed, Valeria Galli, Chakaveh Ahmadizadeh, and Carlo Menon. 2022. "Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device" Data 7, no. 9: 132. https://doi.org/10.3390/data7090132
APA StyleElgendi, M., Galli, V., Ahmadizadeh, C., & Menon, C. (2022). Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device. Data, 7(9), 132. https://doi.org/10.3390/data7090132